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Abstract

Shor’s algorithm threatens to break classical cryptographic protocols by factoring inte-

gers in polynomial time using the quantum Fourier transform (QFT). However, extending

this to non-abelian groups is challenging due to the multidimensional nature of their ir-

reducible representations. We propose a cryptographic protocol based on non-abelian

groups, such as Okamoto curves, leveraging their structural complexity for enhanced se-

curity against quantum attacks. This approach underscores the potential of non-abelian

group-based cryptosystems as candidates for post-quantum security.
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1 Introduction

Public-key cryptography relies on the computational hardness of integer factorisation and dis-

crete logarithm problems, both of which are compromised by Shor’s quantum algorithm. Shor’s

method employs the quantum Fourier transform (QFT) threatens to solve these problems in

polynomial time. Recent progress in quantum hardware, such as Amazon and Microsoft’s quan-

tum chip prototypes, suggests that cryptographically relevant quantum computers may emerge

sooner than previously anticipated. This risk is compounded by “harvest now, decrypt later”

attacks, where adversaries collect encrypted data for future decryption. In response, the Aus-

tralian Signals Directorate mandates transition to quantum-resistant cryptosystems by 2030

[7].

While Shor’s algorithm efficiently solves the Hidden Subgroup Problem (HSP) for abelian

groups via the QFT, non-abelian groups—which lack commutativity—resist such attacks. The

HSP for non-abelian groups remains an open problem with current quantum techniques, making

them candidates for post-quantum cryptography. We propose a protocol based on non-abelian

platform groups, such as translation groups over Okamoto curves, in effort to demonstrate the

potential of non-abelian groups for post-quantum cryptography.

However, challenges remain. Security arguments for cryptographic protocols often rely on

heuristic assumptions rather than formal hardness proofs. Further, recursive group operations

in our protocol introduce computational overhead, limiting practicality. Additionally, current

post-quantum cryptographic efforts have prioritised lattice-based schemes, leaving non-abelian

approaches understudied despite their potential to diversify post-quantum security.

2 Public Key Cryptography

Cryptography is the study of constructing and analysing protocols that ensure secure com-

munication in the presence of adversarial behavior. Before the 1970s, cryptographic methods

relied primarily on classical ciphers, which required a pre-shared secret key for encryption and

decryption. These systems can be likened to a strongbox with a combination lock: both sender

and receiver must securely agree on a key before exchanging messages. However, the necessity

of a secure key distribution channel posed a fundamental challenge to scalability and security.

Public key cryptography shifted this paradigm by introducing asymmetric key pairs—one

for encryption and another for decryption. While these keys are mathematically related, it must
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be computationally hard to derive the decryption key from the encryption key. This asymmetry

enables the encryption key to be publicly shared, allowing anyone to encrypt messages, while

only the intended recipient, possessing the corresponding private key, can decrypt them.

This concept can be visualised as a strongbox with two distinct locks: one for securing and

another for unlocking. By making the locking mechanism (encryption key) public, anyone can

securely store information, yet only the intended recipient, with the unlocking key, can retrieve

it.

A popular implementation of public key cryptography is discussed next.

2.1 RSA Cryptosystem

Introduced by Rivest, Shamir, and Adleman in 1977 [6], the RSA cryptosystem is a cornerstone

of modern cryptography, relying on the computational hardness of integer factorisation. Its

security is based on the infeasbility of deriving private keys from public information within a

reasonable timeframe using classical computing.

To illustrate the RSA protocol, consider Alice, Bob, and Eve. Bob wishes to send Alice

a secure message over an insecure channel, while Eve, an eavesdropper, attempts to intercept

and decipher it. The RSA algorithm enables Bob to communicate securely with Alice despite

Eve’s presence.

RSA Encryption and Decryption

Alice Bob

n← pq

φ(n) = (p−1)(q−1) m ∈ [0, n)

e ∈ (1, φ(n)), gcd(e, φ(n)) = 1

(n, e)
−−−−−−−−−−−−−−−−−→

C ← me mod n
C

←−−−−−−−−−−−−−−−−−
d← e−1 mod φ(n)

m← Cd mod n

Key generation begins with Alice selecting two large primes, p and q, and computing their

product n, which defines the arithmetic domain for encryption and decryption. She selects a
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public encryption key e, and computes a private decryption key d as its multiplicative inverse

modulo φ(n). Alice is easily able to decrypt Bob’s message by computing Cd mod n = m (by

a lemma of Fermat’s Little Theorem), recovering the original message.

For Eve to decrypt the message, she must compute d, which requires knowledge of φ(n),

and thus the prime factors p and q. Factoring n to find p and q is classically prohibitive for

sufficiently large primes, ensuring the security of the cryptosystem. However, as we will discuss

below, quantum algorithms offer polynomial time attack.

RSA remains widely deployed in securing digital communications, underpinning web en-

cryption, secure remote access, digital signatures, and electronic payment authentication.

2.2 Hardness of Factorisation

The security of many public-key cryptosystems, including RSA, hinges on the computational

intractability of factoring, or of solving the discrete logarithm problem (DLP): finding x such

that

gx = h mod p

No polynomial-time algorithm is currently known for integer factorisation or DLP. The most

efficient classical method for factoring large semiprimes—particularly those exceeding 110 dec-

imal digits—is the General Number Field Sieve (GNFS). This algorithm has a subexponential

time complexity:

O
(
exp

(
(64/9)1/3(log n)1/3(log log n)2/3

))
.

For sufficiently large n, the computational effort required to factorise it far exceeds practical

time constraints, rendering RSA secure against classical attacks.

3 Quantum Computation

In 1994, Peter Shor introduced an algorithm that promises an exponential speedup over the

best-known classical algorithms for integer factorisation and DLP, assuming the existence of a

fault-tolerant quantum computer [8]. Shor’s algorithm leverages the principles of quantum su-

perposition and entanglement to efficiently solve the order-finding problem, to efficiently factor

large semiprimes. This result could potentially undermine the security of public-key cryptosys-

tems, such as RSA encryption, that rely on the intractability of factoring large semiprimes.
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We first explain concepts of quantum computation that underpin Shor’s algorithm.

3.1 Fundamentals of Quantum Computation

Definition 3.1.1 (Qubits). A qubit is a two-level quantum system represented as a unit

vector in the Hilbert space C2. It is described by a linear combination (superposition) of the

computational basis states |0⟩ and |1⟩:

|ψ⟩ = α|0⟩+ β|1⟩, where α, β ∈ C and |α|2 + |β|2 = 1.

The computational basis states are given by:

|0⟩ =

1
0

 , |1⟩ =

0
1

 .
Since global phase factors of the form eiθ do not affect measurement outcomes, the state

space is effectively described by the complex projective space CP 1, which can be visualised

using the Bloch sphere. When dealing with multiple qubits, the state space extends from C2

to the tensor product space C2n for an n-qubit system.

Definition 3.1.2 (Interference). Interference arises when probability amplitudes of quan-

tum states combine either constructively or destructively, affecting the probability distribution

of measurement outcomes. Quantum algorithms leverage interference to amplify the probability

of correct solutions while suppressing incorrect ones.

Definition 3.1.3 (Entanglement). Two qubits are entangled if their joint state cannot be

expressed as a tensor product of two independent single-qubit states. That is, given an n-qubit

system |ψ⟩ ∈ C2n , the system is separable if it can be written as

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩.

Otherwise, the system exhibits entanglement.

Definition 3.1.4 (Quantum Measurement). In the computational basis {|0⟩, |1⟩}, a quan-

tum measurement collapses the state probabilistically. Given a qubit state

|ψ⟩ = α|0⟩+ β|1⟩,

the measurement outcomes obey the Born rule:

P (0) = |α|2, P (1) = |β|2.
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3.2 Shor’s Algorithm - Factoring as Period Finding

Shor’s algorithm reduces the factoring problem to finding the period r of the query function

f(x) = ax mod N , where a is a random integer coprime with N . The group structure of Z∗
N

allows us to view the problem as finding the hidden subgroup of the additive group of integers

modulo r. Specifically, the function f(x) = ax mod N is constant on cosets of the subgroup

generated by r, i.e., f(x) = f(x+ r), where f is an injective function on cosets.

3.2.1 Quantum Fourier Transform

The Quantum Fourier Transform (QFT) maps an n-qubit state |x⟩ = |x1x2...xn⟩ in the com-

putational basis to |x̃⟩ in the Fourier basis through superposition and phase shifts [1]:

|x̃⟩ = QFT |x⟩

=
1√
N

2n−1∑
y=0

e
2πixy

N |y⟩

where y = y1y2 . . . yn in binary

=
1√
N

1∑
y1=0

1∑
y2=0

· · ·
1∑

yn=0

e
2πix
N

∑n
k=1 yk2

n−k |yk⟩

=
1√
N

n⊗
k=1

[
|0⟩+ e

2πix
N

2n−k |1⟩
]

=
1√
N

n⊗
k=1

[
|0⟩+ e

2πix

2k |1⟩
]

=
1√
N

(
|0⟩+ e

2πix
2 |1⟩

)
⊗

(
|0⟩+ e

2πix
4 |1⟩

)
⊗ · · · ⊗

(
|0⟩+ e

2πix
n |1⟩

)
So, given an n-qubit register initialised in the computational basis

|x⟩ =
n⊗

k=1

|xk⟩.

the QFT transforms it into a tensor product of Hadamard-like states, each accumulating a

phase dependent on higher-order bits:

|x̃⟩ = 1√
N

n⊗
k=1

(
|0⟩+ e

2πix

2k |1⟩
)
.
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The QFT can be implemented as on quanutm hardware as a sequence of phase rotations

by Hadamard and Controlled Phase Rotation gates.

The Hadamard gate (H) is a unitary and Hermitian operator that act on single qubits ot

create a superposition of the computational basis states.

It can be represented by the matrix:

H =
1√
2

1 1

1 −1


Applying H to the computational basis states results in:

H|0⟩ = 1√
2
(|0⟩+ |1⟩), H|1⟩ = 1√

2
(|0⟩ − |1⟩),

or in general:

H|xk⟩ =
1√
2
(|0⟩+ eπixk |1⟩)

A Controlled Phase Rotation gate (CROT) applies a phase shift eiθ to a target qubit con-

ditioned on the state of the control qubit. For the QFT, the phase is typically θ = 2π
2k
, where k

corresponds to the qubit index:

CROTk |xj⟩ = e
2πi

2k
xj |xj⟩]

Note that the Hadamard gate is just a special case of the Controlled Phase Rotation gate,

with k = 1.

The matrix representation is:

CROTk =

1 0

0 ei
2π

2k


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Quantum Fourier Transform - Implementation

We initialise the quantum register with n qubits, |x⟩ = |x, x2, . . . , xn⟩, and apply the

gates in sequence on qubit 1:

(1)
[
|0⟩+ e

2πi
2

x1 |1⟩
]
⊗ |x2, . . . , xn⟩

(2)
[
|0⟩+ e

2πi
22

x2e
2πi
21

x1 |1⟩
]
⊗ |x2x3 . . . xn⟩

...

(n)
[
|0⟩+ e

2πi
2n

xn . . . e
2πi
21

x1 |1⟩
]
⊗ |x2, x3, . . . , xn⟩

=
[
|0⟩+ e2πi

x
2n |1⟩

]
⊗ |x2x3 . . . xn⟩

Iterate for each qubit i up to n, applying H to qubit i, and CROT to each subsequent

qubit.

Finally, swap qubits symmetrically from both ends of the register.

The final quantum state |x̃⟩ is now in the Fourier basis.

· · ·

· · ·

· · ·
· · ·

· · ·

x1 H CROT2 CROT3 CROTn

x2 H

x3

...
xn

|x⟩ (1) (2) (n)

Figure 1: Quantum circuit that implements the QFT. Note that since both H and CROT are

unitary operators, the QFT is also unitary.

3.2.2 Representation Theory and the QFT

Group Representations Let G be a finite group and GL(d,C) the group of invertible d× d
complex matrices under multiplication. A representation of G is a homomorphism:

φ : G→ GL(d,C), satisfying φ(g1g2) = φ(g1)φ(g2) ∀g1, g2 ∈ G.
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A representation φ is said to be irreducible if there is no proper nontrivial subspace of the vector

space that remains invariant under all matrices in the image of φ. In other words, if V is the

vector space on which φ acts, the only subspaces that are preserved under all transformations

φ(g) for g ∈ G are the trivial subspace {0} and V itself. Irreducible representations (irreps)

serve as the fundamental building blocks of more complex representations, much like prime

numbers are the building blocks of integers.

Characters and Abelian Groups For abelian G, all irreps are one-dimensional. These are

called characters, defined as homomorphisms χ : G→ C× satisfying:

χ(e) = 1, χ(g)|G| = 1 ∀g ∈ G (hence χ(g) are roots of unity).

The set Ĝ (the Pontryagin dual) of all characters forms a group under pointwise multiplication:

(χ · ψ)(g) = χ(g)ψ(g), with Ĝ ∼= G.

where φ and χ are characters of G.

QFT of Group Elements For cyclic G = ZN , the QFT simply maps the computational

basis to the character basis:

QFTN : |k⟩ 7→ 1√
N

N−1∑
x=0

χk(x)|x⟩, where χk(x) = e2πikx/N .

The QFT here can be understood as a projection into a space of these frequencies.

Orthogonality of Characters The characters χk also form an orthogonal set, which we

show by computing the inner product:

⟨χk, χk′⟩ =
1

N

∑
g∈G

χk(g)χk′(g).

=
1

N

∑
g∈G

ωk·g
N · ω

−k′·g
N =

1

N

∑
g∈G

ω
(k−k′)·g
N .

- If k = k′, then the exponent (k − k′) · g = 0 for all g ∈ G. In this case, the sum becomes:

⟨χk, χk⟩ =
1

N

∑
g∈G

1 =
1

N
·N = 1.
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- If k ̸= k′, then the exponent (k − k′) · g is nonzero for at least some g ∈ G. This sum is a

geometric series with N terms, where each term is a power of ω
(k−k′)·g
N . Since ωN is a primitive

N -th root of unity, the sum of all the N -th roots of unity equals zero:

So the inner product is:

⟨χk, χk′⟩ =

1 if k = k′,

0 if k ̸= k′.

This confirms that the set of characters {χk} for k = 0, 1, 2, . . . , N − 1 forms an orthogonal

set.

Application to Shor’s Algorithm In the hidden subgroup problem (HSP) for G = ZN , let

H ≤ G. The QFT isolates H⊥ ⊂ Ĝ, defined as:

H⊥ = {χk ∈ Ĝ | χk(h) = 1 ∀h ∈ H}.

Post-QFT measurement yields random χk ∈ H⊥, providing constraints:

∑
h∈H

χk(h) =

|H| if χk ∈ H⊥,

0 otherwise.

The outcome of the measurement is a group element g whose corresponding character χg lies

in the orthogonal complement H⊥ of H. This orthogonality condition means that the mea-

surement gives a random g constrained by the condition χg(h) = 1 for all h ∈ H, and this

constraint allows for the unique determination of H.

By collecting multiple such measurements (i.e., measuring g in a way that constrains χg to

lie in H⊥), we gather enough information to uniquely determine the structure of the subgroup

H. This is because each g provides a constraint (since χg(h) = 1 for all h ∈ H), and after a

few such measurements, these constraints can uniquely specify the subgroup H.

QFT on non-abelian groups When extended to non-abelian groups, the straightforward

application of QFT fails. While in an abelian group, every irrep was one-dimensional, al-

lowing the group to be expressed as a well-defined set of characters, where each element is

bijectively mapped to a complex number corresponding to its character value, in the case of

non-abelian groups, the irreps are higher-dimensional matrices. There is no simple dual group
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structure that can act as a frequency space, and may require qudit entanglement. Qudits,

which generalise qubits to higher-dimensional quantum systems, may better accommodate the

higher-dimensional matrices that arise from non-abelian irreps.

Variants of the QFT have been found for certain non-abelian groups, including normal

subgroups, solvable groups, and specific semidirect product p-groups with constant nilpotency

class. Notably, Kuperberg’s algorithm (2003) provides a solution to the Hidden Subgroup

Problem (HSP) in the dihedral group with a time complexity of 2O(
√

log |G|). However, for

groups like the general linear group GLn(q), where q is a finite field size, and many other

non-abelian structures, efficient QFTs and solutions to the general non-abelian HSP remains a

challenging open problem.

As such, post-quantum cryptographic key exchange protocols should be considered as alter-

natives to traditional approaches based on abelian groups. The inherent difficulty in efficiently

solving the Hidden Subgroup Problem (HSP) in non-abelian settings suggests that these groups

could provide a robust foundation for secure cryptographic primitives resistant to quantum at-

tacks.

4 Cryptographic Implementation

4.1 Sketch of Protocol

We outline an preliminary idea of a cryptographic key exchange protocol based on operations in

a non-abelian platform group and a nonlinear recurrence relation. The protocol ensures secure

communication by leveraging the complexity of non-abelian group operations.

To begin with, both Alice and Bob agree on a non-abelian group G, such as symmetry

groups on Okamoto curves, or G = SL(2,Fp), for instance. The constant group elements

C1, C2 ∈ G are publicly shared, along with a parity-dependent recurrence:

Gk+1 = Gk ·Gk−1 + C1 (even k), G−1
k ·G

−1
k−1 + C2 (odd k).

Seed elements G0 and G1 are also shared.

Now, Alice and Bob each choose a large secret integer, n and m respectively. Alice then

computes the sequence Gn−1, Gn by iterating the recurrence from initial values. She then sends

Gn−1, Gn and the parity of n to Bob.

Similarly, Bob computes and sends Gm−1, Gm and the parity of m to Alice.
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Now, they can each compute a shared key Gn+m by iterating the recurrence to the respective

steps using the information exchanged.

The non-abelian structure ensures that solving the recurrence and extracting private keys

from public information is exponentially hard. However, a platform group should be chosen such

that Alice and Bob can compute their shared secret efficiently. Further, initial parameters must

be carefully chosen so as to not create unintended symmetries that may simplify the problem.

As with other cryptographic protocols, security claims often rely on heuristic assumptions

rather than formal reductions to well-established hard problems, leaving protocols vulnerable

to unforeseen attacks.

4.2 Okamoto Curves as a Platform Group

While the most widely used public-key algorithm remains the RSA algorithm, as computing

power grows, increasingly large numbers are required to maintain its security, with its current

recommendation being at least 2048 bits. Factorisation on elliptic curves provides another

realisation of public key exchange, often preferred to the standard RSA algorithm because

storage requirements are smaller for the same level of security.

Such curves are examples of algebraic curves, i.e., curves in two dimensionial complex space,

which are defined by the vanishing of a polynomial.

The canonical form of an elliptic curve in C2 is given by h = 0, where given g2, g3,

h(u, v) = v2 − u3 − g2 u− g3.

The addition theorem (or the group law) on such a curve is a mapping that takes two points

A, B on it to another point denoted A+B on the same curve. Geometrically, addition is given

by taking the line through A and B, finding a third point of intersection of the line with the

curve (which exists because it is a cubic curve) and taking its reflection in the horizontal axis,

as shown in Figure 2.
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u

v

A B

A+B

Figure 2: An example of a Weierstrass curve and addition theorem on it in R2, with the

horizontal axis assumed to be given by u and the vertical given by v. The addition theorem

takes two points labelled A and B to a third point, which is labelled A+B.

Okamoto curves are elliptic curves that exhibit non-commutative properties when combined

with certain automorphism groups can be leveraged in post-quantum cryptographic protocols

[3] [4].

Consider the fourth Painlevé equation:

PIV : q′′ =
1

2q
(q′)2 +

3

2
q3 + 2tq2 +

(
a2 − a0 +

t2

2

)
q − a21

2q

with a0 + a1 + a2 = 1. Its Hamiltonian is:

HIV(q, p) = −a1p− a2q + pq(p− q − t).

Note that HIV = k is an elliptic curve with distinctive symmetries. To consider symmetry

group operations on such curves, we first convert into a system of ODEs given by
f ′
0 = f0(f1 − f2) + α0,

f ′
1 = f1(f2 − f0) + α1,

f ′
2 = f2(f0 − f1) + α2,

(4.1)

where fj are functions of t, f ′
j =

dfj
dt
, and αj are constants for j = 0, 1, 2.

From this system, we can see that the sum of the derivatives satisfies the relation

f ′
0 + f ′

1 + f ′
2 = α0 + α1 + α2.

We let

α0 + α1 + α2 = κ,
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where κ is a constant. Hence, the sum of the functions is given by

f0 + f1 + f2 = κt+ c,

where c is an arbitrary constant.

Transformations on parameters of the fourth Painlevé equation PIV can be understood

geometrically. Consider a two-dimensional plane, tiled by triangles, as shown in Figure 3.

Figure 3: A triangular tiling of the plane.

We assign a coordinate (α0, α1, α2) to each point in the plane as follows. First, identify one

triangle ∆ as a fundamental triangle. Second, let each edge of ∆ be given by αj = 0, as shown

in Figure 4. We assume that parallel lines in the triangular lattice differ by integer values, as

shown in Figure 5.

α2 = 0

α
0
=
0α 1

=
0

Figure 4: A fundamental triangle ∆ in the tiling.

α2 = 0

α2 = 1

α
0
=
0

α2 = −1

α 1
=
1

α
0
=
−
1

α
0
=
1

Figure 5: Integer values of αj define edges of triangles in the tiling.
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Third, given a point P0 in ∆, we define its coordinates (α0, α1, α2) to be given by the

orthogonal distance from P0 to each respective edge.

The symmetry group of PIV can then be understood as transformations that map the

fundamental triangle to other triangles in the tiling. Reflections sj across the line aj = 0 form

an affine Weyl/Coxeter group W = ⟨s0, s1, s2⟩, while W̃ = ⟨s0, s1, s2, π⟩ forms an extended

affine Weyl/Coxeter group where π is the permutation operator, π(α0, α1, α2) = (α1, α2, α0).

The three translations on the triangular lattice are defined by

T1 = π s2 s1,

T2 = s1πs2,

T3 = s2s1π.

We can define a translation operation T acting on H on the A
(1)
2 lattice with axes a0, a1, a2

given recursively by: 

q = p− q − t− a2
p

p = q − p+ t+ a1−1
q

a0 = a0

a1 = a1 − 1

a2 = a2 + 1.

This can form the basis of the cryptographic protocol outlined.

5 Conclusion

We have explored the vulnerabilities of current cryptographic systems to quantum comput-

ing, particularly through Shor’s algorithm, which threatens abelian group-based protocols like

RSA and Diffie-Hellman. We proposed non-abelian groups as a promising alternative for post-

quantum security. The complexity of non-abelian groups, such as translation groups over

Okamoto curves, braid groups, and matrix groups like SL(2,Fp) offers resistance to quantum

attacks due to the difficulty of solving the hidden subgroup problem. While these protocols are

theoretically compelling, challenges related to computational efficiency and security assump-

tions remain.
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