On the Sums of Möbius Function Values of a Finite Poset

The primary aim is to extend known results on the Möbius function of a finite poset to a generalised framework using the Generalised Möbius function. Particularly, I will explore the upper bounds on the absolute sum of Generalised Möbius function values.

Jovana Kolar

The University of New South Wales

Jovana Kolar has just completed her third year of the Bachelor of Actuarial Studies/Advanced Mathematics (Honours) at the University of New South Wales. Recently, Jovana has taken a strong interest in combinatorics, which is also the area of her summer project. Jovana has gained valuable research experience in pure mathematics throughout her university experience and is looking forward to further develop her mathematical knowledge through this research scholarship. In coming years, Jovana hopes to complete an honours in pure mathematics followed by a PhD.

You may be interested in

Jason Lu

Jason Lu

A Mutual Information-Based Metric for Assessing Partitions of Dynamical Systems
Emmanuel Travassaros

Emmanuel Travassaros

Minimal Spectrahedral Representations for Facial Dimension Realisations
Liam Wood-Baker

Liam Wood-Baker

Properties of Random Walks and their applications to Mathematical Physics
Daniel Dunmore

Daniel Dunmore

C*-Algebras of Discrete Groups
Contact Us

We're not around right now. But you can send us an email and we'll get back to you, asap.

Not readable? Change text.