The project will make developments to extending the semi-parametric time-series modelling framework proposed in Fung & Huang (2015) to handle INGARCH (Integer-valued Generalized Autoregressive Conditional Heteroscedastic) models. This will primarily focus on INGARCH(1,1) models on count time-series data. Firstly, extensive background reading will be performed before tackling computation, estimation and simulation of semi-parametric time-series models from various distributions. The project will then move on to applying the semi-parametric model to common examples and applications in INGARCH time-series literature, comparing with parametric estimations given by various authors. Finally, the project will explore relevant software to handle a general INGARCH(p,q) models within the semi-parametric framework.
The University of Queensland
Kyle has completed his third year of a dual degree of a Bachelor of Mathematics (Statistics) / Computer Science (Machine Learning) at the University of Queensland. Kyle has a passion for mathematical statistics, mathematical analysis and probability theory. In particular, he has taken a strong interest in applications of mathematics in finance, sports and health, as well as combining skills in both mathematics and programming to solve real-world problems. The AMSI Vacation Research Scholarship will provide Kyle with an excellent experience to develop his communication skills and apply concepts for his future academic studies.