Cardioids, Epicycles and Coffee Cups
Several years ago in high school I stumbled across this excellent Mathologer video demonstrating the beautiful patterns formed by a simple rule that connects points on the edge of a circle. My attempts to recreate these visuals sparked my love of coding, significantly biasing my career aspirations and my passions. Since then, I have now gained experience in areas of software development far from this root, yet time and time again I am drawn back to exploring the mathematical beauty of producing geometric patterns through code.
[image: A screenshot of a computer

Description automatically generated]Consider a clockface, with twelve points equally spaced around its circular edge, labelled according to their hour: 1, 2, … ,12. Now imagine taking a piece of string and connecting each point to the point with double its value. 1 2; 2 4; 3 6 … if the result exceeds 12, just keep counting past 12 around the circle (or perform the modulo), so 7 maps to 14 which is the same as 2. Doing this we find a pattern that has some symmetry but does not look too interesting. However, we can increase the resolution by increasing the number of points around the circle, revealing ‘the heart of mathematics’, or by its technical name, a cardioid.

Ok, so that’s cool but now what? Well, what happens if we adjust our multiplication factor from 2 to 3 and choose to connect points with triple their value? Another beautiful pattern emerges, this time with an extra heart-like dip and the same symmetry. This also has a technical name, a nephroid. Using code to create these is excellent as it allows us to rapidly tweak parameters and experiment with different rules producing instant satisfying results. We can start to push the boundaries of our input variables to explore what happens. What about larger and larger multiplication factors? What about non-integer factors? What about negative factors? What if we could animate changing the factor? Here is a link to a similar project animating the increase in pattern resolution for different integer factors 2 through to 13, showing how each whole number increment adds a ‘petal’ to the flower-like patterns.
This concept of pushing the boundaries of input parameters segues nicely into my exploration of the area where I next discovered cardioids, the Mandelbrot set fractal. Firstly, fractals are, in their own right, very awesome – they are spectacular and mysterious. It should now be of no surprise to you that I dove deep into a project generating fractal patterns with code using the Mandelbrot set formula, namely: . Lo and behold, a cardioid appears!
[image: A blue and green fractal

AI-generated content may be incorrect.]
It is no coincidence that the power of 2 produces a cardioid shape. In fact, there are some very interesting outcomes if we consider this number to be variable. I adjusted the power to 3, and lo and behold, a nephroid now appears! This is showing some strong similarities with the line art patterns. Ok, what if we let the power be other larger integers? What about non-integer powers?! What about negative powers? Just like my experimenting with the line art, I found myself following the same process with the Mandelbrot set, animating through different powers (which I later discovered is called the multibrot set).
[image:]
Fantastically, the multibrot set also appears to support continuous variation of the power, with some direct analogies to the line art!
Within the Mathologer video, it is mentioned that you can observe the pattern in light rays scattered within a coffee cup. At the time, I found myself rushing to investigate firsthand and much to my delight I saw it with my own eyes! I find this effect works best in a dim environment (low ambient light) with only a single light source.
[image: A close-up of a white tube

AI-generated content may be incorrect.]Now, only about a week before writing this post and over 5 years since first discovering cardioids, I am still discovering their occurrence in my everyday life, this time on the underside of a frisbee as it is flying towards me! It is discoveries like these that fuel my curiosity and continue to keep my hooked on the beauty of maths in nature.
Lastly, I would love to share my exploration with the patterns formed from compound circular motion. Consider an ‘arm’ that is fixed at a centre point and rotates with some constant speed. We can attach a second arm to the end of the first and also let it rotate with some new constant speed. By tracing the end of the second arm, some peculiar patterns emerge. This system is analogous to tracing out the path of a moon orbiting around a planet, which is in turn orbiting around a sun. Mathematically, we can consider this as the addition of two vectors (or complex numbers!). Linked is a wonderful web-based interactive demonstration of creating epicycles.
[image: Epicycloids | Teaching Calculus]This system has even more parameters that we can play with! What happens when you adjust the lengths of each arm? Or if you adjust how fast each arm rotates? Or the direction in which the arms rotate? Or if you add more arms? To start out my exploring, I arbitrarily set the second arm to be twice as long as the first, and to rotate in the same direction at equal speeds. Lo and behold, another cardioid appears!!
[image: A black line on a white background

AI-generated content may be incorrect.]I soon discover that the ratio of rotation speeds is linked to the number of petals we have seen vary previously between cardioids, nephroids, and so on. The graphic demonstrating this above is taken from this site demonstrating the formation of a specific family of epicycles, which I would also recommend for further reading. One particular experiment I found to be very visually rewarding was letting the interior arm change in length, either growing from 0, or shrinking from the same length as the outer arm, but keeping the total arm length constant. This produces some lovely gradient regions.

I then changed the ratio of the rotation speeds to produce different ‘sibling’ patterns. By keeping these ratios as integers, lovely visual harmonies appear between each cycle, producing beautiful flowering patterns. Each row represents a new integer ratio of angular velocities. The first column represents the family of rotations in opposing directions. The second column represents this behaviour but letting the arms grow further. If you look closely, the cores of each flower in the second column are the same as the flowers in the first column. The third column is like the first but now both arms rotate in the same direction. Note that growing out the third column further produces similar results to the second column but with a different ‘concavity’ – the petals are curved outwards rather than inwards.
[image:]

[image: A group of images of different shapes

AI-generated content may be incorrect.]When experimenting with new parameters, I find it hard to predict what the pattern may look like before I run the code. The process of watching the pattern unfold before me as it slowly animates through is incredibly satisfying. Specifically, the joy in discovering each novel pattern and in recognising the similarity to its sibling patterns I find to be so addicting.
These harmonic patterns certainly resonate with me, and I hope I have sparked a curiosity in you too!
Links:
Mathologer line art cardioid video: https://youtu.be/qhbuKbxJsk8?si=vVSkzGVs-oRG2Eju
Animating different line art cardioid patterns: https://codepen.io/DonKarlssonSan/full/meQOvp/
Interactive epicycle demonstration: https://sflanker.github.io/epicycles/	
Cardioid from epicycles graphic: https://teachingcalculus.com/2014/06/27/epicycloids-2/

Further reading:
The official Wikipedia page on cardioids: https://en.wikipedia.org/wiki/Cardioid
An excellent application of epicycles with the Fourier transform to draw images: https://youtu.be/r6sGWTCMz2k?si=4L4hDRNBkeJkKRVN
A further extension of this idea to generate music: https://youtu.be/fxzrpfezezE?si=Z-N7dnUw9EPw3fMC
image3.gif

image4.jpeg

image5.gif

image6.gif

image7.png
2es

A

\ 4

p

2

o

image8.png

image1.png
> Animated_Patterns

image2.png

