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1 Abstract

In this project we investigate dualilty observables which serve to relate the time-evolution of different instances

of the many-particle Markov chain known as the asymmetric simple exclusion process (ASEP). Of particular

interest is a rank-one duality observable which relates the open-boundary ASEP and the single-particle simple

random walk on a finite integer lattice.

2 Introduction

The multi-species charged asymmetric simple exlcusion process (m-CASEP) is a continuous-time Markov chain

of charged particles of different ‘colours’ hopping to the left and right on an integer lattice of size n with particle

reservoirs at either boundary. The ASEP is a much studied integrable model which is well-understood in two

distinct limits: (i) finite lattice size and finite time and (ii) infinite lattice size and finite time. A key outstanding

problem is the case of finite lattice size and finite time which is needed for a proper understanding of the physics

in a combined space-time scaling limit. Markov chain duality provides a promising tool for progress and analysis

in this regime. We will begin by introducing the model and the relevant Markov chain systems. Then, following

the approach of [1], we will demonstrate a duality for the open boundary ASEP, expressed in a different form.

We conclude by discussing possible extensions of this work to dual systems with many particles.

3 Statement of authorship

The definitions and results in section 4.2 are adapted from [1]. The duality ansatz in section 5.1 is the work of

Jan de Gier, inspired by [1]. The results in lemma 5.1 and theorem 5.2, as well as the discussion and observations

in section 5.3 are my own work except where explicitly stated otherwise.

4 The setting

4.1 The asymmetric simple exclusion process

The asymmetric simple exclusion process is a continuous-time Markov chain and a well-studied integrable model.

It consists of a series of particles of different charges hopping to the left and right on a subsection of the in-

teger lattice, with uniform hopping rates except possibly at the boundary sites. In this paper, we consider an

open-boundary m-CASEP which allows for particles to enter and exit from the left- and right-most sites, thus

changing the number of particles within the system over time.

We label a configuration of the m-CASEP on the lattice Λn = Z ∩ [1, n] by strings, µ = (µ1, . . . , µn), where

µi ∈ {−r, . . . ,−1, 0, 1, . . . , r}. We refer to the interior of the lattice Λn \ {1, n} as the ‘bulk’. On the bulk, the
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Markov transition rates are given by

(. . . , µi, µi+1, . . .) 7→ (. . . , µi+1, µi, . . .) with rate

1 if µi < µi+1

t if µi > µi+1

.

On the boundaries, we allow particles to change charge;

(−µ1, . . .) 7→ (+µ1, . . .) with rate γ,

(+µ1, . . .) 7→ (−µ1, . . .) with rate α,

for µ1 ∈ {1, . . . , r} and likewise

(. . . ,+µn) 7→ (. . . ,−µn) with rate δ,

(. . . ,−µn) 7→ (. . . ,+µn) with rate β,

for µn ∈ {1, . . . , r}. Unless stated otherwise, we assume all transition rates are strictly positive.

In this paper, we focus on the case of r = 1 so that µi ∈ {−1, 0, 1}, and further simplify the system to have

no netural particles (i.e. particles labeled 0), whereby we recover the standard ASEP. We may think of the

states labeled by −1 as particles, whereas the states labeled by 1 are the ‘holes’.

For the purpose of the embedding the transition rates into the generator, we also employ another common

convention for multi-particle systems, which is built through the use of the Kronecker product. We first define

the embedding map ϕ : {−1, 1} → C2 by mapping

−1 7→

1

0

 , 1 7→

0

1

 ,

and then construct a unit vector η ∈ C2n from µ = (µ1, . . . , µn) by taking a tensor product over all site states,

η = ϕ(µ1) ⊗ ϕ(µ2) ⊗ · · · ⊗ ϕ(µn). With this convention, we can write the Markov generator as a sum over

boundary operators and bond operators,

M = m1 +

n−1∑
i=1

Mi +mn

with boundary operators

m1 =

−γ γ

α −α

⊗ 1
⊗n−1, mn = 1

⊗n−1 ⊗

−β β

δ −δ

 ,

and bond operators

Mi = 1
⊗i−1 ⊗


0 0 0 0

0 −1 1 0

0 t −t 0

0 0 0 0

⊗ 1
⊗n−1−i,

using 1 to denote the two-dimensional identity matrix. Having a concrete representation of this Markov gener-

ator allows us to precisely define duality in the context of the ASEP.

2



t

1

α

γ

β

δ

Figure 1: Rates of the multi-species asymmetric simple exclusion process with open boundary conditions

4.2 Duality and reverse duality in Markov processes

Throughout this paper, we refer to a continuous time Markov chain by the tuple {η(t), Ω}, where η(t) is the

process indexed by the continuous variable t, and Ω is the state space of this process. We now state the definition

of duality, which serves as the foundational concept behind this project.

Definition 4.1. Two Markov processes {η(t), Ω} and {ξ(t), Ξ} with respective generators M and L are dual

if there exits some observable D : Ξ× Ω → R such that

LD = DMT

or equivalently, ∑
ξ′

Lξ,ξ′D(ξ′, η) =
∑
η′

D(ξ, η′)MT
η′,η

for all (ξ, η) ∈ Ξ× Ω.

Note that duality is a reflexive property; if η(t) is dual to ξ(t) with duality observable D, then ξ(t) is dual

to η(t) with observable DT . This duality relationship is valuable in this context as it immediately grants the

following result, which we will state without proof.

Lemma 4.2. Let {η(t),Ω} and {ξ(t),Ξ} be Markov processes with countable states spaces Ω, Ξ. If η and ξ are

dual with respect to some bounded measurable observable D : Ω× Ξ → R, then for all (η, ξ) ∈ Ω× Ξ and t ≥ 0

we have

E0D(η(t), ξ) = E0D(η, ξ(t)),

where E0 denotes an expectation taken with respect to an initial dirac measure correpsonding to η = η(0) or

ξ = ξ(0) respectively.

We may also express interest in the notion of a reverse-dual process, as introduced in [1].

Definition 4.3. Let η(t) and ξ(t) be two Markov processes as above. We say η(t) and ξ(t) are reverse dual if

there exists some observable R : Ξ× Ω → R such that

RL = MTR
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Reverse duality leads to a somewhat altered time-evolution property.

Lemma 4.4. Let {η(t),Ω} and {ξ(t),Ξ} be Markov processes with countable states spaces Ω, Ξ, and let FΞ be

a family of measures for the η process, indexed by Ξ. Suppose that η and ξ are reverse dual with respect to the

duality function R(ξ, ·) = µξ(·) ∈ FΞ. Then for all t ≥ 0 we have

µξ
t (·) =

∑
ξ′

P(ξ, t | ξ′, 0)µξ′

t (·)

Thus duality allows us to express the evolution of time-dependent expectation values for one process in

terms of its dual process, whereas reverse duality allows us to relate the time-evolution of initial measures. Note

that in the case of two reversible Markov chains, reverse duality is equivalent to a conventional duality for the

time-reversed processes.

5 The duality observable

In the following section, we will demonstrate a duality observable between the ASEP η(t) and a rank-one dual

process, ξ(t). Specifically, ξ(t) will be a simple random walk in continuous time on an extended subsection of

the integer lattice Λn∪{0, n+1}, with holding rates derived from the parameters of the ASEP. The sites 0, n+1

serve as auxiliary sites, which exhibit distinct behavoir to the bulk sites.

5.1 Duality observable

We now proceed to construct the duality observable. We begin by defining the left and right number operators,

N1(ξ, η) =

ξ−1∑
i=1

1{ηi = −1}, N2(ξ, η) =

n∑
i=ξ+1

1{ηi = −1},

which count the number of particles to the left or the right of a specified position ξ, respectively. Taking

inspiration from [1], we make the following ansatz for a rank-one duality observable

D(ξ, η) =


b1t

N2(0,η)
2 , ξ = 0

bξt
N1(ξ,η)
1 × 1{ηξ = −1} × t

N2(ξ,η)
2 , 1 ≤ ξ ≤ n

bnb2t
N1(n+1,η)
1 , ξ = n+ 1

where we set t1 = −γ/α, t2 = −β/δ. This function exhibits a similar factorised form to the duality observable

in [1], which is referred to as a factorised shock measure. We establish the following useful result for the duality

observable.

Lemma 5.1. The duality function D(ξ, η) satisfies the following transfer relations on the bulk,

1{ηξ+1 = −1} × bD(ξ, η) = 1{ηξ = −1} × tD(ξ + 1, η),

while on the boundaries, it satisfies

1{ηn = −1} × 1

b2
D(n+ 1, η) = t1D(n, η), 1{η1 = −1} × 1

b1
D(0, η) =

1

t2
D(1, η).

4



Proof. The proof is a straightforward algebraic exercise, which exploits the fact that with our choice of t1 and

t2, we have t2/t1 = t.

5.2 Proof of duality

The key contribution of this work is a proof of the following theorem which formalises the duality between the

processes η(t) and ξ(t).

Theorem 5.2. The duality observable D(ξ, η) satisfies a dynamic relationship akin to that of a one-particle

random walk, ∑
η′

D(ξ, η′)MT
η′,η = bD(ξ − 1, η) + t/bD(ξ + 1, η)− abD(ξ, η), 2 ≤ ξ ≤ n− 1, (1)

∑
η′

D(1, η′)MT
η′,η = bα/b1D(0, η) + t/bD(2, η)− a1D(1, η) (2)

∑
η′

D(n, η′)MT
η′,η = bD(n− 1, η) + δ/b2D(n+ 1, η)− a2D(n, η). (3)

when

ab = (1 + t+ α+ β + γ + δ), a1 = 1 + β + δ + γ − αt2, a2 = t+ α+ γ + β − δt1.

and the transition rates are restricted to the parameter manifold defined by

αβ − tγδ = 0.

Remark 5.3. We note that this theorem describes a conventional duality between the η(t) and ξ(t) processes,

and not a reverse duality, as is found in [1].

Proof. In what follows, we use the notation η1 → η2 to describe a state η2 which is accessible from η1. We first

consider the duality relationship for 2 ≤ ξ ≤ n− 1 on the bulk. The left hand side of equation (1) reads∑
η′

D(ξ, η′)MT
η′,η =

∑
η′

bξt
N1(ξ,η

′)
1 × 1{η′ξ = −1} × t

N2(ξ,η
′)

2 Mη,η′ ,

and so for a fixed η, the only non-zero terms in the summation are given for η′ such that η′ξ = −1 and η → η′.

This gives three cases to consider:

1. Transition from the left: (ηξ−1 = −1, ηξ = 1) → (η′ξ−1 = 1, η′ξ = −1)

2. Transition from the right: (ηξ = 1, ηξ+1 = −1) → (η′ξ = −1, η′ξ+1 = 1)

3. Transition away from site ξ: (. . . , ηξ = −1, . . . ) → (. . . , η′ξ = −1, . . . )

We must also consider the case in which η′ = η, where Mη,η will be the holding rate of the Markov process. We

begin with case 1, and impose the restriction by the use of an inidicator.∑
η′

1{ηξ−1 = −1, ηξ = 1,η′ξ−1 = 1, η′ξ = −1}bξtN1(ξ,η
′)

1 × 1{η′ξ = −1} × t
N2(ξ,η

′)
2 Mη,η′

= bξ1{ηξ−1 = −1}
∑
η′

1{ηξ = 1, η′ξ−1 = 1, η′ξ = −1} × t
N1(ξ,η

′)
1 t

N2(ξ,η
′)

2 Mη,η′ (∗)
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Now if η → η′ by the movement of a negative particle from site ξ − 1 to ξ, then Mη,η′ = 1 and

N1(ξ, η
′) = N1(ξ − 1, η), N2(ξ, η

′) = N2(ξ − 1, η),

which allows us to write

(∗) = bξt
N1(ξ−1,η)
1 × 1{ηξ−1 = −1} × t

N2(ξ−1,η)
2

∑
η′

1{ηξ = 1, η′ξ−1 = 1, η′ξ = −1}

= bD(ξ − 1, η)× 1{ηξ = 1}.

Similarly, for case 2, if η → η′ by the movement of a negative particle from site ξ + 1 to ξ, then Mη,η′ = t and

N1(ξ, η
′) = N1(ξ + 1, η), N2(ξ, η

′) = N2(ξ + 1, η).

Thus,∑
η′

1{ηξ+1 = −1, ηξ = 1,η′ξ+1 = 1, η′ξ = −1}bξtN1(ξ,η
′)

1 × 1{η′ξ = −1} × t
N2(ξ,η

′)
2 Mη,η′

= bξt
N1(ξ+1,η)
1 1{ηξ+1 = −1}tN2(ξ+1,η)

2

∑
η′

1{ηξ = 1, η′ξ+1 = 1, η′ξ = −1} × t

=
t

b
D(ξ + 1, η)× 1{ηξ = 1}

Now we consider the case in which η → η′ by a transition away from site ξ. In this case, the number of negative

particles may vary if the transition occurs on a boundary site, so for brevity we introduce the notation

{1+} = {particle gained at site 1}, {1−} = {particle lost at site 1}

{n+} = {particle gained at site n}, {n−} = {particle lost at site n}

which allows us to write

N1(ξ, η
′) = N1(ξ, η) + 1{1+} − 1{1−}, N2(ξ, η

′) = N2(ξ, η) + 1{n+} − 1{n−}.

Thus case 3 becomes∑
η′

1{ηξ = −1,η′ξ = −1}bξtN1(ξ,η
′)

1 × 1{η′ξ = −1} × t
N2(ξ,η

′)
2 Mη,η′

= bξ
∑
η′

1{ηξ = −1, η′ξ = −1}tN1(ξ,η)+1{1+}−1{1−}
1 × 1{η′ξ = −1} × t

N2(ξ,η)+1{n+}−1{n−}
2 Mη,η′

= bξt
N1(ξ,η)
1 × 1{ηξ = −1} × t

N2(ξ,η)
2

∑
η′

1{η′ξ = −1}t1{1
+}−1{1−}

1 t
1{n+}−1{n−}
2 Mη,η′

= D(ξ, η)
∑
η′

1{η′ξ = −1}t1{1
+}−1{1−}

1 t
1{n+}−1{n−}
2 Mη,η′

Now it remains to evaluate the sum. For a given configuration η, we introduce further notation

NL(η) = # left transitions which preserve particle number

NR(η) = # right transitions which preserve particle number
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Note that, for fixed η, there is only a transtion η → η′ corresponding to the event {1+} if η1 = 1, and

similarly for the other boundary transition events. Thus,∑
η′

= 1{η1 = 1}αt1 + 1{η1 = −1}γ/t1 + 1{ηn = 1}δt2 + 1{ηn = −1}β/t2 + (NL(η)− 1{ηξ−1 = 1})t

+ (NR(η)− 1{ηξ+1 = 1})

= −1{η1 = 1}γ − 1{η1 = −1}α− 1{ηn = 1}β − 1{ηn = −1}δ + (NL(η)− 1{ηξ−1 = 1})t+ (NR(η)− 1{ηξ+1 = 1})

Now the final term to consider is for η′ = η. In this case, by definition of the holding time for a continous time

Markov chain we have

D(ξ, η)Mη,η = −D(ξ, η)
∑
η′

Mη,η′

= −D(ξ, η)(1{η1 = 1}α+ 1{η1 = −1}γ + 1{ηn = 1}δ + 1{ηn = −1}β +NL(η)t+NR(η))

Collecting these terms with case 3 gives

−D(ξ, η) (α+ β + γ + δ + 1{ηξ−1 = 1}t+ 1{ηξ+1 = 1}) ,

and finally summing over contributions from all cases gives;∑
η′

D(ξ, η′)MT
η′,η =

t

b
D(ξ + 1,η)× 1{ηξ = 1}+ bD(ξ − 1, η)× 1{ηξ = 1}

−D(ξ, η) (α+ β + γ + δ + 1{ηξ−1 = 1}t+ 1{ηξ+1 = 1}) .

This is identical to our desired result. To make this explicit, we use the result of lemma 5.1,

t

b
D(ξ + 1, η)× 1{ηξ = 1}+ bD(ξ − 1, η)× 1{ηξ = 1} −D(ξ, η) (α+ β + γ + δ + 1{ηξ−1 = 1}t+ 1{ηξ+1 = 1})

= (1− 1{ηξ = −1})
(
t

b
D(ξ + 1, η) + bD(ξ − 1, η)

)
−D(ξ, η) (α+ β + γ + δ + 1{ηξ−1 = 1}t+ 1{ηξ+1 = 1})

=
t

b
D(ξ + 1, η) + bD(ξ − 1, η)− 1{ηξ = −1}

(
t

b
D(ξ + 1, η) + bD(ξ − 1, η)

)
− (α+ β + γ + δ + 1{ηξ−1 = 1}t+ 1{ηξ+1 = 1})D(ξ, η)

=
t

b
D(ξ + 1, η) + bD(ξ − 1, η)− 1{ηξ+1 = −1}D(ξ, η)− 1{ηξ−1 = −1}tD(ξ, η)

− (α+ β + γ + δ + 1{ηξ−1 = 1}t+ 1{ηξ+1 = 1})D(ξ, η)

=
t

b
D(ξ + 1, η) + bD(ξ − 1, η)− abD(ξ, η)

This concludes the proof on the bulk of the lattice.

Right boundary

Now we approach the result for ξ = n. The proof follows the same general outline as on the bulk, but we will

repeat key steps for clarity. The left hand side of equation (3) reads∑
η′

D(n, η′)MT
η′,η =

∑
η′

bnt
N1(n,η

′)
1 × 1{η′n = −1} × t

N (n,η′)
2 Mη,η′
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So we must only consider η′ such that η′n = −1 and η → η′. As above, we consider three distinct cases;

1. Transition from the left: (ηn−1 = −1, ηn = 1) → (η′n−1 = 1, η′n = −1)

2. Particle gained at the right boundary: (ηn = 1) → (η′n = −1)

3. Transition away from site n: (. . . , ηn = −1) → (. . . , ηn = −1)

We begin with case 1. If η → η′ by the movement of a negative particle from n − 1 to n, then Mη,η′ = 1 and

thus ∑
η′

1{ηn−1 = −1, ηn = 1, η′n−1 = 1, η′n = −1} × bnt
N1(n,η

′)
1 × 1{η′n = −1} × t

N (n,η′)
2 Mη,η′

= bnt
N1(n−1,η)
1 × 1{ηn−1 = −1} × t

N (n−1,η)
2

∑
η′

1{ηn = 1, η′n−1 = 1, η′n = −1}

= bD(n− 1, η)× 1{ηn = 1}

Now for case 2, we suppose that a negative particle hops from the boundary to site n. Hence Mη,η′ = δ and so∑
η′

1{ηn = 1, η′n = −1} × bnt
N1(n,η

′)
1 × 1{η′n = −1} × t

N (n,η′)
2 Mη,η′ = bnt

N1(n+1,η)
1

∑
η′

1{ηn = 1}δ

=
δ

b2
D(n+ 1, η)× 1{ηn = 1}.

For case 3, we suppose that ηn = −1 and that the transition occurs away from site n. We use the same notation

as above for boundary transition events to write∑
η′

1{ηn = −1, η′n = −1}bntN1(n,η
′)

1 × 1{η′n = −1} × t
N (n,η′)
2 Mη,η′

= bnt
N1(n,η)
1 × 1{ηn = −1} × t

N (n,η)
2

∑
η′

1{η′n = −1}t1{1
+}−1{1−}

1 Mη,η′

= D(n, η) (1{η1 = 1}αt1 + 1{η1 = −1}γ/t1 +NL(η)(1− 1{ηn−1 = 1})t+NR(η)) .

For η′ = η, we calculate the holding rate to be

D(n, η)Mη,η = −D(n, η)
∑
η′

Mη,η′

= −D(n, η)(1{η1 = −1}γ + 1{η1 = 1}α+ β +NL(η) +NR(η)),

and so combining the above with case 3 we have

−D(n, η)(α+ γ + β + 1{ηn−1 = 1}t).

Combining all cases yields the result∑
η′

D(n, η′)Mη,η′ = bD(n−1, η)×1{ηn = 1}+δ/b2D(n+1, η)×1{ηn = 1}−D(n, η)(α+γ+β+1{ηn−1 = 1}t).
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We once again use the result of lemma 5.1 to transform this result into the desired identity.

= (1− 1{ηn = −1})(bD(n− 1, η) + δ/b2D(n+ 1, η))−D(n, η)(α+ γ + β + 1{ηn−1 = 1}t)

= bD(n− 1, η) + δ/b2D(n+ 1, η)− 1{ηn = −1}bD(n− 1, η)− 1{ηn = −1}δ/b2D(n+ 1, η)

−D(n, η)(α+ γ + β + 1{ηn−1 = 1}t)

= bD(n− 1, η) + δ/b2D(n+ 1, η)− 1{ηn−1 = −1}tD(n, η)− δt1D(n, η)−D(n, η)(α+ γ + β + 1{ηn−1 = 1}t)

= bD(n− 1, η) + δ/b2D(n+ 1, η)−D(n, η)(α+ γ + β + t+ δt1)

= bD(n− 1, η) + δ/b2D(n+ 1, η)− a2D(n, η)

Left boundary

The proof for the duality on the left boundary site, ξ = 1, extends by analogy from the proof above, for the

right boundary site. The result reads∑
η′

D(1, η′)MT
η′,η = bα/b1D(0, η) + t/bD(2, η)− a1D(1, η),

with a1 = 1 + β + δ + γ + αt2.

5.3 Towards other dualities

Extending this result to dual processes of higher rank would enable us to exploit this duality on different rate

parameter manifolds. We conjecture that dualities should extend naturally from the form of the above rank-one

duality observable, with a similar factorised shock profile. For a general rank-k dual process, we first introduce

the counting operator

N (x, y; η) =

y−1∑
i=x+1

1{ηi = −1}

which counts the number of -1 particles between specified positions x and y. For ξ1 < ξ2 < · · · < ξk and

auxiliary particles ξ0 = 0, ξk+1 = n+ 1, we consider a rank-k duality observable of the form

D(ξ1, . . . , ξk; η) =



b
∑k

i=1 ξi
∏k

i=2 1{ηξi = −1}
∏k+1

i=2 t
N (ξi−1,ξi;η)
i , ξ1 = 0, ξk ̸= n+ 1

b
∑k

i=1 ξi
∏k

i=1 1{ηξi = −1}
∏k+1

i=1 t
N (ξi−1,ξi;η)
i , 1 ≤ ξ1, ξk ≤ n

bn+
∑k−1

i=1 ξi
∏k−1

i=1 1{ηξi = −1}
∏k

i=1 t
N (ξi−1,ξi;η)
i , ξ1 ̸= 0, ξk = n+ 1

bn+
∑k−1

i=1 ξi
∏k−1

i=2 1{ηξi = −1}
∏k

i=2 t
N (ξi−1,ξi;η)
i , ξ1 = 0, ξk = n+ 1

In assessing the viability of this duality observable, We note that to achieve a similar result to lemma 5.1 in the

rank-1 case, we require t1 = −γ/α, tk+1 = −β/δ, and for 1 ≤ i ≤ k,

ti+1/ti = t
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which we contextualise as a condition analoguous to the microscopic shock stability condition in [1]. Multiplying

through, we note that this implies the condition

tk+1/t1 = tk

which is analogous to the macroscopic shock stability condition in [1]. Importantly, this condition specifies our

rate parameter manifold

αβ − tkγδ = 0.

We leave our discussion of higher-rank dualities at these key observations, noting that further work must be

done to achieve a concrete result.

6 Conclusion

In this report we have introduced variations of the multispecies charged asymmetric simple exclusion process (m-

CASEP) alongside the concept of duality and reverse duality in Markov processes. We constructed a factorised

duality observable for a rank-one process and demonstrated a direct proof of the duality relationship. We

have followed this work with a discussion of possible extensions to dual models of higher rank, drawing links

to existing work on the problem found in [1]. There remains more work to be done in order to finalise these

dualities.
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