2 SUMMERRESEARCH
= SCHOLARSHIPS 2024-25

Get a taste for Research this Summer

Deep Learning in Hidden Markov
Models

Kyan Percevault

Supervised by Lewis Mitchell, Matthew Roughan and Angus Lewis
University of Adelaide

28,/02,/2025

o A N p] AUSTRALIAN
Osireer VAMSIEH™

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

Abstract

Hidden Markov Models (HMMs) are widely used to model discrete-time processes. However, given a
sequence of observations, inference of suitable parameters for an HMM is difficult. We investigate the
potential for Recurrent Neural Networks (RNNs) in parameter inference, and compare the results to the
Baum-Welch algorithm. Although all loss functions that we derive are limited by computational costs or
state permutations, experimental results indicate that the performance of RNNs is comparable to the Baum-
Welch algorithm, at least in the case of 2 hidden states. We hope that these promising results will motivate
further research into permutation-invariant loss functions and more complicated deep-learning applications
in HMM parameter inference. We also review existing approaches when the number of hidden states is

unknown, and we highlight the difficulties of deep-learning approaches in this case.

1 Introduction

Hidden Markov Models (HMMs) have been applied in fields such as speech recognition, network analysis and
bioinformatics [8]. The typical approach to HMM parameter inference is the Baum-Welch algorithm, although
this algorithm is susceptible to getting stuck in local minima [12]. As an alternative, in this project we investigate
the potential of deep-learning models for parameter inference, namely Recurrent Neural Networks (RNNs) and
hybrid RNN/Baum-Welch architectures.

We first derive loss functions for model training based on Dirichlet distributions (parametrised by model
outputs), Jensen-Shannon Divergence between corresponding distributions and sequence likelihoods under the
inferred parameters. We identify that the number of operations and permutations of state labels are significant
limitations for these loss functions. Nonetheless, we implement an RNN architecture which can handle an
unknown number of sequences of varying lengths, which can be used for parameter inference directly or as
initialisation for the Baum-Welch algorithm. Empirical comparison shows that these deep-learning models
produce results which are comparable to the Baum-Welch algorithm.

Finally, we reviewed some existing approaches when the number of hidden states is unknown, namely the
use of information criteria alongside Baum-Welch and the Hierarchical Dirichlet Process HMM. We also provide
a high-level description of potential deep-learning techniques when the number of states is unknown, although

we highlight the high computational costs of these approaches.

Statement of Authorship

Kyan Percevault produced all results and interpretations used in this report, as well as all associated code.
Professor Lewis Mitchell, Professor Matthew Roughan and Angus Lewis provided general direction, motivation
and some of the references used throughout this report. Professor Lewis Mitchell and Angus Lewis also proofread

this report.

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

2 Background

A Hidden Markov Model (HMM) is a generative model where a latent state is governed by a Markov chain,
and the distribution of observations is determined by the latent state at that time step. For a single set of
HMM parameters, We will denote the set of associated observation sequences with o and the sequences of
corresponding hidden states with h; then, the hidden state and observation at time ¢ can be denoted h; and oy,

respectively. As described in [12], an HMM is characterised by the quintuplet (N, M, A, B,), where:
e N is an integer for the number of hidden states, with S = {s1, s2, ..., sy} the set of distinct state labels.
e M is the number of distinct observations, with V' = {vq, va, ..., vpr} the set of distinct observations.

e A ={a;;} is the transition probabilities of the hidden Markov chain, a;; = Pr(hit1 = sjlhe = s;) V1 <
i,7 < N.

e B = {b;(k)} is the emission distributions, b;(k) = Pr(o; = vg|hs =s;) VI<j< N, 1<k<M.
e 7w = {m;} is the initial distribution of states, m; = Pr(q1 = v;) V1 <i<N.

Once the parameters are known, HMMs can be used to calculate the most likely sequence of latent states
from an observation sequence (via the Viterbi algorithm), evaluate the likelihood of a given observation sequence
(via the Forward Algorithm), or generate sequences of observations and corresponding latent states [12]. How-
ever, parameter inference (that is, inferring the most likely parameters of an HMM given a set of observation
sequences) remains a significant challenge. Typical approaches such as Baum-Welch can converge to incorrect

local minima for log-likelihood, and hence an accurate initialisation of parameters is necessary [5].

2.1 Baum-Welch Algorithm

The Baum-Welch algorithm is a special case of the Expectation-Maximisation (E-M) algorithm. This is a useful
approach when part of the data is hidden, but we wish to maximise the log-likelihood of both the hidden data,
h, and the observed data, o [15]. The algorithm is a 2-step process, where we first create an auxiliary function
of the model parameters A by taking the expectation over the hidden data, conditioned on the observed data

and the previous model parameters, Ag:
Qo) = / Pr(h|o: Ao) log Pr(0, h: A)dh

Then, in the second step, we maximise the auxiliary function, thereby obtaining the best new value of the
parameters from their previous values [15]. Log-likelihood of data (hidden and observed) is guaranteed to be
non-decreasing in the Expectation-Maximisation algorithm: Pr(o|Ax+1) > Pr(o|A;) In fact, we are guaranteed
to converge to a critical point for the sequence likelihood [12], although this point may not be the global
optima. A common approach to increase the chance of convergence to the globally-optimal parameters is to
apply the Baum-Welch algorithm several times with different initial parameters, although this is computationally

inefficient.

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

3 Deep Learning

In this section, we provide an overview of deep learning and describe the main deep-learning technique used in

this report: RNNs.

3.1 Supervised Learning Overview

In supervised learning, our goal is to learn some mapping between inputs and target features. This involves a
training dataset, containing inputs and their corresponding labels for the target features, and a loss function
(for example, Mean Square Error) which quantifies the difference between the output of our machine-learning
model and the true label. Then, we “fit” our model by finding the model parameters which minimise the loss
over our training set. We typically do this by iteratively updating parameters using gradient-based optimisers

such as Stochastic Gradient Descent (SGD) or Adam [11].

3.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a deep-learning model which account for order in a set of inputs,
thereby making it an appropriate choice to fit HMM parameters from observation sequences. Further, RNNs
allow inputs of varying length, which is necessary when the length of the observation sequences are unknown.
In RNNs, the hidden state is a vector of real numbers which is transferred between time steps. At each time
step, neurons (also called perceptrons, nodes or activation units) are used to update the hidden state based
on the current observations and the previous hidden state. Inside each neuron, a linear combination is taken
of all inputs, a constant bias is added, then a non-linear function is applied (typically ReLU, hyperbolic tan,
or the sigmoid function [11]). Since each neuron produces a scalar, we can stack multiple neurons (each with

I In the case of RNNs, the neurons at each time step

independent weights and biases) to produce a vector.
produce a non-linear map to update the hidden state with information from the observation at that time step
[11].

We utilise a many-to-one RNN, as observation sequences span multiple time steps, but we require only a
single vector of parameters as output; therefore, only the hidden state at the final time step is necessary to
compute outputs. To ensure that the output has the correct length, we apply a final fully-connected layer. Once
again, this involves taking a linear combination of the hidden state and adding a bias, and we repeat this for
the required number of HMM parameters. Finally, we apply the softmax function,

et

Ej %’

to different sections of the output vector. This ensures that each distribution in the output satisfies the prob-

O'(Z)i =

ability constraints: elements must be non-negative and sum to 1. Specifically, we apply softmax to the first

11t is convention to stack the weights corresponding to each input type into matrices. Specifically, Wy, and Wy}, represent the
weights across all neurons which are assigned to the previous hidden state and the current observation (respectively) to update the

hidden state.

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

Nonlinear
i ™\ Function, f(2)

Figure 1: A diagram of a deep-learning neuron. In RNNs, some of the inputs will be from the previous hidden

state, and some will be from the observations at that time step.

N components (initial probabilities), then the next N groups of N components (transition probabilities), and
finally to the next N groups of M components (emission probabilities).

Vanishing and exploding gradients are common issues in RNN implementation. Vanishing gradients prevent
the RNN from retaining information over a large number of time steps [10], while exploding gradients cause
difficulty training since gradient descent updates may produce worse parameters [1]. Consider the case when the
derivative of the activation function, f’, is bounded such that ||diag(f’(zx))|| < 7 for every element of the hidden
state, zx. Then, A* < % is a sufficient condition for vanishing gradients (and therefore a necessary condition for
exploding gradients is A* >) where * is the absolute value of the largest eigenvalue in the hidden-to-hidden
weight matrix Wp,, [10]. However, it is also necessary to avoid complicated loss functions which apply many
operations to the inputs or outputs, as this will also increase susceptibility to numerical instability of gradients

Additionally, how do we determine suitable values for hyperparameters such as batch size, learning rate,
optimiser, and hidden size? And in the case of training RNNs for HMM parameter inference, the datasets
are completely synthetic, so we have configurative parameters in the sizes of the training, validation and test
datasets. In this report, we will keep the batch size at 16, while training/validation/testing dataset sizes were
kept at 300/50/100 (as these kept runtime below 12 hours). However, the learning rate, optimiser and hidden
size were optimised with Optuna, a Python package which utilises search algorithms and pruning to efficiently

trial different hyperparameter values.?

2https://optuna.org/

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

4 Parameter Inference with a Known Number of States

We mainly focus on the scenario where the number of states in the HMM is known. Derivation of loss functions,

development of RNN architectures and empirical comparison to Baum-Welch will occur in the following sections.

4.1 Loss Functions with a Known Number of States

In this section, 3 loss functions specific to parameter inference for HMMs are derived, and the practical issues

associated with each are discussed.

4.1.1 Dirichlet Distribution Parametrisation

Let an arbitrary set of inputs and targets be denoted o and y, respectively. In our case, o is a set of observation
sequences and y is the concatenation of the flattened initial probabilities 7r, transition probabilities A and
emission probabilities B. According to [11], a loss function is typically derived by first selecting a parametric
distribution for the outputs, Pr(y|@). Then, instead of producing the “best guess” for the outputs directly,
deep-learning models should be configured to produce a set of output-parameters 8*, and we select the model-
parameters which maximise the probability of the true labels under the distributions produced, Pr(y|6*).
Letting our model be denoted f(x|¢), the optimal model-parameters ¢A) will therefore maximise the likelihood
Pr(y|f(z|¢)). Assuming the sets of parameters yi,ys, ..., yp are independent and identically distributed, we
obtain the maximum likelihood criterion

D

¢ = arg max lH Pr(y; | f(w; | ¢))] :
i=1

We can equivalently minimise the negative log of this criterion:

D
¢ = arg(;nin [— > logPr(y; | f(= | 4)))] : (1)
i=1
Therefore, as explained by [11], we can construct a loss function £(¢) from Equation 1:
D
L@) = —) logPi(y: | f(zi | 9)), 2)
i=1
where ¢ = argminL(p) (3)

Since the parameters of an HMM consist of multiple distributions, Dirichlet distributions may be appro-
priate for Pr(y|@). A Dirichlet distribution with parameters 8 = (31, 82, ..., 8x) has support on all categorical
distributions of length k [4], making it a “distribution over distributions”. In our case, we can split the ith set
of true parameters into a vector of distributions, y; = (¥:.1,¥i.2, ..., Yi,2n+1), where y; ; is the jth distribution
within the ith set of parameters (the initial, transition, and emission probabilities of the HMM contribute 1, N,
and N distributions, respectively). Similarly, the parameters of the jth Dirichlet distribution within the ith set
of parameters can be denoted 3; ;. Then, we can divide the outputs among distributions, which we will repre-

sent with f(0;|¢) = (fi1, ..., fion41) = (Bi1, ..., Bian+1), where fi ; = fi j(0;]|@) is the output corresponding

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

to the jth distribution of the ith set of sequences.? 4 Assuming that each output distribution is independent,

Equation 2 becomes

D
L(p) = *Zlogpr((yi,h~~~7yi,2N+1) | (fi1se Fian1)) (4)
Z; 2N41
= =) > logPr(yi;lfi,)- (5)
=1 j=1

We can apply the probability density function of a Dirichlet distribution to Equation 5. Let

, N, ifje{l,.,N+1}
j:
M, ifje{N+2,..,2N+1}

be the length of the jth distribution, and let f; ;, and y; ;i be the kth element in the jth distribution of the

ith data point of model outputs and true parameters, respectively. Then,

¢ k
D5y Biik) a1
Pr(yij|Bij) = =2 =Lt yf,j',k’k) (6)
Hk:l F(ﬁz}j,k) j=1

hence our final loss function is

D 2N+1 4 25 45
-> logT | > figw | = > logT(fijm) + > _(figk — 1) logyi
i=1 j—1 k=1 k=1 k=1

4.1.2 Log-Likelihood

Another justifiable loss function is log-likelihood, as it is natural to attempt to find the HMM parameters which
maximise the likelihood of the given observation sequences. Further, this loss function allows easy comparison
with the Baum-Welch algorithm. The log-likelihood can be easily calculated from HMM parameters using the
forward algorithm (see [12]).

4.1.3 Jensen-Shannon Divergence (JSD)

Finally, loss could be computed by measuring the element-wise or distribution-wise divergence between the fitted

and true HMM parameters. One option is KL-divergence, which is defined by Dk 1 (P||Q) = Y, P(z)log (Sg;) .

If P is the true distribution, then KL-divergence is a measure of the inefficiency of approximating P with the

distribution @ [3]. In theory, this makes Dgr,(y; ;|| fi,j) & logical choice to compare the true and fitted distribu-
tions, although an issue arises when f; ; = 0 and y; j . # 0 anywhere, as this makes KL-divergence undefined.®

We should allow for the inferred probability to be 0 but not the true probability, or vice versa. This motivates

3To satisfy the positivity requirement for the parameters of a Dirichlet distribution, we apply the function softplus(z) = log(1+€%)

to outputs of the model before computing loss.
4When we use our deep-learning model for inference, we must convert our distribution Pr(y|@) to a point estimate for y,
typically by selecting the distribution mode [11]. If v;; = (¥i,5,1,¥i,5,2 - ¥i,j,¢;) ~ Dir(Bi,;), the mode of Pr(y;,;|B;,;) is at
Bi, 1
yijk:% Vk::l?,,fj

Z,Q 1 Big k=25
5There is no issue when P(z) = 0 = Q(x), as the contribution of this term is set to 0 since lim,_,+ zlog(z) = 0

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

the use of Jensen-Shannon Divergence (JSD), which is a version of KL-Divergence which is symmetric, bounded

and defined everywhere [2]. JSD is given by
1 1 1 1
Dys(fisllyiz) = 5Dxr \ fis I 5 (fig +9is) | + 5Dre (i |l 5 (Fig +vis) |-

Therefore, JSD is the sum of KL-divergences to the average of f; ; and y; ;. JSD is the square of a metric [9],

meaning /D ;g is symmetric, positive, 0 only if two inputs are equal, and obeys the triangle inequality.

4.1.4 Discussion of Loss Functions

For any loss function which involves comparison between corresponding elements or distributions, the ordering
of states must be considered. Each state is arbitrarily assigned an integer label, but the order of these labels has
no bearing on the functionality of the HMM. For example, the two following sets of parameters are equivalent

(from swapping the order of the first and second states).

T = {0.1 0.9}, T = [0.9 0.1]7
0.25 0.75 0.6 04
A = 5 A =
04 0.6 0.75 0.25
02 03 05 0.1 03 0.6
B == 5 B =
0.1 03 0.6 0.2 03 05

The approach suggested by [7] is to normalise an HMM by assigning State ¢ the score Zkle bi(k) - k,
then labelling states according to the ascending order of these scores. However, this is not a perfect solution.
Consider the following example, where A*, B* are the true transition and emission probabilities of an HMM

and Ay, By, As, By are candidates to approximate these parameters:

0.7 0.3 0.99 0.01 0.99 0.01
Al =) AT =) A2 =)

0.3 0.7 0.01 0.99 0.01 0.99

0.51 0.49 0.49 0.51 0.47 0.53
B = : B = : By =

0.48 0.52 0.48 052 048 0.52

The candidates Ay, Bo are clearly better than A;, By, as Ay = A* exactly and By ~ B* ~ Bj, although A,
and A* are significantly different. However, after permuting the states based on the rule described above, A,

and B must have the state order reversed, resulting in the permuted matrices

. 0.01 0.99 - 0.52 0.48
A2 =) B2 =
0.99 0.01 0.53 0.47

The other parameters will not be permuted, so A* = A*, B* = B*, A, = Ay, and By = B;. Clearly, the second
set of parameters is now much closer to the true parameters, despite being significantly worse before applying
the permutation.

The above example illustrates how the scaling in [7] can sometimes place too much emphasis on emission

probabilities. A more thorough alternative would be to compute the loss for every single state permutation

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

and choose the permutation with the lowest loss. However, this is computationally prohibitive since it requires
loss to be computed N! times per data point. The example above also shows that small changes to the
emission probabilities can produce significant changes in the parameters produced, hence permutations will
produce discontinuities in the loss landscape. For these reasons, any loss function which compares corresponding
parameters or distributions (Dirichlet likelihood, JSD, MSE, etc.), will not be suitable. Although, some empirical
evidence of the impact of this permutation issue in-practice can be seen in Figure 2. Where the number of states
is N = 2, the HMM normalisation does not perform much worse than trialling all state permutations, suggesting

element-wise and distribution-wise losses may still be viable in this case.

200

Count

100

200

Count

100

Count

Figure 2: MSE between the true parameters and those fitted with Baum-Welch, N = 2, M = 3. TOP: no
permutation applied. MIDDLE: all permutations applied, and lowest MSE taken. BOTTOM: HMM Normalised

as per [7]. Normalisation performs well compared to all permutations.

Another consideration is the number of computations required to evaluate the loss. As explained in Section
3.2, we wish to use a computationally simple loss function to minimise susceptibility to exploding and vanishing
gradients. Therefore, we consider how the number of operations in our loss function scales with the number

of states (IV) and the total number of observations (3.2

;21 Tj, where Tj is the length of the jth observation

sequence for a particular set of HMM parameters and n, is the number of sequences). It can be shown that the
number of operations to compute JSD and Dirichlet loss is O(NN?). Contrastingly, for negative log-likelihood,
the forward algorithm necessitates O(N?) operations at each time step in each sequence, hence the number of
operations is O(N? Z T;). This is a significant limitation of negative log-likelihood; when the computations
scale (even linearly) with the total number of observations, loss calculations quickly become infeasible for RNNs.
When this was implemented in PyTorch, training failed due to vanishing or exploding gradients in every trial,
even when a single sequence of 10-20 observations was used.

The loss functions derived in this section clearly have their shortfalls. Nonetheless, we implement deep-

learning models in the following sections, using JSD as the loss function for training. This will provide a rough

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

indication of the suitability of deep learning in HMM parameter inference, and whether it is worthwhile to

pursue another loss function which is computationally viable and invariant under state permutations.

4.2 RNN and Hybrid Architectures

As mentioned in Section 3.2, RNNs allow inputs of variable lengths. Therefore, an RNN can be applied directly
to learn the parameters of an HMM when there is a single observation sequence. It is not as straightforward
when there is an unknown number of sequences, as the number of inputs at each time step determines the shape
of one of the weight matrices in the RNN. While it would be possible to train a single RNN which allows (up
to) an extremely large number of sequences, this would be highly computationally inefficient and would place
an upper limit on the number of permitted sequences.

A more elegant solution is to pass each sequence through the same RNN separately, then aggregate the hidden
states from each sequence. A single neural network and piecewise-softmax are then applied to the hidden state
in the same way as a “regular” RNN. Ideally, the learned weights cause the hidden state to generally increase
in magnitude over time. Therefore, longer sequences, which will generally contain more information about the
underlying HMM parameters, can contribute more greatly to the post-softmax output of the RNN. A diagram

of this architecture can be seen in Figure 3 (b).

Hidden Hiclden o
- e o

—

Outputs
Hidden Hidden Hidden
State 1 State 2 e State T
Hidden Hidden Hidden

State 1 State 2 State T
Observation 1 Observation 2 Observation T
Hidden Hidden Hudden
State 1 State 2 o "| smer

(a)
Observation 1 Observation 2 @
(b)

Figure 3: (a) A “regular” RNN. (b) To allow for an unknown number of sequences, we pass each observation

sequence through the same “regular” RNN, separately.

An alternative hybrid architecture is to use the result of the RNN above as initialisation for the Baum-Welch
algorithm. We will call this the Baum-Welch initialisation model. Conceptually, the RNN should produce a
set of parameters which is close enough to the true values so that the Baum-Welch algorithm converges to the

global maximum likelihood estimator, rather than a local equivalent. A potential benefit of this model is that

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

we do not require as many iterations in the Baum-Welch algorithm, as the parameters should begin close to the
true values. Having fewer Baum-Welch iterations will minimise the additional computational costs relative to
the standalone RNN model.

Originally, loss from the RNN model was calculated after applying the Baum-Welch algorithm, as this
allowed the behaviour of Baum-Welch to be “learned” by the model. For example, the RNN may learn to
produce parameters in a particular region of the loss landscape in which the Baum-Welch algorithm converges
to the global optimum, rather than simply the region with the smallest loss before applying the Baum-Welch
algorithm. However, just as with sequence likelihoods (Section 4.1.2), the linear scaling with total observation
lengths caused the model to consistently fail due to vanishing and exploding gradients. Instead, the loss of the
RNN was kept separate from the Baum-Welch algorithm, meaning that the pre-trained RNN model could be
used directly.

4.3 Discussion of Experimental Results

To allow comparison between the Baum-Welch algorithm, RNN and hybrid models, we use ensemble learning
as a deep-learning equivalent to multiple parameter initialisations in the Baum-Welch algorithm. To compare
to m initialisations, we generated outputs from the top-n performing models from the Optuna hyperparameter
search (60 trials), then averaged the results across all models. This is motivated by the rough computational
equivalence between the evaluation of multiple trained models and initialisations in the Baum-Welch algorithm,
as both lead to an n-times increase in computational requirements. By using ensemble learning with different
hyperparameters, we hope to increase generalisability of the RNN; this technique is commonly applied in the
subfield of automated-Machine learning [14].

We use JSD as a loss function for training, and both JSD and negative log-likelihood for evaluation (all plots
are shown in Appendix A). As evident in Figures 9 and 10, the Baum-Welch initialisation model performs the
best from the perspective of negative log-likelihood when there are multiple observation sequences, while still
having comparable JSD losses in this case. However, the initialisation model sometimes produces extremely
large JSD loss when a single observation sequence is used, which can be seen in Figure 4. This may be caused
by large change in parameters during the first few iterations of the Baum-Welch algorithm, which improve
log-likelihood but significantly increase JSD. Since the Baum-Welch algorithm does not have any outliers, these
large changes seem to be corrected in later iterations when the algorithm is permitted to continue. We will
leave further investigation of this behaviour as an avenue for future research, so we will instead compare the
RNN and Baum-Welch models.

From Figures 11, 12, 13 and 14, the RNN generally performed slightly better for JSD loss, while the Baum-
Welch algorithm resulted in higher log-likelihood (which is to be expected, since Baum-Welch converges to a local
minima for sequence likelihood [12]). However, both approaches had highly similar results. Interestingly, the
Figures in Appendix A show that changes to the number of initialisations and lengths of observation sequences

has virtually no impact on the resultant losses.

10

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

sum of |SDs

T T T
RNN Baum-Welch Baum-Welch Init.

Figure 4: The performance of RNNs trained with JSD (light green), RNN Baum-Welch Initialisation (red) and
Baum-Welch (dark green). 5-10 sequences of length 10-20, and 10 initialisations. Evaluated with JSD.

1.3
1.2 A
1.2
1.1
1.0

0.9 1

Sum of |SDs

0.8

Negative Log-Likelihood

0.7 A

0.6 1
T T
Baum-Welch RNN Baum-Welch

Figure 5: The performance of RNNs trained with JSD (light green), and Baum-Welch (dark green). 5-10
sequences of length 10-20 and 10 initialisations. Evaluated with (a): JSD and (b): negative log-likelihood.

Considering the issues with JSD as a loss function (see Section 4.1.3) and that a simple RNN is being used,
these results are promising. Perhaps this provides motivation for further research to develop a permutation-
invariant and computationally viable loss function, and to apply more advanced deep-learning techniques such

as Long Short Term Memory (LSTM).

5 Parameter Inference with an Unknown Number of States

The scenario where the number of states is unknown beforehand is significantly more difficult. Here, we
introduce existing approaches, Baum-Welch with information criteria and the Hierarchical Dirichlet Process
Hidden Markov Model (HDP-HMM), and provide an outline of potential loss functions and deep-learning

models.

11

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

5.1 Loss Functions with an Unknown Number of States

All loss functions in Section 4.1 are invalid if the number of states is unknown, as the size of the HMM parameters
is variable and the likelihood of the given observation sequences will be heavily influenced by the number of
states.6
Rather than defining an HMM by the parameters, we can define an HMM by the probability distribution of
all possible sequences generated. To evaluate similarity we can generate a large number of sequences o(!) from
model X1, calculate the log-likelihood of all of these, then compare these to the log-likelihood under another
model \(?) [12].
DAY A@)) = %(log Pr(oW|AM) —log Pr(oV|A?)) (7)

The two models will be close if the log-likelihoods of sequences are similar, in which case D(A(M), X)) is close

to 0. Alternatively, we could also use the symmetrical adaptation of D [12], which is given by

DM A2 1+ pa@ AD
p, = DO®:A9) + DO D) ®)

However, these are both unviable for a deep-learning loss function, as the number of computations is O(N* 72, Tj),
which will likely result in vanishing and exploding gradients (see Section 4.1.4). The same can be said for infor-
mation criteria such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), which

require calculation of the log-likelihood of the observation sequences.

5.2 Baum-Welch and Information Criterion

A common approach when the number of states is unknown is to apply the Baum-welch algorithm for different
numbers of hidden states, then select the best fitted model using an information criterion such as AIC, BIC or
Hannan-Quinn Information Criterion (HQC) [6]. In doing so, we are balancing log-likelihood with the number
of parameters in the model. Since we must apply the Baum-Welch algorithm many times, this method is

computationally expensive.

5.3 HDP-HMM

A more efficient solution to the unknown number of states is a Bayesian approach which allows for an infinite
number of states. One such method is called the Hierarchical Dirichlet Process Hidden Markov Model (HDP-
HMM) [13]. We will begin by explaining Dirichlet Processes (Section 5.3.1), then how Hierarchical Dirichlet
Processes (HDPs) can be applied to emulate a Hidden Markov Model (Section 5.3.2).

5.3.1 Dirichlet Process

A Dirichlet process G is characterised by a base distribution H and a stickiness parameter «, which we notate as

G ~ DP(H,«). Dirichlet processes produce discrete distributions, and the stick-breaking analogy is commonly

6For example, we can get a likelihood of 1 if there is a new hidden state for each time step.

12

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

used to explain the nature of these distributions [13]. Here, we sample stick-breaking weights u; ~ Beta(l, a)
for £ € N. We similarly sample infinitely many times from the base distribution, with 6, ~ H, k € N.
Now, imagine that we start with a stick of length 1. For each value of k = 1,2, ..., starting with k£ = 1, we
break of a proportion of the stick given by u; and remove it, and the remaining portion of the stick is used for
subsequent breaks. The resultant lengths, the stick-breaking weights, are given by wy = uy, Hf;ll (1—wu;), where
Y peqwi =1 and wy, > 0 for all k& € N. Therefore, assignment of probability wy, to the sample 65, produces
a probability density function Y, , widp,. This is a distribution with “atoms” at each 6y, and the weights
of each atom (the stick-breaking weights) are influenced by the parameter «; a larger value causes more even
distribution of weights, while a smaller value causes fewer weights to dominate others. Some samples from a

Dirichlet process can be seen in Figure 6.

Dirichlet Process Sample, a =10 Dirichlet Process Sample, a =50
0.12 - 3 > 1
0.10 - p 1
0.08 - e 1
%) p 5]
= £
§ 0.06 - §: 1
0.04 { 1
0.02 1
0.00 4 &= g
-20 -10 0 10 20 -20 -10 0 10 20
Atom Atom

Figure 6: Samples from a dirichlet process with base distribution N(0,7?) and a = 10 (left) / a = 50 (right).

A larger value of « leads to higher consistency in atom weights.

The Chinese Restaurant Process is another analogy for Dirichlet processes, this time describing the distri-
bution of one realisation conditioned on all previous realisations (i.e. Pr(d¢|di—1,...,d1), where d; ~ DP(H, «)).
In this analogy, a person walking into a Chinese restaurant represents a new observation, and the table that
they sit at represents the discrete output produced from the process. The customer sits at an existing table with
probability proportional to the number of people already at the table, and creates a new table with probability

proportional to the stickiness parameter. This illustrates the clustering property of Dirichlet Processes [13].

5.3.2 HDPs in HMMs

In a Hidden Markov Model, say we know the state at time ¢t. Then, we select the next state from the transition
matrix, which in turn determines the distribution of the next observation. Therefore, our overall emission dis-
tribution can be considered as a mixture of distributions from each state, weighted by the transition probability
to that state.

In the HDP-HMM, instead of having a set number of states that we can transition to, the state at the next

13

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

time step will be distributed according to a Dirichlet Process. Therefore, as described in the Chinese restaurant
analogy (see Section 5.3.1), we allow new states to be realised at any time step. Further, the clustering nature
of a Dirichlet Process ensures that we are more likely to travel to states which have previously been reached
many times from the current state [13], which allows the model to emulate large transition probabilities.

For every current state, we need the possible set of new states to be the same. Therefore, we need each
Dirichlet process to share the same atoms across all possibilities for the current state. This is why we draw
the base distribution for each “current state” from a Dirichlet distribution as well: it allows us to share new
states (although the likelihood of new states is specific to each starting state). This is a hierarchical Dirichlet
process, which allows us to generate sequences analogously to an HMM, without specifying the number of states.

Therefore, we have arrived at the HDP-HMM, as introduced in [13].

5.4 Discussion of Potential Deep-Learning Approaches

The unknown number of states results in a variable number of outputs required for any deep-learning approach,
which prevents the application of the RNN models from Section 4.2. While RNNs are typically able to produce
outputs of variable length by aggregating the hidden state at multiple time steps (i.e. a sequence-to-sequence
RNN), this enforces order among parameters, as each output is a function of the hidden state, which in turn
is a function of the previous hidden state. Therefore, this is not suitable for HMM parameter inference, where
there should be no dependency between distributions, for example.

One possible architecture could use pre-trained RNNs as described in Section 4.2. We can first train a new
RNN to output a natural number for the number of hidden states, which determines which pre-trained model
will be used to derive the parameters from the observation sequences. However, this will be computationally
expensive to pre-train RNNs for every possible number of states. The seemingly most promising class of deep-

learning models would be attention-based models. This is left as an area for future research.

6 Conclusion

As an alternative to the Baum-Welch algorithm in HMM parameter inference, we investigated the potential
for RNN and RNN/Baum-Welch hybrid models. Although we identified problems in all derived loss functions
(namely, from state permutations and computational costs), the implementation of the RNN model with JSD
as the loss function produced comparable results to the Baum-Welch algorithm. We also surveyed existing
approaches when the number of states is unknown: the Baum-Welch algorithm with an information criterion
and the HDP-HMM. We again highlighted the computational issue with likelihood-related loss functions for
deep-learning approaches, although we outline some potential deep-learning architectures and recommend the

use of a transformer-based approach.

14

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

References

[1] Bengio, Y., Boulanger-Lewandowski, N. and Pascanu, R. [2012], ‘Advances in optimizing recurrent net-
works’.

URL: https://arziv.org/abs/1212.0901

[2] Briét, J. and Harremoés, P. [2009], ‘Properties of classical and quantum Jensen-Shannon divergence’, Phys.
Rev. A 79, 052311.
URL: https://link.aps.org/doi/10.1103/PhysRevA.79.052311

[3] Cover, T. M. and Thomas, J. A. [1991], Elements of Information Theory, John Wiley & Sons, New York,
NY.

[4] Frigyik, A. B., Kapila, A. and Gupta, M. R. [2010], Introduction to the Dirichlet distribution and related
processes.

URL: https://api.semanticscholar.org/CorpusID:8763665

[5] Hsu, D., Kakade, S. M. and Zhang, T. [2012], ‘A spectral algorithm for learning hidden Markov models’.
URL: https://arziv.org/abs/0811.4413

[6] Jung, S. and Dickson, R. M. [2009], ‘Hidden Markov analysis of short single molecule intensity trajectories’,
J. Phys. Chem. B 113(42), 13886-13890.

[7] Liu, T. and Lemeire, J. [2017], ‘Efficient and effective learning of HMMs based on identification of hidden
states’, Mathematical Problems in Engineering 2017(1), 7318940.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1155/2017/7318940

[8] Mor, B., Garhwal, S. and Kumar, A. [2021], ‘A systematic review of hidden Markov models and their
applications’, Archives of Computational Methods in Engineering 28(3), 1429-1448.
URL: https://doi.org/10.1007/s11831-020-09422-

[9] Nielsen, F. [2020], ‘On a generalization of the Jensen—-Shannon divergence and the Jensen—Shannon cen-
troid’, Entropy 22(2), 221.
URL: http://dv.doi.org/10.3390,/22020221

[10] Pascanu, R., Mikolov, T. and Bengio, Y. [2013], ‘On the difficulty of training recurrent neural networks’.
URL: hitps://arziv.org/abs/1211.5063

[11] Prince, S. J. [2023], Understanding Deep Learning, The MIT Press.
URL: http://udlbook.com

[12] Rabiner, L. [1989], ‘A tutorial on hidden Markov models and selected applications in speech recognition’,
Proceedings of the IEEE 77(2), 257-286.

15

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

[13] Teh, Y., Jordan, M., Beal, M. and Blei, D. [2006], ‘Hierarchical Dirichlet processes’, Machine Learning
pp- 1-30.

[14] Wenzel, F., Snoek, J., Tran, D. and Jenatton, R. [2021], ‘Hyperparameter ensembles for robustness and
uncertainty quantification’.

URL: https://arziv.org/abs/2006.13570

[15] Yu, D. and Deng, L. [2014], Automatic Speech Recognition: A Deep Learning Approach, Springer Publishing

Company, Incorporated.

16

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

Appendix A All Experimental Results

In Figures 7, 8, 9 and 10, the results for different values of the following variables can be seen:
e models (RNN, Baum-Welch and Baum-Welch Initialisation)
e loss functions (negative log-likelihood, sum of JSDs)
e number of initialisations (1, 5, 10)

e sequence length ranges (10-20, 100-200).

17

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

sum of |SDs

Sum of |SDs

sum of |SDs

21 I' .
[] , .
RMNN Baum-Welch Baum-Welch Init. RNN Baum-Welch Baum-Welch Init.
Figure 7: The performance of RNNs trained with JSD (light green), RNN Baum-Welch Initialisation (red)
and Baum-Welch (dark green), for 1 sequence. Smaller loss (concentration near the bottom of each plot) is
preferred. Evaluated with JSD. Observation sequence length is 10-20 for the left column and 100-200 for the

right. Number of initialisations/size of hyperparameter ensemble is 1 for the top row, 5 for the middle and 10

for the bottom.

18

Oz, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

MNegative Log-Likelihood

Negative Log-Likelihood

A

= » -
g . .
£ o\
o 0. 1
- .
- .
= 4
3 ™
1]
= 0.4+ - -
=
[1+]
g
z 0.2 B
0.0 + R

T T T T T T
RMN Baum-Welch Baum-Welch Init. RMN Baum-Welch Baum-Welch Init.

Figure 8: The performance of RNNs trained with JSD (light green), RNN Baum-Welch Initialisation (red)
and Baum-Welch (dark green), for 1 sequence. Smaller loss (concentration near the bottom of each plot)
is preferred. Evaluated with Negative log-likelihood. Observation sequence length is 10-20 for the left
column and 100-200 for the right. Number of initialisations/size of hyperparameter ensemble is 1 for the top

row, 5 for the middle and 10 for the bottom.

19

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

8 .
LN
[T
=} ® .
E
=
u
T T
W
]
ﬂ
[T
(=}
£
=
w
W
[m]
un
=
L
(=}
£
=
un

T T T T T T
RMN Baum-Welch Baum-Welch Init. RMN Baum-Welch Baum-Welch Init.

Figure 9: The performance of RNNs trained with JSD (light green), RNN Baum-Welch Initialisation (red) and
Baum-Welch (dark green), for 5-10 sequences. Smaller loss (concentration near the bottom of each plot) is
preferred. Evaluated with JSD. Observation sequence length is 10-20 for the left column and 100-200 for the

right. Number of initialisations/size of hyperparameter ensemble is 1 for the top row, 5 for the middle and 10

for the bottom.

20

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

Negative Log-Likelihood

Negative Log-Likelihood

try

T T T T T T
RMN Baum-Welch Baum-Welch Init. RMNN Baum-Welch Baum-Welch Init.

Negative Log-Likelihood

Figure 10: The performance of RNNs trained with JSD (light green), RNN Baum-Welch Initialisation (red)
and Baum-Welch (dark green), for 5-10 sequences. Smaller loss (concentration near the bottom of each plot)
is preferred. Evaluated with Negative log-likelihood. Observation sequence length is 10-20 for the left
column and 100-200 for the right. Number of initialisations/size of hyperparameter ensemble is 1 for the top

row, 5 for the middle and 10 for the bottom.

21

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

We will now remove the RNN-Baum-Welch hybrid model from Figures 7, 8, 9 and 10 to allow more suitable
axes and easier comparison between the RNN and Baum-Welch. The resultant plots are in Figures 11, 12, 13

and 14.

22

O &=, YAMSI

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

Sum of |SDs

Sum of JSDs

Sum of]SDs

T T T
RMNN Baum-Welch RMN Baum-Welch

Figure 11: The performance of RNNs trained with JSD (light green), and Baum-Welch (dark green), for
1 sequence. Smaller loss (concentration near the bottom of each plot) is preferred. Evaluated with JSD.
Observation sequence length is 10-20 for the left column and 100-200 for the right. Number of initialisations/size

of hyperparameter ensemble is 1 for the top row, 5 for the middle and 10 for the bottom.

23

O, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

Negative Log-Likelihood

Negative Log-Likelihood

Negative Log-Likelihood

T T T T
RMNN Baum-Welch RMNN Baum-Welch

Figure 12: The performance of RNNs trained with JSD (light green), and Baum-Welch (dark green), for 1
sequence. Smaller loss (concentration near the bottom of each plot) is preferred. Evaluated with Negative
log-likelihood. Observation sequence length is 10-20 for the left column and 100-200 for the right. Number of

initialisations/size of hyperparameter ensemble is 1 for the top row, 5 for the middle and 10 for the bottom.

24

Oz, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

sum of |SDs

sum of |SDs

sum of |SDs

T T T T
RMN Baum-Welch RMNN Baum-Welch

Figure 13: The performance of RNNs trained with JSD (light green), and Baum-Welch (dark green), for 5-10
sequences. Smaller loss (concentration near the bottom of each plot) is preferred. Evaluated with JSD.
Observation sequence length is 10-20 for the left column and 100-200 for the right. Number of initialisations/size

of hyperparameter ensemble is 1 for the top row, 5 for the middle and 10 for the bottom.

25

Oz, YAMS|

2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

Negative Log-Likelihood

Negative Log-Likelihood

Negative Log-Likelihood

T T T T
RMNN Baum-Welch RMNN Baum-Welch

Figure 14: The performance of RNNs trained with JSD (light green), and Baum-Welch (dark green), for 5-10
sequences. Smaller loss (concentration near the bottom of each plot) is preferred. Evaluated with Negative
log-likelihood. Observation sequence length is 10-20 for the left column and 100-200 for the right. Number of

initialisations/size of hyperparameter ensemble is 1 for the top row, 5 for the middle and 10 for the bottom.

26

O, YAMS|

