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1 Abstract

A commonly used class of models in analysing count time series are INGARCH (Integer-valued Generalised Au-

toregressive Conditional Heteroscedatic) models. Many authors have explored parametric INGARCH models

which make assumptions of the conditional response distribution, but model misspecification can create biased

inferences in the resultant parametric models. Motivating this, the report proposes a semi-parametric INGARCH

model for count time-series data which treats the unknown distribution instead as a infinite-dimensional pa-

rameter, which is estimated simultaneously with the model’s finite dimensional parameters using a maximum

likelihood approach. Numerical simulation results are presented for various distributions and suggests the pro-

posed model has more robust inferences than parametric models in situations of model misspecification, while

also performing well in estimation and inference compared to correctly-specified parametric models. The pro-

posed model shows better or on-par model adequacy when applied to a variety of common datasets, compared

to parametric models in INGARCH literature.

2 Introduction

Count time series are commonly observed in fields such as health, finance and epidemiology, often involving

non-Gaussian responses. The analysis of count time-series can be done using a variety of models, usually

being classified as one of two types. The first of which transfer an auto-regressive moving average (ARMA)

model to count data utilising thinning operators. The second is a class of conditional regression models, of

which, INGARCH (Integer-valued Generalised Autoregressive Conditional Heteroscedatic) Models are a popular

choice that are widely explored in time-series literature. INGARCH models impose constraints on the condi-

tional means to obtain an ARMA like auto-correlation function, with an assumed conditional distribution F .

Common choices for this distribution include Poisson and Negative Binomial distributions, however, in real

applications it is often difficult to correctly specify the underlying conditional distribution generating the data.

In these difficult situations, model misspecification in parametric models leads to biased inferences on model

parameters, motivating for a general and flexible modelling framework for various conditional response dis-

tributions. Huang and Fung (2015) addressed this for modelling time-series using a generalised linear model

by treating the distribution as a infinite dimensional parameter and jointly estimating it with the model pa-

rameters. The proposed model is a semi-parametric model and motivated by this, one could find a similar

framework useful for modelling count time-series using INGARCH models to address issues mentioned prior.

Thus, the project implements a semi-parametric INGARCH model in MATLAB for count time-series data that

correctly adapts to a wide range of conditional distributions. Numerical simulations of the proposed model will

be presented to explore the performance of estimation and inference compared to correctly specified parametric

models, and misspecified parametric models. Finally, applicability and usefulness of the proposed model is

explored by fitting it to various datasets used in INGARCH literature for a comparative analysis.
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3 Statement of Authorship

The workload was divided as follows:

• Alan Huang formulated the project outline, provided the base MATLAB code from past work, guided

project direction, assisted with result interpretation and theoretical understanding, and proofread the

report.

• Kyle Macaskill developed the model in MATLAB by building on existing MATLAB code, located and

studied references, performed various numerical simulations, fitted the model to real-world applications,

reported and interpreted results, and wrote the report.

4 Semi-Parametric INGARCH Model Formulation

4.1 Background

INGARCH models were first introduced by Rydberg and Shephard (2000), Heinen (2003) and Ferland et al.

(2006), with an assumed conditional Poisson distribution. Adaptations of these initial Poisson INGARCH

models to other conditional response distributions have been explored by other authors, but the structure of the

conditional mean has remained the same. See appendix A.1 for a overview of notation choices and terminology.

Definition 4.1.1 (General INGARCH Model). Suppose Yt is a count observation at time t, conditioned on

previous observations be distributed by an underlying conditional distribution F .

µt = d+

q∑
i=1

aiµt−i +

p∑
j=1

bjYt−i t = 2, 3, ..., n (1)

Where d > 0, a1, · · · , aq, b1, · · · , bp ≥ 0. This is known as a INGARCH(p,q) model, which Ferland et al. (2006)

showed that if
∑q

i=1 ai +
∑p

j=1 bj ≤ 1, it guarantees a strictly stationary solution with finite first and second

order moments. The model provides a method of parametrising long term memory as all observations are

influenced by past observations in the prior conditional means, with their weight decreasing exponentially as

the lag increases.

Semi-parametric time-series model was proposed by Huang and Fung (2015), introducing a flexible and parsi-

monious approach for modelling based on the exponential tilt representation of the exponential family proposed

in Rathouz and Gao (2009) given below.

Semi-parametric Time Series Model

Suppose

Yt|Ft−1 ∼ ExpFam(µt), t = 1, 2, ... (2)

Then, we can re-write this as follows:

Yt|Ft−1 ∼ exp(bt + θty)dF (y), t = 1, 2, ..., (3)
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where F is the underlying distribution that generates the exponential family, {bt} are normalisation constants

satisfying

bt = − log

∫
exp(θty)dF (y) t = 1, 2, ..., (4)

and the tilts {θt} are given to satisfy

0 =

∫
(y − µt) exp(θty)dF (y) t = 1, 2, ..., (5)

We can find thus express the log-likelihood function of the model (3) - (5) as

l(β, γ, F ) =

n∑
t=1

log (dF (Yt)) + bt + θtYt (6)

4.2 Implementation via maximum empirical likelihood

As suggested by Huang and Fung (2015), to create the semi-parametric model, rather than assuming the un-

known distribution F prior we treat F as an infinite dimensional parameter within the model (3) - (6). Thus,

it is proposed to replace the unknown dF with a probability mass function {p1, ..., pn} on the observations

Y1, ..., Yn, with
∑n

j=1 pj = 1.

Extending this framework to handle INGARCH models is possible by changing the definition of the conditional

mean to that defined in Definition 4.1.1. The other components, constraints and parameters of the model given

can be left unchanged as they are associated with the exponential tilt representation.The unknown distribution

F and model parameters β are then jointly estimated. This joint estimation will be performed using a maxi-

mum empirical likelihood approach in MATLAB using the fmincon optimisation package, which we can do by

translating the given problem into the following constrained optimisation problem.

Constrained Optimisation Problem

maximise l(β, p; b, θ) =

n∑
t=1

{log (pt) + bt + θtYt} over β, p, b, θ

subject to 0 =

n∑
j=1

(Yj − µt) exp(θtYj)pj t = 1, ..., n (mean constraints)

bt = − log

n∑
j=1

exp(θtYj)pj t = 1, ..., n (normalisation constraints)

where µt = d+

q∑
i=1

aiµt−i +

p∑
j=1

bjYt−i t = 2, ..., n (INGARCH constraints)

Note that Definition 4.1.1 defines the recursive relationship for the conditional mean except for the initial means,

eg. µ1 in an INGARCH(1,1) model. The value of the µ1 can be treated in different ways, which have an impact

on the model’s parameter estimates as explored by Weiß (2018). A common choice is to set this to be the

sample mean Ȳ , but instead we follow the suggestion of Ferland et al. (2006) and treat all initial means as a

further parameter within our model and estimate it.

Regarding the consistency of the estimators, as stated by Huang and Fung (2015), if the process is stationary
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and uniformly ergodic then the semi-parametric model is consistent whenever a correctly specified parametric

model is. The Semi-Parametric INGARCH process is strictly stationary, but ergodicity is difficult to prove for a

general exponential family and is usually proven on a per distribution basis. For example, Fokianos et.al (2009)

utilises a perturbed model to prove ergodicity for the proposed Poisson Autoregression Model which is a Poisson

INGARCH(1,1) model. Thus, we can consider the semi-parametric model to be consistent for parametric models

with proven ergodicity, but in other cases without this proof, we generally find the semi-parametric model to

converge towards the true parameters as n → ∞ as will be explored in Section 5.

4.3 Inference Methodology

Parametric INGARCH models provide inference of model parameters β directly by either inverting the infor-

mation matrix, or utilising a sandwich operator involving the conditional information matrix. For the semi-

parametric log-likelihood, this is difficult to find analytically and potentially computationally expensive to

compute. Instead, we suggest utilising the inference method proposed by Huang and Fung (2015) which uses

the likelihood ratio test (LRT).

Supposing that we are interesting in considering testing H0 : βk = β∗ where β∗ is a chosen null value for a

component of β. We have that the LRT is given as follows.

LRT = 2{l(β̂, p̂)− supβk=β∗ l(β, p)} (7)

Thus, we can find the equivalent standard error seeq using the following formula.

LRT =

(
β̂k − β∗

seeq

)2

(8)

seeq =

√√√√( (β̂k − β∗)2

LRT

)
(9)

Here it is important to note that this equivalent standard error results in the corresponding z-test to have the

same significance level compared to a LRT against a χ1 distribution. In the general case, it is suggested to use

a null value of 0 which we will adopt for the mean lag parameters ai as this null model still has a meaningful

interpretation. However, an issue arises if we set the observation lag parameters bj = 0 as in a INGARCH(1,1)

model, it becomes deterministic and not dependent on the response variable Y . Through simulations, we find

that if the null value of b is established far away from the true parameter, the estimated standard errors are

not accurate. Thus, we suggest setting the null value b = 0.5 as it lies in the middle of the parameter space for

b ∈ (0, 1].

When considering inference, we can also consider the wald-type 95% confidence intervals as these are just as

meaningful as the standard error. We can construct these intervals by using the LRT, grid searching various

null values around the parameter estimate in either direction until the we reject the null hypothesis against a
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χ1 test. For a 95% confidence interval, the upper and lower bounds surrounding the estimated parameter β̂k

are the null values β∗ where LRT > χ2
1,0.05 (χ2

1,0.05 = 3.841).

This methods can creates asymmetric confidence intervals and does not require calculating the standard errors,

but is computationally expensive for each parameter. In situations where the simulated parameters estimates

are normally distributed and symmetric, we can constructed a good approximation using the usual β̂k±zα
2
seeq.

As we will provide evidence for in the following section, we recommend using the normal approximation 95%

confidence interval for all parameters except the intercept d, where instead we recommend constructing the 95%

likelihood ratio confidence interval, without finding the standard error. We will explore why by first using the

proposed LRT inference method for equivalent standard errors with a null value d = 0 in simulations.

5 Simulation Study

For the purpose of model testing, we will perform numerical simulations of a semi-parametric INGARCH(1,1)

model defined below, as these are most common in literature.

µt = d+ aµt−1 + bYt−1 t = 2, 3, ..., n (10)

Furthermore, a comparison with a Poisson and Negative Binomial model fitted using the tscount (Liboschik

et al. 2017) package in R will be made to consider performance compared to correctly specified parametric

models, and misspecified parametric models. The body of the report will consider two numerical simulations

but for a broader range of simulations from various common distributions, see appendix A.2-A.5. The terms

we are measuring are as follows: Bias = difference between true parameter and mean maximum likelihood

estimate, SD = simulation standard deviation, SE = equivalent standard error, Coverage = coverage (%) of the

true parameter of symmetric 95% confidence intervals for 500 simulations.

We performed 500 simulations for each sample size as this was found to be large enough to achieve asymptotic

behaviour. Note that the analysis of both given simulations will be given afterwards in section 5.3

5.1 Negative Binomial Distribution: Overdispersed Case

There exists varying parameterisation for an Negative Binomial INGARCH(p,q), but we will simulate from the

one proposed by Weiß (2018) which extends on the model by Zhu (2011), to align it with Definition 4.1.1.

r
1− pt
pt

= µt = d+

q∑
i=1

aiµt−i +

p∑
j=1

bjYt−i (11)

Yt|Ft−1 ∼ NB

(
r,

r

r + µt

)
(12)
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Model n Estimates Bias SD SE Coverage LRT
Semi-Parametric 150 d 0.3979 0.8556 0.5331 81.0% 92.6%

a -0.0073 0.1050 0.1032 93.8% -
b -0.0306 0.0892 0.0852 90.8% -
µ1 0.0074 2.0130 - - -

500 d 0.1502 0.4377 0.3125 84.8% 93.2%
a -0.0034 0.0533 0.0531 95.8% -
b -0.0105 0.0468 0.0468 95.0% -
µ1 0.0509 1.1526 - - -

Poisson 150 d 0.4870 1.0647 0.4333 61.0% -
a -0.0381 0.1046 0.0463 60.0% -
b -0.0205 0.0900 0.0360 58.2% -

500 d 0.1975 0.5398 0.2120 54.4% -
a -0.0073 0.0607 0.0227 56.6% -
b -0.0151 0.0526 0.0190 51.8% -

Negative Binomial 150 d 0.4870 1.0647 1.0276 95.4% -
a -0.0381 0.1046 0.1200 95.0% -
b -0.0205 0.0900 0.1051 95.4% -

500 d 0.1975 0.5398 0.5463 95.6% -
a -0.0073 0.0607 0.0651 95.4% -
b -0.0151 0.0526 0.0606 95.0% -

Table 1: True model parameter β = (d, a, b, µ1, r)
T = (2, 0.3, 0.6, 1, 4)T

Figure 1: Histogram and QQ-plot of Semi-Parametric Model on NB data. (Left) n = 150, (Right) n = 500

5.2 Conway-Maxwell-Poisson Distribution: Underdispsered Case

Underdispersion is also common occurrence in time-series data, which cannot be modelled using Poisson or Neg-

ative Binomial INGARCH models. We will simulate underdispersed data using a mean-parametrised Conway-
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Maxwell-Poisson (CMP) distribution (Huang 2017) from the R package mpcmp (Fung et al. 2020).

Yt|Ft−1 ∼ CMPµ (µt, ν) (13)

Here, ν is a diserpsion parameter where ν < 1 implies overdispersion and ν > 1 implies underdispersion.

Model n Estimates Bias SD SE Coverage LRT
Semi-parametric 150 d 0.1800 0.6656 0.4389 84.8% 93.6%

a -0.0104 0.1368 0.1389 96.4% -
b -0.0174 0.0877 0.0832 92.8% -
µ1 0.0031 0.8492 - - -

500 d 0.0570 0.3642 0.2448 86.8% 94.6%
a -0.0044 0.0752 0.0764 96.4% -
b -0.0041 0.0434 0.0444 96.0% -
µ1 -0.0142 0.7750 - - -

Poisson 150 d 0.4507 0.6639 0.9945 99.2% -
a -0.1015 0.1283 0.1915 99.6% -
b 0.0255 0.0880 0.1061 99.2% -

500 d 0.0346 0.3694 0.4980 99.4% -
a -0.0070 0.0760 0.1021 99.6% -
b -0.0007 0.0435 0.0596 99.4% -

Negative Binomial 150 d 0.4507 0.6639 0.9945 99.2% -
a -0.1015 0.1283 0.1915 99.6% -
b 0.0255 0.0880 0.1061 99.2% -

500 d 0.0346 0.3694 0.4980 99.4% -
a -0.0070 0.0760 0.1021 99.6% -
b -0.0007 0.0435 0.0596 99.4% -

Table 2: True model parameter β = (d, a, b, µ1, ν)
T = (2, 0.2, 0.5, 1, 1.9)T

Figure 2: Histogram and QQ-plot of Semi-Parametric Model on CMP data. (Left) n = 150, (Right) n = 500

5.3 Discussion of Simulation Results

For the semi-parametric model, we find small biases for the parameters a and b across all sample sizes, similar

to the consistent parametric models. Note that the semi-parametric model bias for the parameter ’d’ is larger,
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with more variation in the estimates, but similar biases are also found in the parametric models. As the sample

size increases, the semi-parametric model’s biases decreases as expected. However, while the semi-parametric

model maintains small biases for smaller sample sizes, misspecified models such as in the COM-Poisson case

have larger biases for n = 150, but similar estimates for n = 500 due to model consistency. This suggests that

the semi-parametric model estimates adapts well even for smaller sample sizes, resulting in potentially faster

convergence to the true parameters compared to misspecified models.

The simulation standard deviation when the number of simulation is large provides a good approximation

for the estimates true standard error. We find that for parameters a and b in both examples, the semi-

parametric model’s standard errors (seeq) are close to the standard deviation. Therefore, as the histogram and

qq-plots suggest that these parameters estimates are distributed approximately by a normal distribution, the

true parameters exhibit close to 95% coverage as n increases for both examples. This performance is similar to

the correctly specified Negative Binomial model in 5.1, indicating that the suggested inference method can be

used similar to inferences in parametric models.

Contrasting this, misspecified models such as the Poisson model in 5.1 and both parametric models in 5.2 have

biased inferences and non-optimal coverage, reinforcing the benefit of the semi-parametric model. The Poisson

Model in 5.1 gives low coverage and standard errors indicating that the model is underdispersed relative to

the true model. Both parametric models in the underdispersed COM-Poisson example give very high coverage,

indicating that they are overdispersed relative to the true model.

Finally, note that the parameter d in the semi-parametric model using the null value d = 0 finds non-expected

standard errors and coverage under 95%. As the intercept must be positive, using a null value of 0 lies on the

boundary of the parameter space which may have implications on the null distribution. Proposing other general

null values are difficult is d is unbounded, and using any proposed null values to construct symmetric 95%

confidence intervals will not improve coverage as the estimates for d are right-skewed, deviating from normality

which is a phenomena observed by other authors. Therefore, we can correct this by instead constructing the

likelihood ratio confidence intervals as proposed in section 4. Doing so increases the coverage close to roughly

92-94%, indicating much better performance across various distributions, but at the cost of not being able to

give an estimated standard error. However, we argue that providing the 95% confidence interval is just as

meaningful as providing correct standard errors.

6 Real-world Applications

We will now apply the semi-parametric INGARCH model to two commonly analysed datasets in INGARCH

literature. Note that a more application studies can be found in the appendix A.6 - A.7 with similar analysis.

To assess model adequacy, we will use a Probability Inverse Transform (PIT) which considers the conditional

moments and accesses distribution assumptions of the model. We will consider both a randomised and non-

9



randomised (mean) PIT considered by Cazdo et al. (2009), who suggested these adjustments to handle discrete

distributions. The definitions can be found in appendix A.8, with both transforming the fitted model to a

uniform distribution if the fitted model is the true model of the data.

6.1 Number of Transactions of Ericsson B Stock

Here, we will apply the proposed semiparametric INGARCH model to the number of transactions per minute

of the stock Ericsson B on July 2nd 2002 which was initially published by Brännäs and Quoreshi (2010),

containing the number of transactions per minute from July 2-22 2002. The dataset is commonly used across

time series literature, including Fokianos, Rahbek, et al. (2009), Christou and Fokianos (2014), Davis and Liu

(2016), Zhang (2017) among others. The dataset contains 460 observations between 09:35 - 17:14 evident in the

figure below, with a sample mean 9.9087, and sample variance 32.8370, indicating that the data is conditionally

overdispersed. Below we will fit various INGARCH(1,1) models, noting that the model proposed by Zhu (2011)

does not express the conditional mean in the form given in 4.1.1. Thus, we will fit the adjusted model proposed

by Weiß (2018) for the comparison below.

Figure 3: (Left) Data plot, (Right) Histogram

Model Estimates

Model d̂ â b̂ µ̂1 r̂

Our Model SP 0.273 ( ) 0.844 (0.105) 0.129 (0.047) 12.311 -

Zhang (2017) SP 0.278 ( ) 0.839 ( ) 0.133 ( ) - -

David and Liu (2016) Pois 0.291 (0.100) 0.831 (0.024) 0.140 (0.019) - -

David and Liu (2016) NB 0.268 (0.141) 0.848 (0.035) 0.128 (0.027) - 8.000

Zhu / Weiß (2018) NB 0.270 (0.142) 0.845 (0.034) 0.127 (0.026) 12.038 7.861

Pois INGARCH(1,1) 0.292 (0.100) 0.832 (0.023) 0.139 (0.018) 12.058 -

tscount NB (2020) 0.286 (0.157) 0.832 (0.039) 0.140 (0.031) - 7.317

Table 3: INGARCH(1,1) Model Estimates, Standard Errors in Parenthesis
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Model d̂ â b̂

Our SP Model [ 0.0450, 0.6405] [0.6382, 1.0498] [0.0369, 0.2211]

David and Liu (2016) Pois [ 0.0950, 0.4870] [0.7839, 0.8780] [0.1028, 0.1772]

David and Liu (2016) NB [-0.0084, 0.5444] [0.7794, 0.9166] [0.1028, 0.1772]

Zhu / Weiß (2018) NB [-0.0083, 0.5483] [0.7784, 0.9116] [0.0761, 0.1780]

Pois INGARCH(1,1) [ 0.0960, 0.4880] [0.7869, 0.8771] [0.1037, 0.1743]

tscount NB [-0.0217, 0.5937] [0.7556, 0.9084] [0.0792, 0.2008]

Table 4: INGARCH(1,1) Model’s 95% Confidence Interval

Discussion

We find that the semi-parametric model gives parameter estimates which are similar to those proposed by the

parametric negative binomial models. When comparing inferences, we find that the semi-parametric model has

wider confidence intervals and larger standard errors. Therefore, this may indicate that the true underlying

distribution is some deviation from the negative binomial distribution, which the semi-parametric model is

adapting to. Note that Zhang does propose a semi-parametric INGARCH(1,1) model assuming the unknown

distribution log-concave, but no inference methods are given.

Model Adequacy

Figure 4: Mean PIT’s. (Top Left) Semi Parametric Model, (Top Right) Zhu / Weiß NB Model, (Bottom Left)

tscount NB Model, (Bottom Right) tscount Poisson Model
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Figure 5: Randomised PIT and Uniform QQ-plots. (Top) Semi Parametric Model, (Bottom) Zhang (2017)

Semi-Parametric Model

As evident in Figure 4, we find that the Semi-Parametric Model gives a mean PIT which is similar to the

tscount negative binomial model, being close to uniform. The Semi-Parametric model does have slightly smaller

deviations, but we can consider it possesses on par model adequacy compared to the parametric model. The

Poisson model’s U shape indicates underdispersion relative to the true model. When we consider Figure 5, we

see that using a randomised PIT we obtain similar model adequacy to the semi-parametric model proposed by

Zhang (2017). However, Zhang doesn’t consider a mean PIT so a single randomised PIT may not capture it’s

overall performance like a mean PIT does.

Final Proposed Model

µ̂t = 0.273 + 0.844µ̂t−1 + 0.129Yt−1 , t > 2

µ̂1 = 12.311
(14)

6.2 Number of cases of Campylobacterosis Infections

Campylobacterosis a gastrointestinal bacterial infection caused by eating contaminated food, causing cramping,

fever and abdominal pain. Ferland et al. (2006) modelled the number of Campylobacterosis infections in the

North of Québec in Canada from January 1990 to October 2000 using two different Poisson INGARCH models.

The first model had considered a past mean lag of 7 & 13, where the second only considers a past mean lag of 13.

Below we will fit the semi-parametric model to the first proposed model alongside the parametric models from

tscount, as the analysis of model adequacy is found to be the same for both models. The dataset is available
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in the tscount R package (Liboschik et al. 2017) , containing 140 observations with one observation every 28 days.

Figure 6: (Left) Data plot, (Right) Histogram

Proposed INGARCH Model

µt = d+ a1µt−7 + a2µt−13 + b1Yt−1, t > 13 (15)

Model Estimates

Model d̂ â1 â2 b̂ r

Our SP Model 1.8280 ( ) 0.0880 (0.1065) 0.2127 (0.0662) 0.5748 (0.0823) -

Ferland et.al Pois 1.9280 (0.6764) 0.0543 (0.0633) 0.2593 (0.1158) 0.5437 (0.0828) -

tscount Pois 1.4965 (0.7100) 0.0873 (0.0640) 0.1838 (0.0750) 0.5856 (0.0529) -

tscount NB 1.4965 (1.1337) 0.0873 (0.1042) 0.1838 (0.1228) 0.5856 (0.0926) 8.710

Table 5: INGARCH(1,1) Model Estimates, Standard Errors in Parenthesis

Model d̂ â1 â2 b̂1
Our SP Model [-0.4895, 4.2050] [-0.1207, 0.2967] [ 0.0829, 0.3425] [0.4135, 0.7361]

Ferland et.al Pois [ 0.6023, 3.2537] [-0.0698, 0.1783] [ 0.0325, 0.4864] [0.3814, 0.7060]

tscount Pois [ 0.1049, 2.8881] [-0.0381, 0.2127] [ 0.0368, 0.3308] [0.4819, 0.6893]

tscount NB [-0.7256, 3.7185] [-0.1169, 0.2915] [-0.0569, 0.4245] [0.4041, 0.7671]

Table 6: INGARCH(1,1) Model’s 95% Confidence Interval

Discussion

In Table 5 we find that the estimates of the semi-parametric model do show deviations from all other models, with

estimates for each parameter lying between the model by Ferland et al. (2006), and the tscount model where

estimation is done using the conditional poisson likelihood. The confidence intervals of the semi-parametric

model are similar to the Negative Binomial model for parameters a1, b1, but the semi-parametric model has

tighter intervals for the other parameters. Thus, it indicates that the semi-parametric model is adapting to a

distribution which differs from the Poisson and Negative Binomial distribution. Note for the semi-parametric
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model, the initial means are approximately the response at the initial times.

Model Adequacy

Figure 7: Mean PIT’s. (Top Left) tscount Poisson Model, (Top Right) tscount Negative Binomial Model,

(Bottom) Semi-Parametric Model

In Figure 7 we find both parametric models are not adequate, with the Poisson model shows signs of relative

underdispersion with a U shape, whereas the negative binomial model shows signs of relative overdispersion with

an inverse U shape. The Semi-Parametric model’s mean PIT possess noticeably less deviations from uniformity,

indicating that the model possess a better fit to the data compared to the proposed parametric models.

Final Proposed Model

µ̂t = 1.8280 + 0.0880µ̂t−7 + 0.2127µ̂t−13 + 0.5748Yt−1 , t > 13

µ̂t ≈ Yt t ≤ 13
(16)

7 Conclusion

The misspecification of the assumed probability distribution in parametric time series models leads to biased

inferences. Thus, we have proposed an extension on the semi-parametric framework proposed by Huang and

Fung (2015) to handle INGARCH models, which can correctly adapt to a wide range of distributions with good

approximations in estimation and inference. Through a numerical simulation study, we find that the semi-

parametric model seem to be adapting well to a wide range of distributions, providing on-par performance with

correctly specified parametric models. Furthermore, the semi-parametric model exhibits better performance

with unbiased inferences compared to misspecified parametric models. As a result, common applications of
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INGARCH models have been analysed where model adequacy of the semi-parametric model was found to be

similar or better than other proposed models when considering a Probability Inverse Transform.

Future efforts should be focused on speeding up the semi-parametric model as it’s current implementation in

MATLAB using fmincon is relatively slow. This can be done by implementing it in R using similar methods

to those implemented in the R package gldrm (Wurm and Rathouz 2018) which implements a semi-parametric

generalised linear model. It would also be interesting to explore transformations of the INGARCH model such

as the log-linear Poisson autoregression model by Fokianos and Tjøstheim (2011) to see how the semi-parametric

framework adapts. Finally, developing and implementing the semi-parametric framework to handle multi-variate

INGARCH models would be interesting to further generalise the modelling approach.
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A Appendix

A.1 INGARCH Terminology

Note that INGARCH models which provide restrictions on the conditional mean, are an adaptation of GARCH

models which instead have restrictions on the conditional variance. The extension from GARCH to INGARCH

model seems appropriate for a Poisson INGARCH model, but once other conditional response distributions

were considered, literature has split on the terminology. For example, Fokianos, Rahbek, et al. (2009) uses the

terminology Poisson autoregresisve models, but we take the suggestion of Weiß (2018) and utilise the INGARCH

terminology defined in Ferland et al. (2006).

A.2 Simulation results for a Poisson Distribution

Here we will consider simulations from an Poisson INGARCH(1,1) model, with the same parameters as those

considered by Fokianos, Rahbek, et al. (2009). This is a simple case where we expect good performance from

all models.

Model n Estimates Bias SD SE Coverage LRT

Semi-Parametric Model 150 d 0.0829 0.1680 0.0895 76.8% 92.6%

a -0.0208 0.1066 0.1197 96.4% -

b -0.0154 0.0794 0.0814 94.2% -

µ1 0.0168 0.5430 - - -

500 d 0.0247 0.0743 0.0458 80.0% 94.6%

a -0.0046 0.0561 0.0617 96.6% -

b -0.0061 0.0455 0.0440 94.2% -

µ1 0.0228 0.5405 - - -

Poisson 150 d 0.0799 0.1813 0.1526 95.0% -

a -0.0479 0.1041 0.1092 93.8% -

b 0.0001 0.0800 0.0810 95.0% -

500 d 0.0235 0.0751 0.0737 95.4% -

a -0.0119 0.0572 0.0556 95.6% -

b -0.0036 0.0460 0.0438 94.6% -

Negative Binomial 150 d 0.0799 0.1813 0.1563 94.4% -

a -0.0479 0.1041 0.1128 94.4% -

b 0.0001 0.0800 0.0810 95.8% -

500 d 0.0235 0.0751 0.0764 95.4% -

a -0.0119 0.0572 0.0566 95.8% -

b -0.0036 0.0460 0.0447 94.8% -

Table 7: True model parameter β = (d, a, b, µ1)
T = (0.3, 0.4, 0.5, 0.3)T
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Figure 8: Histogram and QQ-plot of Semi-Parametric Model on Poisson data. (Left) n = 150, (Right) n = 500

A.3 Simulation results for a Negative Binomial Distribution: Geometric Case

Here we consider the negative binomial distribution with the dispersion parameter r = 1, which is a Geometric

INGARCH Model. Note that again we use the parameterisation given by Weiß (2018).

Model n Estimates Bias SD SE Coverage LRT

Semi-Parametric 150 d 0.2530 0.8579 0.4927 76.2% 91.6%

a -0.0181 0.1559 0.1416 91.4% -

b -0.0363 0.1158 0.1100 92.8% -

µ1 0.2079 2.3405 - - -

500 d 0.1049 0.4410 0.2677 79.4% 93.8%

a -0.0036 0.0745 0.0704 94.2% -

b -0.0193 0.0674 0.0644 92.0% -

µ1 0.3729 3.0830 - - -

Poisson 150 d 0.3484 0.9208 0.3075 50.2% -

a -0.0300 0.1589 0.0477 40.0% -

b -0.0414 0.1190 0.0311 38.0% -

500 d 0.1931 0.5433 0.1532 38.0% -

a -0.0179 0.0933 0.0166 37.6% -

b -0.0251 0.0792 0.0232 28.8% -

Negative Binomial 150 d 0.3484 0.9208 1.0188 96.6% -

a -0.0300 0.1589 0.1735 93.2% -

b -0.0414 0.1190 0.1494 92.6% -

500 d 0.1931 0.5433 0.5689 95.8% -

a -0.0179 0.0933 0.0975 93.8% -

b -0.0251 0.0792 0.0908 94.2% -

Table 8: True model parameter β = (d, a, b, µ1, r)
T = (2, 0.3, 0.5, 1, 1)T
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Figure 9: Histogram and QQ-plot of Semi-Parametric Model on Geometric data. (Left) n = 150, (Right) n = 500

A.4 Simulation results for a Zero-Inflated Poisson (ZIP) Distribution

Finally, we will explore the robustness of the semi-parametric model by considering modelling from a Zero-

Inflated Poisson Distribution. A ZIP(λ, ω) has a probability mass function of the form

P (X = k) = ωδk,0 + (1− ω)
λk exp−λ

k!

Where 0 < ω < 1, δk,0 is the Kronecker delta.

Model n Estimates Bias SD SE Coverage LRT
Semi-Parametric 150 d 0.0325 0.4528 0.1927 65.6% 94.0%

a -0.0446 0.1998 0.1996 95.0% -
b -0.0483 0.0877 0.0835 91.6% -
µ1 -0.0241 1.0520 - - -

500 d -0.0596 0.1996 0.1210 71.2% 94.4%
a -0.0135 0.0938 0.1045 96.4% -
b -0.0424 0.0451 0.0458 84.6% -
µ1 -0.1080 1.0076 - - -

Poisson 150 d 0.0014 0.3600 0.3595 91.8% -
a -0.0404 0.1593 0.1657 93.4% -
b -0.0457 0.0836 0.0722 84.4% -

500 d -0.0641 0.1972 0.1807 88.4% -
a -0.0143 0.0923 0.0847 91.6% -
b -0.0415 0.0446 0.0394 78.6% -

Negative Binomial 150 d 0.0014 0.3600 0.4075 93.6% -
a -0.0404 0.1593 0.1886 96.4% -
b -0.0457 0.0836 0.0835 91.8% -

500 d -0.0641 0.1972 0.2042 92.6% -
a -0.0143 0.0923 0.0961 95.2% -
b -0.0415 0.0446 0.0454 83.4% -

Table 9: True model parameter β = (d, a, b, µ1, ω)
T = (1, 0.3, 0.4, 1, 0.1)T
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Figure 10: Histogram and QQ-plot of Semi-Parametric Model on ZIP data. (Left) n = 150, (Right) n = 500

A.5 Appendix Simulation Discussion

Let us discuss the simulation results given in the appendix. Note that the analysis of these simulations finds

the same overall results regarding the performance of the semi-parametric model as in the main report body

for the Poisson and Geometric Distribution examples.

However, we do find interesting results for the Zero-Inflated Poisson distribution which we explored to access

the semi-parametric model’s robustness. For smaller sample size we find the bias to be similar to all other cases,

with coverage rates close to 95% for all parameters. The standard error estimates and coverage does deviate

for the Poisson model, but the negative binomial model provides similar performance to the semi-parametric

model. However, interestingly we find for all models that the biases only improve for a as n increases. The

semi-parametric model is not giving optimal coverage for b despite the estimates distribution being close to a

normal, and mean standard errors being close to the standard deviation. As the standard errors are smaller

and the bias is unchanged, we find that the symmetric confidence intervals are tighter, with their center not

close to the true parameter 0.4. As a result, all intervals that do not contain the true parameter lie below it,

explaining the lower coverage. We have similar findings and results for the Negative Binomial model which is

interesting considering it is a misspecified model.

A.6 Application: Polio Dataset

Our next example is the polio dataset discussed in Zeger (1988), which contains n = 168 observations of monthly

poliomyelitis cases in the United States between 1970 and 1983 as reported by the Centres for Disease Control.

The dataset has a sample mean of 1.3333 and sample variance of 3.5050 indicating conditional overdispersion,
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with a large proportion of zeros. Authors such as Zhu (2011), Aknouche et al. (2018) and others have all fitted

INGARCH(1,1) models to the dataset, some of which we will compare with below.

Figure 11: (Left) Data plot, (Right) Histogram

Model Estimates

Model d̂ â b̂ µ̂1 r̂

Our SP Model 0.6169 ( ) 0.2030 (0.1790) 0.3441 (0.1120) 3.6e-07 -

Zhu / Weiß NB 0.6061 (0.2300) 0.2000 (0.1905) 0.3637 (0.1039) 1.0946 1.6348

tscount NB 0.6321 (0.2403) 0.1840 (0.2019) 0.3489 (0.1074) - 1.8075

tscount Pois 0.6321 (0.1780) 0.1840 (0.1460) 0.3489 (0.0686) - -

Aknouche et.al NB 0.6564 (0.2050) 0.1511 (0.0935) 0.3743 (0.1580) 1.3333 2.6023

Table 10: INGARCH(1,1) Model Estimates, Standard Errors in Parenthesis

Model d̂ â b̂

Our SP Model [0.1469, 1.1469] [-0.1478, 0.5538] [0.1246, 0.5636]

Zhu / Weiß NB [0.1553, 1.0569] [-0.1734, 0.5734] [0.1601, 0.5673]

tscount NB [0.1611, 1.1030] [-0.2117, 0.5797] [0.1384, 0.5594]

tscount Pois [0.2833, 0.9809] [-0.1021, 0.4702] [0.2144, 0.4833]

Aknouche et.al NB [0.2546, 1.0582] [-0.0322, 0.3344] [0.0646, 0.6840]

Table 11: INGARCH(1,1) Model’s 95% Confidence Interval

Discussion

We find that the model estimates for the semi-parametric model closely resemble those proposed by Zhu /

Weiß’s Negative Binomial model and the tscount Negative Binomial model. The standard errors of the semi-

parametric model for a and b are close to the parametric models except for the Poisson model. Thus, when we

consider the 95% confidence intervals, we again find that the semi-parametric model is close to the parametric

Negative Binomial models which will be reinforced in the next section.
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Model Adequecy

Figure 12: Mean PIT’s. (Top Left) Semi Parametric Model, (Top Right) Zhu / Weiß NB Model, (Bottom

Left) tscount NB Model, (Bottom Right) tscount Poisson Model

The U shaped mean PIT of the Poisson model indicates a poor fit tot he data as it exhibits conditional

underdispersion relative to the true model. The proposed Semi-Parametric model is close to uniform, resembling

both Negative Binomial model’s mean PIT’s. There is slightly less variation in the Semi-Parametric model from

a uniform distribution but as this difference is small, we can assume that the Semi-Parametric model gives very

similar model adequacy compared to the Negative Binomial models.

Final Proposed Model

µ̂t = 0.6169 + 0.2030µ̂t−1 + 0.3441Yt−1, t > 1

µ̂1 = 3.6e− 07
(17)

A.7 Application: Arson Counts Dataset

Let us consider a crime dataset analysed by Zhu (2012) of arson counts in a month in the 13th police car beat

plus in Pittsburgh, from January 1990 to December 2010. The dataset consists of 144 observations with 42.36%

of the series being zero, indicating possible zero inflation.

Zhu fitted various models including a Zero Inflated Poisson (ZIP) and Zero Inflated Negative Binomial (ZINB)

INARCH(2) model, finding that the Zero-Inflated Poisson INARCH(2) model was the best fit to the data.

Note that INARCH(p) models as a subfamily of a INGARCH(p,q) model, which do not recurse on the prior

conditional mean (p = 0). Thus, the proposed semi-parametric model can be adapted to fit a semi-parametric

INARCH(2) model for comparison alongside a standard Poisson and Negative Binomial model from tscount
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(Liboschik et al. 2017), and a ZIP INARCH(2) model from the R package izpir (Huang and Fung 2021).

Figure 13: (Left) Data plot, (Right) Histogram

Model Estimates

Model d̂ b̂1 b̂2 (µ̂1, µ̂2) ω̂

Our SP Model 0.8256 ( ) 0.0265 (0.1017) 0.1746 (0.1016) (1,2) -

ZIP (Zhu 2012) 1.0220 ( ) 0.0560 ( ) 0.2324 ( ) - 0.2149

izipr 0.8308 ( ) 0.0277 ( ) 0.1753 ( ) - -

tscount Pois 0.8308 (0.1281) 0.0277 (0.0737) 0.1753 (0.0788) - -

tscount NB 0.8308 (0.1438) 0.0277 (0.0839) 0.1753 (0.0915) - -

Table 12: INARCH(2) Model Estimates, Standard Errors in Parenthesis

Model d̂ b̂1 b̂2
Our SP Model [0.5706, 1.1306] [-0.3243, 0.3773] [-0.0449, 0.3941]

izipr [0.5516, 1.1099] [-0.1340, 0.1894] [ 0.0032, 0.3476]

tscount Pois [0.5797, 1.0818] [-0.1167, 0.1721] [ 0.0287, 0.3299]

tscount NB [0.5489, 1.1126] [-0.1367, 0.1921] [-0.0040, 0.3547]

Table 13: INARCH(2) 95% Confidence Intervals

Discussion

We find that the model estimates the ZIP proposed by Zhu (2012) are very different to the other models,

indicating potentially biased estimates. We cannot construct confidence intervals for Zhu’s model but for the

other models, the confidence intervals are all similar with the semi-parametric estimates lying comfortably in

all constructed intervals. However, it is evident that the semi-parametric model’s confidence intervals are wider,

indicating potentially an underlying model with more variability than proposed by other models.
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Model Adequacy

Figure 14: Mean PIT’s. (Top Left) Semi Parametric Model, (Top Right) tscount Poisson Model, (Bottom

Left) tscount Negative Binomial Model, (Bottom Right) izip Model

From Figure 14 we find that proposed semi-parametric model is very close to uniform, indicating a very good

fit to the data, especially compared to the tscount models. We also find similar model adequacy for the izipr

model, indicating that either model is a good fit compared to the tscount models. It is interesting that in a zero

inflation example that the semi-parametric model gives good model adequacy, considering the bias of b found

in the simulation study.

Final Proposed Model

µ̂t = 0.8256 + 0.0265Yt−1 + 0.1746Yt−2, t > 3

µ̂1 = 1.0000, µ̂2 = 2.0000
(18)

A.8 Probability Inverse Transform Definitions

Below we provide the definitions for the randomised and non-randomised PIT used in the report to analyse

model adequacy. (Cazdo et al. 2009)

Definition 8.0.1 (Non Randomised (Mean) PIT). This can be considered as the average PIT if the randomised

PIT was carried out a large number of times.
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Let Pt(.) is the predictive cumulative distribution of Yt. Now, let

Ft(u|Yt = y) :=


0 if u ≤ Pt(y − 1)

u− Pt(y − 1)

Pt(y)− Pt(y − 1)
if Pt(y − 1) ≤ u ≤ Pt(y)

1 if u ≥ Pt(y)

(19)

Then, we obtain the mean PIT by aggregating over the predictions.

F̄ (u) =
1

N − 1

N∑
t=2

Ft(u | Yt) (20)

Then, we select J (eg. 10) bins for the histogram and calculate the height of bin j, fj using

fj = F̄ (
j

J
)− F̄ (

j − 1

J
) (21)

Definition 8.0.2 (Randomised PIT).

Ut := Pt(Yt − 1) + νt (Pt(Yt)− Pt(Yt − 1))

Where νt is a iid sequence drawn from a standard uniform distribution, and Pt(.) is the maximum empierical

likelihood estimator for the cdf of a particular response Yt. Then we plot Ut as a histogram with J bins. Note

that as we have t variables, it is simple to create to uniform QQ-plot to access uniformity.
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