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INTRODUCTION 

Streptococcus pyogenes, commonly known as Group A Streptococcus (GAS), is a significant pathogen 

responsible for a range of diseases, from superficial skin infections like impetigo to severe conditions such 

as rheumatic heart disease. In Australian Aboriginal communities, the prevalence of GAS-related diseases 

is notably high, posing a substantial public health challenge. Despite ongoing efforts, controlling skin 

infections in these populations has proven difficult, with transmission dynamics being poorly understood. 

A critical gap in current knowledge is the role of asymptomatic throat carriage of GAS in the transmission 

of impetigo within these communities. Understanding whether individuals who carry GAS in their throats 

without exhibiting symptoms contribute to the spread of skin infections is essential for developing effective 

public health interventions. Recent studies [1, 4] have begun to explore this relationship, highlighting the 

need for comprehensive strategies that address both symptomatic and asymptomatic carriers to reduce the 

burden of GAS infections. 

Addressing this knowledge gap is crucial, as it will inform the design of targeted interventions, such as 

vaccination programs and community infection control measures, tailored to the unique transmission 

dynamics in Aboriginal communities. By elucidating the role of skin and throat carriers, public health 

policies can be optimized to more effectively reduce the incidence of GAS-related diseases, ultimately 

improving health outcomes for Indigenous populations in Australia. [1] 

Mathematical and computational models have been widely used to understand the transmission 

dynamics of infectious diseases, but only recently for Group A Streptococcus (GAS) [5, 6]. These 

models aim to understand the spread of infection, identify risk factors, and inform public health 

interventions. However, existing models have limitations in addressing the unique epidemiological 

challenges of GAS transmission in Indigenous Australian communities. 

Previous studies [5,6] developed models to capture the transmission of GAS in Australian 

Aboriginal populations, but did not differentiate between skin and throat infections or whether 

infections were symptomatic or asymptomatic. While these models have provided valuable 

insights into the immune response to GAS infection, they cannot be used to investigate the role of 

asymptomatic carriers in propagating skin infections like impetigo. New models are needed to 

investigate the extent to which asymptomatic throat carriage and skin infections play in GAS 

transmission [1,4]. 

To address these shortcomings, more nuanced models are required that integrate both symptomatic 

skin infection and asymptomatic throat infection transmission pathways and leverage 

contemporary data on GAS epidemiology. By advancing the modeling framework and using such 

data, public health strategies can be better informed and more effectively tailored to reduce the 

burden of GAS infections among Indigenous Australians. 

This project seeks to address critical gaps in understanding the transmission dynamics of GAS in 

Indigenous Australian communities by developing a new mathematical model of GAS 

transmission. We utilize an agent-based approach (ABM) coupled with Bayesian Optimization 

and Likelihood-Free Inference (BOLFI) [7] to estimate key transmission parameters from 

transmission networks inferred from whole genome sequence (WGS) data [8] of isolates collected 

from a previous longitudinal study [9]. This innovative methodology will allow for a more detailed 



exploration of the role of skin infections and throat carriage in the spread of GAS and its associated 

diseases, such as impetigo. 

The integration of BOLFI provides a robust statistical framework for parameter estimation. 

Traditional inference methods are often computationally prohibitive or infeasible for complex 

models like ABMs. BOLFI overcomes this challenge by approximating the likelihood function, 

enabling efficient inference even when the underlying processes are poorly understood or data is 

sparse. This is particularly advantageous in the study of GAS transmission, where detailed 

epidemiological data may be limited, especially in remote and socio-economically disadvantaged 

populations. 

Ultimately, the project aims to improve our understanding of GAS transmission to inform the 

design of targeted public health interventions. The model’s outputs will help quantify the 

contributions of skin and throat symptomatic individuals to the persistence of GAS in a remote 

Australian Aboriginal community. By providing actionable insights, this project has the potential 

to significantly reduce the burden of GAS-related diseases and improve health outcomes in 

Indigenous Australian communities 

METHODS 

The methodological framework of this project consists of two interconnected components: an 

Ordinary Differential Equation (ODE) model and an analogous agent-based model (ABM). 

The ODE model provides a population-level representation of Group A Streptococcus (GAS) 

transmission dynamics, distinguishing between two primary infection types: throat infections and 

skin infections. This compartmental model captures the flow of individuals through various disease 

states, including susceptibility, infection, and recovery. We use it to explore the relationship 

between endemic equilibrium transmission patterns and model parameters that characterise the 

two infection pathways (skin and throat). 

Building upon the ODE framework, the agent-based model (ABM) introduces greater complexity 

by simulating individual-level interactions within a virtual community. By representing throat and 

skin infections at the individual level, the ABM is able to simulate transmission networks between 

individuals which can be used to calibrate the model to the networks inferred from WGS data. 

Together, the ODE and ABM models offer complementary perspectives, enabling both high-level 

analysis and detailed exploration of GAS transmission dynamics. 

ODE MODEL 

We define the following model variables and parameters: 

  K(t): Number of skin infections at time t. 

  T(t): Number of throat infections at time t. 

  R(t): Number of recovered individuals at time t. 

  S(t): Number of susceptible individuals at time t. 

  𝛃𝑻𝑲:Per capita rate of effective contact (leading to transmission) of a skin infection 

causing a throat infection. 



  𝛃𝑲𝑲: Per capita rate of effective contact of a skin infection causing a skin infection. 

  𝛃𝑻𝑻: Per capita rate of effective contact of a throat infection causing a throat infection. 

  𝛃𝑲𝑻: Per capita rate of effective contact of a throat infection causing a skin infection. 

  𝛄𝑲: Recovery rate for skin infections. 

  𝛄𝑻: Recovery rate for throat infections. 

  ω: Rate at which recovered individuals become susceptible again. 
 

The Ordinary Differential Equation (ODE) model represents the dynamics of GAS transmission 

over time 𝑡 in a population of constant size N by categorizing the population into four 

compartments: susceptible (S), skin infections (K), throat infections (T), and recovered individuals 

(R). The model defines how individuals move between these compartments over time, capturing 

the interactions between different infection types and the processes of infection, recovery, and 

transmission. 

𝒅𝑲

𝒅𝒕
=  (𝛃{𝐊𝐓} ⋅ 𝑻 +  𝛃{𝐊𝐊} ⋅ 𝑲) ⋅ 𝑺 − 𝛄𝐊 ⋅ 𝑲 

𝒅𝑻

𝒅𝒕
=  (𝛃{𝐓𝐓} ⋅ 𝑻 +  𝛃{𝐓𝐊} ⋅ 𝑲) ⋅ 𝑺 − 𝛄𝐓 ⋅ 𝑻 

𝒅𝑹

𝒅𝒕
=  𝛄𝐊 ⋅ 𝑲 + 𝛄𝐓 ⋅ 𝑻 −  𝛚 . 𝑹 

𝑺 =  𝐍 −𝑲 − 𝑻 −  𝑹 

We use the Next Generation Method [3] to calculate the basic reproduction number for this 

model in terms of the model parameters.  We do this for the full model and under some 

simplifications of the model. 

ABM 

The ABM used in this study is implemented in MATLAB and is a discrete time, stochastic model 

that represents individuals in a population of size N as agents.  Each agent has an age a in years 

and an infection status matching those in the ODE model (S, R, K or T).  Each time step (of 

duration 1 day), the model simulates c contacts between agents in the model assuming uniform 

mixing of agents. Contacts between susceptible and infected agents (in state K or T) can lead to 

transmission to the susceptible agent with probability betas if the infecting agent has a skin 

infection, or with probability betas × relts if the infecting agent has a throat infection, where we 

define:  

1. betas: 

to be the probability of transmission from a skin infections per contact. This parameter 

is used to define the likelihood that an individual with a skin infection will transmit the 

infection during an interaction. 

2. relts: 

to be the relative infectiousness of throat infections compared to skin infections. This 



parameter modulates the likelihood that an individual with a throat infection will transmit 

the pathogen, relative to an individual with a skin infection. 

The new infection will either become a skin infection or a throat infection for the next timestep 

according to the conditional probabilities:  

3. pss: 

The conditional probability (on transmission) that a skin infection causes another skin 

infection. This parameter captures the probability of skin-to-skin transmission in the 

population. 

4. 1- pss  

The conditional probability (on transmission) that a skin infection causes a throat 

infection. This parameter captures the probability of skin-to-throat transmission in the 

population. 

5. ptt: 

The conditional probability (on transmission) that a throat infection causes another throat 

infection. This parameter captures the probability of throat-to-throat transmission among 

individuals. 

6. 1-ptt 
The conditional probability (on transmission) that a throat infection causes a skin 

infection. This parameter captures the probability of throat-to-skin transmission among 

individuals. 

 

After simulating transmission, the model simulates the stochastic recovery of current infections 

during the time step.  This occurs with probability 1 − 𝑒1/𝐷𝑇  for a throat infection and 1 − 𝑒1/𝐷𝐾  

for a skin infection, where we define 

7. Dt: 

The mean duration of the infectious period for individuals with throat infections. This is 

equivalent to the inverse of the parameter γT in the ODE model, which represents the rate 

at which throat infections resolve. 

8. Ds: 

The mean duration of the infectious period for individuals with skin infections. Similar 

to Dt, this is the inverse of γK in the ODE model, representing the recovery rate for skin 

infections. 

Recovered agents then become immune from infection (in the R state) for the next time step.  

Following the simulation of recovery, the model simulates the stochastic waning of immunity for 

current recovered agents during the time step.  This occurs with probability 1 − 𝑒1/𝐷𝑖 , where we 

define 

9. Di: 

The duration of immune protection after an individual recovers from infection. In the 

context of the ODE model, this corresponds to the parameter ω, which represents the rate 

at which recovered individuals lose immunity and become susceptible again. 



Agents whose immunity wanes will be susceptible to infection for the next timestep.  Finally, the 

model simulates the stochastic death of agents at age-dependent rates mu(a). If a death occurs, 

they are immediately replaced by an agent aged 0.  The ages of surviving agents are then updated 

for the next timestep.  

The ABM model parameters are linked to those in the Ordinary Differential Equation (ODE) 

model in the following ways: 

𝛽𝑆𝑆 = 𝑐 ∙  betas ∙ pss / N 

𝛽𝑇𝑆 = 𝑐 ∙  betas ∙ (1 − pss) / N 

𝛽𝑆𝑇 = 𝑐 ∙  betas ∙ relts ∙ (1 − ptt) / N 

𝛽𝑇𝑇 = 𝑐 ∙  betas ∙ relts ∙ ptt / N 

𝛾𝑇 =
1

Dt
, 𝛾𝐾 =

1

Ds
, ω =

1

Di
   

OBSERVATION PROCESS 

Our aim is to calibrate the ABM to data collected from a longitudinal study of GAS infection in a 

remote Australian Aboriginal community [9]. In this longitudinal study, the researchers visited the 

remote community with a population size 2500 (households in particular) once a month over a 

two-year period to take a sample from the throats of the people taking part in the study and from 

any skin infections. There was a total population of 547 people enrolled in the study. All samples 

were analyzed in the laboratory and underwent whole genome sequencing (WGS).  The WGS data 

was then analyzed to determine whether any samples were epidemiologically linked (whether a 

sample came from a person that may have infected another sampled person) and a transmission 

network was inferred between the samples [1,8].  

To calibrate the ABM to data from this study it was necessary to observe infection in my model in 

a way which matched the data collection process of the longitudinal study.  I did this in the 

following way: 

First, I simulated transmission in a population of size 2500 for a two-year burn in period until the 

model reached an endemic equilibrium.  Then, I simulated transmission for a further two years to 

match the duration of the longitudinal study. During this two-year study period, I captured 

infection data each day in agents that were randomly assigned to the study cohort (a fixed subset 

of the total population with cardinality 547).  Details of any infection events that occurred in any 

members of the study cohort were recorded in a line list (time and type of infection, and the 

infection type of the agent that infected them).   

Following the end of the simulation, I processed the line list to determine whether any of the 

recorded infections in the study cohort were “observed” over the two-year study period at the 

monthly observation points. To do this, on the first day of each month, I randomly choose from 



the cohort the same number of agents that were observed that month in the original study.  I 

“observed” any infections in this observed group that were taking place at the time of observation.  

Then, after identifying all infections that were observed during the study, I determined whether 

they were infected by any of the other infections that were observed during the study. I classified 

any observed transmission events (where the infections of the infector and infectee were both 

observed) according to the type of infection of the infector and infectee as either: 

Type 1. Throat infection caused a throat infection; 

Type 2. Throat infection caused a skin infection; 

Type 3. Skin infection caused a throat infection; 

Type 4. Skin infection caused a skin infection.  

Only data generated from the model under the observation process were used to calculate the 

simulation summary statistics which were used in the calibration process, described below.  The 

summary statistics of the real data are shown in Table 1: 

Total throat infections 127 

Total skin infections 83 

Mean monthly prevalence of skin infections 2.55% 

Mean monthly prevalence of throat infections 3.63% 

 39.4/99 TT 

 

Proportion of transmission link types 20.12/99 TS 

 

 22.6/99 ST 

 

 16.88/99 SS 

 
Table 1. Summary statistics that describe the real data collected in the longitudinal study [9]. 

MODEL CALIBRATION 

To calibrate the model to the study data, we used the likelihood-free method: Bayesian 

Optimization for Likelihood-Free Inference (BOLFI) [7]. BOLFI is a statistical method used 

to approximate the posterior distribution of model parameters when the likelihood function is 

either unavailable or intractable. It is particularly useful in scenarios where traditional likelihood-

based inference cannot be applied, such as complex simulation-based models. 

Key Features of BOLFI: 



1. Surrogate Model: BOLFI constructs a probabilistic surrogate model (typically a Gaussian 

Process) to approximate the relationship between parameters and discrepancies (a measure 

of how well the model matches observed data). 

2. Discrepancy Minimization: Instead of maximizing likelihood, BOLFI minimizes the 

discrepancy, which quantifies the difference between observed and simulated data. 

3. Bayesian Optimization: It efficiently explores the parameter space using Bayesian 

optimization, selecting the next parameter to evaluate based on an acquisition function that 

balances exploration and exploitation. 

4. Reduction of Simulations: By leveraging the surrogate model, BOLFI reduces the number 

of costly model simulations, making it computationally efficient. 

5. Posterior Approximation: The method generates posterior samples by focusing on areas 

of the parameter space with low discrepancy, allowing for approximate Bayesian inference. 

I chose to calibrate my model to identify a subset of the unknown GAS parameters: relts, pss, ptt, 

betas, Di, Dt and Ds.  To do this, I set all other model parameters to values used in previous GAS 

modelling studies [10]. I specified uniform prior distributions for the unknown parameters, and 

defined a set of summary statistics (SS) that could be calculated from the data collected by the 

observation process described above.  These included: 

S1= NumSkin= Number of skin infections observed in the population.  

S2= NumThroat= Number of throat infections observed in the population.  

S3= MeanSkinPrev= Mean prevalence of skin infections in the population.  

S4= NumThroatPrev= Mean prevalence of throat infections in the population.  

S5= VarSkinPrev= Variance prevalence of skin infections in the population.  

S6= VarThroatPrev= Variance prevalence of throat infections in the population.  

S7= Links1= Number of transmission events observed from throat to throat.  

S8= Links2= Number of transmission events observed from throat to skin.  

S9= Links3= Number of transmission events observed from skin to throat.  

S10= Links4= Number of transmission events observed from skin to skin.  

 

The discrepancy function was defined to be the logarithm of the Euclidean distance between the 

observed and simulated values of the SS. We first conducted a simulation estimation study to 

verify the identifiability of these four unknown parameters. Then we calibrated the model to the 

SS of the real data which were calculated from the summary data shown in Table 1. 



RESULTS 

In this section I will outline the analytical results I generated from the ODE model which I used 

to inform my parameter choices in the ABM.  Then I will present some simulation results of the 

ABM before describing my model calibration results using BOLFI.  

DERIVATION OF THE BASIC REPRODUCTION NUMBER. 

The Basic Reproduction Number 𝑅0 is an important epidemiological quantity which represents 

average number of secondary cases produced by a single infected individual in a completely 

susceptible population.  It is a threshold parameter: if an infectious disease has a 𝑅0 greater than 

unity, we expect that the disease will be able to persist in a population; otherwise, it should die 

out.   

The Next generation method [3] can be used to calculate an analytical expression for 𝑅0 for 

models that incorporate multiple infection types.   For compartment models such as our ODE 

model, this involves:  

 Model Formulation: 

 Identify compartments representing "infected" states and focus on how infections are 

generated and transmitted. 

 Define State Variables: 

 Define F: The rate at which new infections appear in each infected compartment. 

 Define V: The rate at which individuals leave the infected compartments due to recovery, 

death, or progression to other stages. 

 Compute the Matrices: 

 Construct the transmission matrix (F), derived from F. 

 Construct the transition matrix (V), derived from V. 

 Formulate the NGM: The next-generation matrix G=FV−1, where: 

 F: Accounts for new infections caused by individuals in each infected compartment. 

 V: Accounts for transitions out of the infected compartments. 

 Eigenvalue Calculation: 𝑅0 is the spectral radius (dominant eigenvalue) of G, i.e., 𝑅0=ρ(G) 

For our model, we have: 

𝐹 = 𝑁 (
 𝜷𝑲𝑲  𝜷𝑲𝑻
 𝜷𝑻𝑲  𝜷𝑻𝑻

) 



𝑉 = −(
 𝜸𝑲 𝟎
𝟎  𝜸𝑻

) 

𝐺 = 𝐹 ∗ 𝑉−1 = −𝑁

(

 
 

 𝜷𝑲𝑲
 𝜸𝑲

 𝜷𝑲𝑻
 𝜸𝑻

 𝜷𝑻𝑲
 𝜸𝑲

 𝜷𝑻𝑻
 𝜸𝑻 )

 
 

 

 

𝑹𝟎 =
𝑵

𝟐
[
 𝜷𝑲𝑲
 𝜸𝑲

+
 𝜷𝑻𝑻
 𝜸𝑻

+√(
 𝜷𝑲𝑲
 𝜸𝑲

+
 𝜷𝑻𝑻
 𝜸𝑻

)
𝟐

− 𝟒
 𝜷𝑲𝑲 𝜷𝑻𝑻 −  𝜷𝑲𝑻 𝜷𝑻𝑲

 𝜸𝑲 𝜸𝑻
] 

 

When we make some simplifying model assumptions,  𝑅0 simplifies to:  

1)  𝛽𝐾𝐾 ≠  𝛽𝑇𝑇;   𝛾𝐾 =  𝛾𝑇;   𝛽𝐾𝑇 =  𝛽𝑇𝐾  

𝑹𝟎 =
𝑵

𝟐 𝜸𝑲
[ 𝜷𝑲𝑲 +  𝜷𝑻𝑻 +√( 𝜷𝑲𝑲 −  𝜷𝑻𝑻)𝟐 + 𝟒 𝜷𝑲𝑻

𝟐] 

2)  𝛽𝐾𝐾 =  𝛽𝑇𝑇;   𝛾𝐾 =  𝛾𝑇;   𝛽𝐾𝑇 ≠  𝛽𝑇𝐾  

𝑹𝟎 = 𝑵[
 𝜷𝑲𝑲 +√ 𝜷𝑲𝑻 𝜷𝑻𝑲

 𝜸𝑲
] 

This expression for 𝑅0 guided our choice of parameters in the ABM to ensure we were choosing 

parameter values which led to endemic infection at the level which was seen in the longitudinal 

data set.  

SIMULATING THE ABM MODEL USING MATLAB 

Some exemplar outputs from the ABM when 𝑅0 > 1 are shown in Figures 1-5.  Under this 

parameterization (relts=1, pss=ptt=0.5), the mean total observed prevalence of GAS infection is 

around 7% (Figure 1) as is the total prevalence (calculated from observed and unobserved 

infections) of infection (Figure 2). This parameterization is considering a very symmetrical system 

where skin and throat infections are equally infectious and equally likely to cause a skin or throat 

infection. This is why both skin and throat prevalence are almost overlapping. We can also see in 

Figure 5 that we have almost the same number of infections of each of the Types 1-4 in the study 

cohort (both observed and non-observed), this is also a consequence of having taken symmetrical 

values for the model parameters. However, even if we have a big population of 2500 people, we 

are not able to “observe” most of the transmission of infections, as it can be seen by comparing 



the number of observed infections in the study cohort (Figure 4) to the total number of infections 

(both observed and unobserved) in the study cohort (Figure 5). Finally, the infection peaks with a 

maximum number of infected people of 750 around day 10 and quicky goes down until almost 

extinguishing in day 10 leaving some prevalence in the population as the expected result obtained 

from 𝑹𝟎. 

 

 

Figure 2. Prevalence (%) of the infection over time Figure 1. Observed prevalence (%) of the infection over 

time 



 

Figure 3. Duration of infectiousness in days 

 

Figure 4. Number of types of observed transmission. 

 

Figure 5. Total number of each type of infection. 

 

CALIBRATION TO SIMULATED DATA 

We investigated to identifiability of different numbers of unknown ABM parameters using a 

simulation estimation approach.  For this process, we simulated data under the model for a 

set of values of the unknown model parameters and tested whether we could recover the 

values of these parameters using BOLFI.   

As BOLFI can take a long time to implement, and due to the short nature of the project, we 

chose to evaluate the goodness of fit just by interrogating the BOLFI discrepancy functions 

under each calibration scenario, and only in some cases generate the posterior distributions 

from these functions.  In principle, we would have liked to generate posterior distributions 

from the BOLFI discrepancy functions for all scenarios to evaluate the calibration process.  

However, this was a time consuming step.  

1) 4 unknown parameters: pss, relts ptt, and pss 

The lowest discrepancy was obtained when: 



- we initialized the population with 25 infected hosts out of 2500 infected people,  

- simulated the synthetic data set with  

o fixed parameter values Di=23 weeks, Dt=Ds=2 weeks 

o unknown parameter values pss=0.5, ptt=0.5, relst=3.5 and betas=0.0066 

- set the BOLFI hyperparameters to be 200 initial evidence points and 500 total number of 

samples and with a 0.001 noise acquisition variance for betas and 0.1 for pss, relts and 

ptt. 

Outputs from BOLFI under this calibration scenario are provided in Figures 6-7. First, it can 

be seen that the shape of the discrepancy function of ptt narrows only around the interval 0.5-

0.6 which gives us confidence that these four parameters are able to be identified in this case. 

The rest of parameters were less identifiable in this scenario.  It is also important to mention 

that the horizontal lines of dots that can be seen in the different plots correspond to stochastic 

extinction as it is a natural consequence of having such a lot value for betas=0.0066. 

 

Figure 6. Discrepancy for 4 parameters and betas=0.0066. 



 

Figure 7. Gaussian Process for 4 parameters and betas=0.0066. 

 

In this next trial, I changed the set of fixed parameters to be Di =26, Dt=Ds=3, increasing both 

the duration of immunity by 3 weeks and the duration of infection of throat and skin by 1 week. I 

used betas=0.005, with a 0.0001 noise acquisition variance for beta and 0.1 for pss, relts and ptt, 

and values of pss=0.5, ptt=0.5 and relst=3. Using this new set of parameters, I was able to 

eliminate the stochastic extinction from the model but I could only still identify the correct value 

for ptt as it can be seen in Figure 8. 

 

Figure 8. Discrepancy for 4 parameters and betas=0.005. 



 

Figure 9. Gaussian process for 4 parameters and beta=0.005 

Now, I used a noise variance acquisition for betas of 0.01, betas=0.09, with relsvt=1, pss=ptt=0.5, 

Di=26, Dt=Ds=10/7 with an initial population of 2 infected people out of 2500 and a noise 

acquisition variance for beta of 0.001 and 0.1 for the rest. In this case, as it can be seen in Figures 

10 and 12, three parameters, pss, ptt and relts are better identified compared to the previous cases. 

Also, as shown in Figure 12, we can see the bell shapes for those 3 parameters in their posterior 

distributions, thus, are model accurately finds their values. However, the model is not so accurate 

for the values of betas because 0.09 is a big number for our model and it loses the ability to identify 

betas when this parameter grows. 

 

Figure 10. Discrepancy for 4 parameters and betas=0.09. 



 

Figure 11. Gaussian proccess for 4 parameters and betas=0.09. 

 

Figure 12. Posterior distributions for 4 parameters and betas=0.09. 

2) 7 parameters: 

In these calibration scenarios, I evaluated the identifiability of the 4 unknown parameters described 

above, as well as Di, Dt and Ds.  I was not able to infer any of the correct original values and the 

discrepancy plots looked like random distributions (Figure 13). Also, there was a lot of stochastic 

extinction due to the low values of betas in the scenarios that I tried calibration to the 4 parameters 

in the above scenarios  was more successful, as shown in Figures 10 and 12. 



 

Figure 13. Discrepancy for 7 parameters and a low value of betas. 

 

CALIBRATION TO REAL DATA 

Given the success of calibrating the model with 4 unknown parameters using synthetic data, we 

decided on this approach when calibrating the model to the real data [9].  We set the BOLFI 

hyperparameters to be 150 initial evidence points, 3000 sampling points, the update interval to be 

10,  and using the default value of 0 for the acquisition noise function variance for all parameters.  

We also chose to sample log_10(betas) from the uniform prior distribution [-5,-1] in an attempt to 

improve identifiability of this parameter. The model was initialized with 500 initial infections, a 

population size of 2500, a duration infection of 2 weeks for skin and throat infections, and a 

duration of immunity of 6 months (26 weeks).  

The results seen in Figure 15 show the model’s great ability to identify the 4 parameters with really 

narrow discrepancy functions for all of them. It can also be seen a lot of stochastic extinction for 

the 4 parameters, this is due to the low value of betas as expected. 



 

Figure 14. Discrepancy and gaussian process for 4 parameters and real data. 

The resulting posterior distributions are shown in Figure 16. The figures for the 4 parameters clearly show 

a tendency of a narrow gaussian distribution specially for the betas and relts parameters. The mean and 

quantiles of the posterior distributions are summarized in Table 2.  They suggest that throat infections are 

approximately 77% more infectious than skin infections (mean relts=1.773), but that skin infections and 

throat infections are approximately equally as likely to lead to a skin or throat infection (mean pss=0.450 

and mean ptt=0.512).  As it can be seen in Table 3, effective sample size and Rhat are convergence 

diagnostics. Effective sample size should be at least 100 (approximately) per Markov Chain in order to be 

reliable and indicate that estimates of respective posterior quantiles are reliable. R-hat compares the 

between- and within-chain estimates for model parameters and other univariate quantities of interest. If 

chains have not mixed well (ie, the between- and within-chain estimates don't agree), R-hat is larger than 

1. It is recommended to run at least four chains by default and only using the sample if R-hat is less than 

1.05. Traces that can be seen in Figure 17 look good, even thouh Rhat is large and ESS is small for two 

parameters. 

 
 

 



Table 2. Sample distributions: mean and quantiles of the unknown GAS transmission parameters 

estimated by calibrating the model to the real data 
Parameter                Mean               2.5%              97.5% 

betas:                 -2.889             -3.480             -2.500 

pss:                    0.450              0.045              0.888 

ptt:                    0.512              0.081              0.923 

relts:                  1.773              0.419              2.994 

   

 

Parameters Effective sample size Rhat 

betas 30.948366031706357 1.120199916824718 

pss 846.1949286467091 1.0031319398506777 

ptt 881.5494897513358 1.0072201164993084 

relts 24.28528882992234 1.1573962072716202 

Table 3. 4 chains of 1000 iterations acquired. Effective sample size and Rhat for each 

parameter. 

 

 

Figure 15. Posterior distributions (pairwise and marginal) for 4 unknown GAS transmission parameters calculated from the 
BOLFI discrepancy functions in Figure 15. 

 



 

 

Figure 17. Traces for the four chains. 

POSTERIOR TEST 

Given the results seen in Table 2, we ran a posterior check to confirm that the results were coherent. This 

can be seen in Figures 18, 19 and 20 which are clearly agreeing with the results found in the previous 

chapters. 

 

Figure 18. Prevalence (%) of the infection over time for the real data. 



 

Figure 19. Number of types of observed transmission for the real data. 

 

Figure 20. Total number of each type of infection for the real data. 

 

DISCUSSION AND CONCLUSION 

We can conclude that the model is capable of identifying the key parameters of the transmission 

on GAS such as betas, relts, ptt and pss and our calibration to real data indicates for the first time 

that throat infections are more infectious than skin infections.  

The identification of these previously unknown values for key transmission parameters—betas, 

relts, ptt, and pss—has significant public health implications for addressing GAS transmission in 

Indigenous Australian communities. 

1. Targeting Transmission Pathways 

By quantifying the relative contributions of throat and skin infections to GAS transmission, interventions 
can be prioritized more effectively. For instance, as relts indicates that throat infections are more 
infectious than skin infections, then efforts to reduce throat-to-throat (ptt) transmission, such as 
improving access to antibiotics for sore throats or targeted health education, could yield substantial 
reductions in overall GAS burden. 



2. Designing Targeted Interventions 

Understanding of the equally likely probabilities that skin infection and throat infections are equally likely 
to cause skin or throat infections (ptt and pss) can inform community-specific intervention strategies. It 
suggests that interventions focused on reducing close-contact transmission among children at schools or 
in communal spaces could be highly effective. Also, interventions addressing scabies and other skin 
conditions that exacerbate skin-to-skin transmission may become critical. 

3. Resource Allocation 

Quantifying the transmission parameters provides evidence-based guidance for allocating limited 
resources. For example, knowing the relative contribution of throat versus skin infections being almost 2 
could help policymakers decide whether to invest more in throat swab screening programs than in skin 
infection treatment campaigns. Also, vaccines might be focused in treating throat as well as skin 
infections. 

4. Highlighting the Role of Asymptomatic Skin Carriers 

While our model does not include asymptomatic skin carriers, understanding their indirect impact on 
parameters such as betas, ptt, and pss could further refine public health strategies. If asymptomatic skin 
carriers are found to play a substantial role in transmission, screening and treating these individuals may 
become a critical component of community health programs. 

This study on GAS transmission in Indigenous Australian communities, while providing valuable 

insights, faces several limitations related to the dataset and the modeling approach. These 

limitations highlight the challenges in accurately capturing the dynamics of GAS transmission in 

this specific context. 

1. Dataset Limitations 

 Sampling Frequency and Population Size: 
Data collection involved monthly sampling of a relatively small population. This low sampling 
frequency is not well-suited for tracking infections with a short duration, such as GAS, which 
typically lasts 1-2 weeks. Consequently, critical temporal patterns in transmission and recovery 
may be missed. 

 Small Number of Observations: 
Some months yielded only a small number of observations, leading to potential bias and limited 
statistical power to infer transmission dynamics. This sparsity makes it challenging to discern 
seasonal or outbreak-related trends. 

2. Model Limitations 

 Uncertainty in Natural History: 
Key parameters influencing GAS transmission are poorly understood, including the duration of 
immunity and duration of infection.  These uncertainties may affect the accuracy of model 
predictions.  Ideally, a sensitivity analysis that explores the effects of setting these parameters 



to alternative values for the real data calibration should be conducted to provide more 
confidence in the results presented here. 

 Strain Diversity and Contact Rates: 
The model does not account for strain diversity, which can influence transmission dynamics and 
immunity. Additionally, age-dependent contact rates, which could be significant in this 
community, remain unknown and unmodeled. 

 Exclusion of Migration Rates: 
Migration rates within and between communities are not included in the model, despite their 
potential role in introducing new infections or strains. 

 Simplistic Demographic Assumptions: 
Household structure and gender-specific behaviors, which are particularly relevant in the 
natural behavior of these communities, are not incorporated into the model. These factors 
could play a crucial role in transmission dynamics and intervention effectiveness. 

 Asymptomatic Carriers: 
The model does not include asymptomatic carriers of skin infections, which contribute to the 
transmission of GAS within communities. 

Conclusion 

These limitations underscore the need for more comprehensive data collection and model 

refinement and fitting. Addressing these gaps would require increased sampling frequency, 

inclusion of demographic and behavioral data, and consideration of asymptomatic carriers and 

strain diversity. Future studies should aim to account for these factors to provide a more accurate 

and contextually relevant understanding of GAS transmission in Indigenous Australian 

communities. However, with these caveats, we have estimated for the first time the relative 

infectious of skin vs throat infections in a high burden population, providing crucial evidence that 

can be used to refine control strategies to reduce the health burden of GAS.  
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