
Deep Learning in Hidden Markov

Models

Kyan Percevault
Supervised by Lewis Mitchell, Matthew Roughan and Angus Lewis

University of Adelaide

28/02/2025

Abstract

Hidden Markov Models (HMMs) are widely used to model discrete-time processes. However, given a

sequence of observations, inference of suitable parameters for an HMM is difficult. We investigate the

potential for Recurrent Neural Networks (RNNs) in parameter inference, and compare the results to the

Baum-Welch algorithm. Although all loss functions that we derive are limited by computational costs or

state permutations, experimental results indicate that the performance of RNNs is comparable to the Baum-

Welch algorithm, at least in the case of 2 hidden states. We hope that these promising results will motivate

further research into permutation-invariant loss functions and more complicated deep-learning applications

in HMM parameter inference. We also review existing approaches when the number of hidden states is

unknown, and we highlight the difficulties of deep-learning approaches in this case.

1 Introduction

Hidden Markov Models (HMMs) have been applied in fields such as speech recognition, network analysis and

bioinformatics [8]. The typical approach to HMM parameter inference is the Baum-Welch algorithm, although

this algorithm is susceptible to getting stuck in local minima [12]. As an alternative, in this project we investigate

the potential of deep-learning models for parameter inference, namely Recurrent Neural Networks (RNNs) and

hybrid RNN/Baum-Welch architectures.

We first derive loss functions for model training based on Dirichlet distributions (parametrised by model

outputs), Jensen-Shannon Divergence between corresponding distributions and sequence likelihoods under the

inferred parameters. We identify that the number of operations and permutations of state labels are significant

limitations for these loss functions. Nonetheless, we implement an RNN architecture which can handle an

unknown number of sequences of varying lengths, which can be used for parameter inference directly or as

initialisation for the Baum-Welch algorithm. Empirical comparison shows that these deep-learning models

produce results which are comparable to the Baum-Welch algorithm.

Finally, we reviewed some existing approaches when the number of hidden states is unknown, namely the

use of information criteria alongside Baum-Welch and the Hierarchical Dirichlet Process HMM. We also provide

a high-level description of potential deep-learning techniques when the number of states is unknown, although

we highlight the high computational costs of these approaches.

Statement of Authorship

Kyan Percevault produced all results and interpretations used in this report, as well as all associated code.

Professor Lewis Mitchell, Professor Matthew Roughan and Angus Lewis provided general direction, motivation

and some of the references used throughout this report. Professor Lewis Mitchell and Angus Lewis also proofread

this report.

1

2 Background

A Hidden Markov Model (HMM) is a generative model where a latent state is governed by a Markov chain,

and the distribution of observations is determined by the latent state at that time step. For a single set of

HMM parameters, We will denote the set of associated observation sequences with o and the sequences of

corresponding hidden states with h; then, the hidden state and observation at time t can be denoted ht and ot,

respectively. As described in [12], an HMM is characterised by the quintuplet (N,M,A,B, π), where:

• N is an integer for the number of hidden states, with S = {s1, s2, ..., sN} the set of distinct state labels.

• M is the number of distinct observations, with V = {v1, v2, ..., vM} the set of distinct observations.

• A = {aij} is the transition probabilities of the hidden Markov chain, aij = Pr(ht+1 = sj |ht = si) ∀1 ≤

i, j ≤ N .

• B = {bj(k)} is the emission distributions, bj(k) = Pr(ot = vk|ht = sj) ∀1 ≤ j ≤ N, 1 ≤ k ≤ M .

• π = {πi} is the initial distribution of states, πi = Pr(q1 = vi) ∀1 ≤ i ≤ N .

Once the parameters are known, HMMs can be used to calculate the most likely sequence of latent states

from an observation sequence (via the Viterbi algorithm), evaluate the likelihood of a given observation sequence

(via the Forward Algorithm), or generate sequences of observations and corresponding latent states [12]. How-

ever, parameter inference (that is, inferring the most likely parameters of an HMM given a set of observation

sequences) remains a significant challenge. Typical approaches such as Baum-Welch can converge to incorrect

local minima for log-likelihood, and hence an accurate initialisation of parameters is necessary [5].

2.1 Baum-Welch Algorithm

The Baum-Welch algorithm is a special case of the Expectation-Maximisation (E-M) algorithm. This is a useful

approach when part of the data is hidden, but we wish to maximise the log-likelihood of both the hidden data,

h, and the observed data, o [15]. The algorithm is a 2-step process, where we first create an auxiliary function

of the model parameters λ by taking the expectation over the hidden data, conditioned on the observed data

and the previous model parameters, λ0:

Q(λ|λ0) =

∫
Pr(h|o;λ0) log Pr(o,h;λ)dh

Then, in the second step, we maximise the auxiliary function, thereby obtaining the best new value of the

parameters from their previous values [15]. Log-likelihood of data (hidden and observed) is guaranteed to be

non-decreasing in the Expectation-Maximisation algorithm: Pr(o|λk+1) ≥ Pr(o|λk) In fact, we are guaranteed

to converge to a critical point for the sequence likelihood [12], although this point may not be the global

optima. A common approach to increase the chance of convergence to the globally-optimal parameters is to

apply the Baum-Welch algorithm several times with different initial parameters, although this is computationally

inefficient.

2

3 Deep Learning

In this section, we provide an overview of deep learning and describe the main deep-learning technique used in

this report: RNNs.

3.1 Supervised Learning Overview

In supervised learning, our goal is to learn some mapping between inputs and target features. This involves a

training dataset, containing inputs and their corresponding labels for the target features, and a loss function

(for example, Mean Square Error) which quantifies the difference between the output of our machine-learning

model and the true label. Then, we “fit” our model by finding the model parameters which minimise the loss

over our training set. We typically do this by iteratively updating parameters using gradient-based optimisers

such as Stochastic Gradient Descent (SGD) or Adam [11].

3.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a deep-learning model which account for order in a set of inputs,

thereby making it an appropriate choice to fit HMM parameters from observation sequences. Further, RNNs

allow inputs of varying length, which is necessary when the length of the observation sequences are unknown.

In RNNs, the hidden state is a vector of real numbers which is transferred between time steps. At each time

step, neurons (also called perceptrons, nodes or activation units) are used to update the hidden state based

on the current observations and the previous hidden state. Inside each neuron, a linear combination is taken

of all inputs, a constant bias is added, then a non-linear function is applied (typically ReLU, hyperbolic tan,

or the sigmoid function [11]). Since each neuron produces a scalar, we can stack multiple neurons (each with

independent weights and biases) to produce a vector.1 In the case of RNNs, the neurons at each time step

produce a non-linear map to update the hidden state with information from the observation at that time step

[11].

We utilise a many-to-one RNN, as observation sequences span multiple time steps, but we require only a

single vector of parameters as output; therefore, only the hidden state at the final time step is necessary to

compute outputs. To ensure that the output has the correct length, we apply a final fully-connected layer. Once

again, this involves taking a linear combination of the hidden state and adding a bias, and we repeat this for

the required number of HMM parameters. Finally, we apply the softmax function,

σ(z)i =
ezi∑
j e

zj
,

to different sections of the output vector. This ensures that each distribution in the output satisfies the prob-

ability constraints: elements must be non-negative and sum to 1. Specifically, we apply softmax to the first

1It is convention to stack the weights corresponding to each input type into matrices. Specifically, Whh and Wxh represent the

weights across all neurons which are assigned to the previous hidden state and the current observation (respectively) to update the

hidden state.

3

Figure 1: A diagram of a deep-learning neuron. In RNNs, some of the inputs will be from the previous hidden

state, and some will be from the observations at that time step.

N components (initial probabilities), then the next N groups of N components (transition probabilities), and

finally to the next N groups of M components (emission probabilities).

Vanishing and exploding gradients are common issues in RNN implementation. Vanishing gradients prevent

the RNN from retaining information over a large number of time steps [10], while exploding gradients cause

difficulty training since gradient descent updates may produce worse parameters [1]. Consider the case when the

derivative of the activation function, f ′, is bounded such that ||diag(f ′(zk))|| ≤ γ for every element of the hidden

state, zk. Then, λ
∗ < 1

γ is a sufficient condition for vanishing gradients (and therefore a necessary condition for

exploding gradients is λ∗ > 1
γ), where λ∗ is the absolute value of the largest eigenvalue in the hidden-to-hidden

weight matrix Whh [10]. However, it is also necessary to avoid complicated loss functions which apply many

operations to the inputs or outputs, as this will also increase susceptibility to numerical instability of gradients

Additionally, how do we determine suitable values for hyperparameters such as batch size, learning rate,

optimiser, and hidden size? And in the case of training RNNs for HMM parameter inference, the datasets

are completely synthetic, so we have configurative parameters in the sizes of the training, validation and test

datasets. In this report, we will keep the batch size at 16, while training/validation/testing dataset sizes were

kept at 300/50/100 (as these kept runtime below 12 hours). However, the learning rate, optimiser and hidden

size were optimised with Optuna, a Python package which utilises search algorithms and pruning to efficiently

trial different hyperparameter values.2

2https://optuna.org/

4

4 Parameter Inference with a Known Number of States

We mainly focus on the scenario where the number of states in the HMM is known. Derivation of loss functions,

development of RNN architectures and empirical comparison to Baum-Welch will occur in the following sections.

4.1 Loss Functions with a Known Number of States

In this section, 3 loss functions specific to parameter inference for HMMs are derived, and the practical issues

associated with each are discussed.

4.1.1 Dirichlet Distribution Parametrisation

Let an arbitrary set of inputs and targets be denoted o and y, respectively. In our case, o is a set of observation

sequences and y is the concatenation of the flattened initial probabilities π, transition probabilities A and

emission probabilities B. According to [11], a loss function is typically derived by first selecting a parametric

distribution for the outputs, Pr(y|θ). Then, instead of producing the “best guess” for the outputs directly,

deep-learning models should be configured to produce a set of output-parameters θ∗, and we select the model-

parameters which maximise the probability of the true labels under the distributions produced, Pr(y|θ∗).

Letting our model be denoted f(x|ϕ), the optimal model-parameters ϕ̂ will therefore maximise the likelihood

Pr(y|f(x|ϕ)). Assuming the sets of parameters y1,y2, ...,yD are independent and identically distributed, we

obtain the maximum likelihood criterion

ϕ̂ = argmax
ϕ

[
D∏
i=1

Pr(yi | f(xi | ϕ))

]
.

We can equivalently minimise the negative log of this criterion:

ϕ̂ = argmin
ϕ

[
−

D∑
i=1

log Pr(yi | f(xi | ϕ))

]
. (1)

Therefore, as explained by [11], we can construct a loss function L(ϕ) from Equation 1:

L(ϕ) = −
D∑
i=1

log Pr(yi | f(xi | ϕ)), (2)

where ϕ̂ = argminL(ϕ) (3)

Since the parameters of an HMM consist of multiple distributions, Dirichlet distributions may be appro-

priate for Pr(y|θ). A Dirichlet distribution with parameters β = (β1, β2, ..., βk) has support on all categorical

distributions of length k [4], making it a “distribution over distributions”. In our case, we can split the ith set

of true parameters into a vector of distributions, yi = (yi,1,yi,2, ...,yi,2N+1), where yi,j is the jth distribution

within the ith set of parameters (the initial, transition, and emission probabilities of the HMM contribute 1, N ,

and N distributions, respectively). Similarly, the parameters of the jth Dirichlet distribution within the ith set

of parameters can be denoted βi,j . Then, we can divide the outputs among distributions, which we will repre-

sent with f(oi|ϕ) = (fi,1, ...,fi,2N+1) = (βi,1, ...,βi,2N+1), where fi,j = fi,j(oi|ϕ) is the output corresponding

5

to the jth distribution of the ith set of sequences.3 4 Assuming that each output distribution is independent,

Equation 2 becomes

L(ϕ) = −
D∑
i=1

log Pr ((yi,1, ...,yi,2N+1) | (fi,1, ...,fi,2N+1)) (4)

= −
D∑
i=1

2N+1∑
j=1

log Pr (yi,j |fi,j) . (5)

We can apply the probability density function of a Dirichlet distribution to Equation 5. Let

ℓj =

N, if j ∈ {1, ..., N + 1}

M, if j ∈ {N + 2, ..., 2N + 1}

be the length of the jth distribution, and let fi,j,k and yi,j,k be the kth element in the jth distribution of the

ith data point of model outputs and true parameters, respectively. Then,

Pr(yi,j |βi,j) =
Γ(

∑ℓj
k=1 βi,j,k)∏ℓj

k=1 Γ(βi,j,k)

k∏
j=1

y
βi,j,k−1
i,j,k , (6)

hence our final loss function is

L(ϕ) = −
D∑
i=1

2N+1∑
j=1

log Γ
 ℓj∑

k=1

fi,j,k

−
ℓj∑

k=1

log Γ(fi,j,k) +

ℓj∑
k=1

(fi,j,k − 1) log yi,j,k

 .

4.1.2 Log-Likelihood

Another justifiable loss function is log-likelihood, as it is natural to attempt to find the HMM parameters which

maximise the likelihood of the given observation sequences. Further, this loss function allows easy comparison

with the Baum-Welch algorithm. The log-likelihood can be easily calculated from HMM parameters using the

forward algorithm (see [12]).

4.1.3 Jensen-Shannon Divergence (JSD)

Finally, loss could be computed by measuring the element-wise or distribution-wise divergence between the fitted

and true HMM parameters. One option is KL-divergence, which is defined byDKL(P ||Q) =
∑

x P (x) log
(

P (x)
Q(x)

)
.

If P is the true distribution, then KL-divergence is a measure of the inefficiency of approximating P with the

distribution Q [3]. In theory, this makes DKL(yi,j ||fi,j) a logical choice to compare the true and fitted distribu-

tions, although an issue arises when fi,j,k = 0 and yi,j,k ̸= 0 anywhere, as this makes KL-divergence undefined.5

We should allow for the inferred probability to be 0 but not the true probability, or vice versa. This motivates

3To satisfy the positivity requirement for the parameters of a Dirichlet distribution, we apply the function softplus(x) = log(1+ex)

to outputs of the model before computing loss.
4When we use our deep-learning model for inference, we must convert our distribution Pr(y|θ) to a point estimate for y,

typically by selecting the distribution mode [11]. If yi,j = (yi,j,1, yi,j,2, ..., yi,j,ℓj) ∼ Dir(βi,j), the mode of Pr(yi,j |βi,j) is at

yi,j,k =
βi,j,k−1∑ℓj

κ=1 βi,j,κ−ℓj

∀k = 1, 2, ..., ℓj .

5There is no issue when P (x) = 0 = Q(x), as the contribution of this term is set to 0 since limx→0+ x log(x) = 0

6

the use of Jensen-Shannon Divergence (JSD), which is a version of KL-Divergence which is symmetric, bounded

and defined everywhere [2]. JSD is given by

DJS(fi,j ||yi,j) =
1

2
DKL

(
fi,j ||

1

2
(fi,j + yi,j)

)
+

1

2
DKL

(
yi,j ||

1

2
(fi,j + yi,j)

)
.

Therefore, JSD is the sum of KL-divergences to the average of fi,j and yi,j . JSD is the square of a metric [9],

meaning
√
DJS is symmetric, positive, 0 only if two inputs are equal, and obeys the triangle inequality.

4.1.4 Discussion of Loss Functions

For any loss function which involves comparison between corresponding elements or distributions, the ordering

of states must be considered. Each state is arbitrarily assigned an integer label, but the order of these labels has

no bearing on the functionality of the HMM. For example, the two following sets of parameters are equivalent

(from swapping the order of the first and second states).

π =
[
0.1 0.9

]
,

A =

0.25 0.75

0.4 0.6

 ,

B =

0.2 0.3 0.5

0.1 0.3 0.6

 ,

π =
[
0.9 0.1

]
,

A =

 0.6 0.4

0.75 0.25

 ,

B =

0.1 0.3 0.6

0.2 0.3 0.5

 .

The approach suggested by [7] is to normalise an HMM by assigning State i the score
∑M

k=1 bi(k) · k,

then labelling states according to the ascending order of these scores. However, this is not a perfect solution.

Consider the following example, where A∗, B∗ are the true transition and emission probabilities of an HMM

and A1, B1, A2, B2 are candidates to approximate these parameters:

A1 =

0.7 0.3

0.3 0.7

 ,

B1 =

0.51 0.49

0.48 0.52

 ,

A∗ =

0.99 0.01

0.01 0.99

 ,

B∗ =

0.49 0.51

0.48 0.52

 ,

A2 =

0.99 0.01

0.01 0.99

 ,

B2 =

0.47 0.53

0.48 0.52

 .

The candidates A2, B2 are clearly better than A1, B1, as A2 = A∗ exactly and B2 ≈ B∗ ≈ B1, although A1

and A∗ are significantly different. However, after permuting the states based on the rule described above, A2

and B2 must have the state order reversed, resulting in the permuted matrices

Ã2 =

0.01 0.99

0.99 0.01

 , B̃2 =

0.52 0.48

0.53 0.47

 .

The other parameters will not be permuted, so Ã∗ = A∗, B̃∗ = B∗, Ã1 = A1, and B̃1 = B1. Clearly, the second

set of parameters is now much closer to the true parameters, despite being significantly worse before applying

the permutation.

The above example illustrates how the scaling in [7] can sometimes place too much emphasis on emission

probabilities. A more thorough alternative would be to compute the loss for every single state permutation

7

and choose the permutation with the lowest loss. However, this is computationally prohibitive since it requires

loss to be computed N ! times per data point. The example above also shows that small changes to the

emission probabilities can produce significant changes in the parameters produced, hence permutations will

produce discontinuities in the loss landscape. For these reasons, any loss function which compares corresponding

parameters or distributions (Dirichlet likelihood, JSD, MSE, etc.), will not be suitable. Although, some empirical

evidence of the impact of this permutation issue in-practice can be seen in Figure 2. Where the number of states

is N = 2, the HMM normalisation does not perform much worse than trialling all state permutations, suggesting

element-wise and distribution-wise losses may still be viable in this case.

Figure 2: MSE between the true parameters and those fitted with Baum-Welch, N = 2,M = 3. TOP: no

permutation applied. MIDDLE: all permutations applied, and lowest MSE taken. BOTTOM: HMM Normalised

as per [7]. Normalisation performs well compared to all permutations.

Another consideration is the number of computations required to evaluate the loss. As explained in Section

3.2, we wish to use a computationally simple loss function to minimise susceptibility to exploding and vanishing

gradients. Therefore, we consider how the number of operations in our loss function scales with the number

of states (N) and the total number of observations (
∑no

j=1 Tj , where Tj is the length of the jth observation

sequence for a particular set of HMM parameters and no is the number of sequences). It can be shown that the

number of operations to compute JSD and Dirichlet loss is O(N2). Contrastingly, for negative log-likelihood,

the forward algorithm necessitates O(N2) operations at each time step in each sequence, hence the number of

operations is O(N2
∑no

j=1 Tj). This is a significant limitation of negative log-likelihood; when the computations

scale (even linearly) with the total number of observations, loss calculations quickly become infeasible for RNNs.

When this was implemented in PyTorch, training failed due to vanishing or exploding gradients in every trial,

even when a single sequence of 10-20 observations was used.

The loss functions derived in this section clearly have their shortfalls. Nonetheless, we implement deep-

learning models in the following sections, using JSD as the loss function for training. This will provide a rough

8

indication of the suitability of deep learning in HMM parameter inference, and whether it is worthwhile to

pursue another loss function which is computationally viable and invariant under state permutations.

4.2 RNN and Hybrid Architectures

As mentioned in Section 3.2, RNNs allow inputs of variable lengths. Therefore, an RNN can be applied directly

to learn the parameters of an HMM when there is a single observation sequence. It is not as straightforward

when there is an unknown number of sequences, as the number of inputs at each time step determines the shape

of one of the weight matrices in the RNN. While it would be possible to train a single RNN which allows (up

to) an extremely large number of sequences, this would be highly computationally inefficient and would place

an upper limit on the number of permitted sequences.

A more elegant solution is to pass each sequence through the same RNN separately, then aggregate the hidden

states from each sequence. A single neural network and piecewise-softmax are then applied to the hidden state

in the same way as a “regular” RNN. Ideally, the learned weights cause the hidden state to generally increase

in magnitude over time. Therefore, longer sequences, which will generally contain more information about the

underlying HMM parameters, can contribute more greatly to the post-softmax output of the RNN. A diagram

of this architecture can be seen in Figure 3 (b).

(a)

(b)

Figure 3: (a) A “regular” RNN. (b) To allow for an unknown number of sequences, we pass each observation

sequence through the same “regular” RNN, separately.

An alternative hybrid architecture is to use the result of the RNN above as initialisation for the Baum-Welch

algorithm. We will call this the Baum-Welch initialisation model. Conceptually, the RNN should produce a

set of parameters which is close enough to the true values so that the Baum-Welch algorithm converges to the

global maximum likelihood estimator, rather than a local equivalent. A potential benefit of this model is that

9

we do not require as many iterations in the Baum-Welch algorithm, as the parameters should begin close to the

true values. Having fewer Baum-Welch iterations will minimise the additional computational costs relative to

the standalone RNN model.

Originally, loss from the RNN model was calculated after applying the Baum-Welch algorithm, as this

allowed the behaviour of Baum-Welch to be “learned” by the model. For example, the RNN may learn to

produce parameters in a particular region of the loss landscape in which the Baum-Welch algorithm converges

to the global optimum, rather than simply the region with the smallest loss before applying the Baum-Welch

algorithm. However, just as with sequence likelihoods (Section 4.1.2), the linear scaling with total observation

lengths caused the model to consistently fail due to vanishing and exploding gradients. Instead, the loss of the

RNN was kept separate from the Baum-Welch algorithm, meaning that the pre-trained RNN model could be

used directly.

4.3 Discussion of Experimental Results

To allow comparison between the Baum-Welch algorithm, RNN and hybrid models, we use ensemble learning

as a deep-learning equivalent to multiple parameter initialisations in the Baum-Welch algorithm. To compare

to n initialisations, we generated outputs from the top-n performing models from the Optuna hyperparameter

search (60 trials), then averaged the results across all models. This is motivated by the rough computational

equivalence between the evaluation of multiple trained models and initialisations in the Baum-Welch algorithm,

as both lead to an n-times increase in computational requirements. By using ensemble learning with different

hyperparameters, we hope to increase generalisability of the RNN; this technique is commonly applied in the

subfield of automated-Machine learning [14].

We use JSD as a loss function for training, and both JSD and negative log-likelihood for evaluation (all plots

are shown in Appendix A). As evident in Figures 9 and 10, the Baum-Welch initialisation model performs the

best from the perspective of negative log-likelihood when there are multiple observation sequences, while still

having comparable JSD losses in this case. However, the initialisation model sometimes produces extremely

large JSD loss when a single observation sequence is used, which can be seen in Figure 4. This may be caused

by large change in parameters during the first few iterations of the Baum-Welch algorithm, which improve

log-likelihood but significantly increase JSD. Since the Baum-Welch algorithm does not have any outliers, these

large changes seem to be corrected in later iterations when the algorithm is permitted to continue. We will

leave further investigation of this behaviour as an avenue for future research, so we will instead compare the

RNN and Baum-Welch models.

From Figures 11, 12, 13 and 14, the RNN generally performed slightly better for JSD loss, while the Baum-

Welch algorithm resulted in higher log-likelihood (which is to be expected, since Baum-Welch converges to a local

minima for sequence likelihood [12]). However, both approaches had highly similar results. Interestingly, the

Figures in Appendix A show that changes to the number of initialisations and lengths of observation sequences

has virtually no impact on the resultant losses.

10

Figure 4: The performance of RNNs trained with JSD (light green), RNN Baum-Welch Initialisation (red) and

Baum-Welch (dark green). 5-10 sequences of length 10-20, and 10 initialisations. Evaluated with JSD.

(a) (b)

Figure 5: The performance of RNNs trained with JSD (light green), and Baum-Welch (dark green). 5-10

sequences of length 10-20 and 10 initialisations. Evaluated with (a): JSD and (b): negative log-likelihood.

Considering the issues with JSD as a loss function (see Section 4.1.3) and that a simple RNN is being used,

these results are promising. Perhaps this provides motivation for further research to develop a permutation-

invariant and computationally viable loss function, and to apply more advanced deep-learning techniques such

as Long Short Term Memory (LSTM).

5 Parameter Inference with an Unknown Number of States

The scenario where the number of states is unknown beforehand is significantly more difficult. Here, we

introduce existing approaches, Baum-Welch with information criteria and the Hierarchical Dirichlet Process

Hidden Markov Model (HDP-HMM), and provide an outline of potential loss functions and deep-learning

models.

11

5.1 Loss Functions with an Unknown Number of States

All loss functions in Section 4.1 are invalid if the number of states is unknown, as the size of the HMM parameters

is variable and the likelihood of the given observation sequences will be heavily influenced by the number of

states.6

Rather than defining an HMM by the parameters, we can define an HMM by the probability distribution of

all possible sequences generated. To evaluate similarity we can generate a large number of sequences o(1) from

model λ(1), calculate the log-likelihood of all of these, then compare these to the log-likelihood under another

model λ(2) [12].

D(λ(1), λ(2)) =
1

T
(log Pr(o(1)|λ(1))− log Pr(o(1)|λ(2))) (7)

The two models will be close if the log-likelihoods of sequences are similar, in which case D(λ(1), λ(2)) is close

to 0. Alternatively, we could also use the symmetrical adaptation of D [12], which is given by

Ds =
D(λ(1), λ(2)) +D(λ(2), λ(1))

2
(8)

However, these are both unviable for a deep-learning loss function, as the number of computations isO(N2
∑no

j=1 Tj),

which will likely result in vanishing and exploding gradients (see Section 4.1.4). The same can be said for infor-

mation criteria such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), which

require calculation of the log-likelihood of the observation sequences.

5.2 Baum-Welch and Information Criterion

A common approach when the number of states is unknown is to apply the Baum-welch algorithm for different

numbers of hidden states, then select the best fitted model using an information criterion such as AIC, BIC or

Hannan-Quinn Information Criterion (HQC) [6]. In doing so, we are balancing log-likelihood with the number

of parameters in the model. Since we must apply the Baum-Welch algorithm many times, this method is

computationally expensive.

5.3 HDP-HMM

A more efficient solution to the unknown number of states is a Bayesian approach which allows for an infinite

number of states. One such method is called the Hierarchical Dirichlet Process Hidden Markov Model (HDP-

HMM) [13]. We will begin by explaining Dirichlet Processes (Section 5.3.1), then how Hierarchical Dirichlet

Processes (HDPs) can be applied to emulate a Hidden Markov Model (Section 5.3.2).

5.3.1 Dirichlet Process

A Dirichlet process G is characterised by a base distribution H and a stickiness parameter α, which we notate as

G ∼ DP (H,α). Dirichlet processes produce discrete distributions, and the stick-breaking analogy is commonly

6For example, we can get a likelihood of 1 if there is a new hidden state for each time step.

12

used to explain the nature of these distributions [13]. Here, we sample stick-breaking weights uk ∼ Beta(1, α)

for k ∈ N. We similarly sample infinitely many times from the base distribution, with θk ∼ H, k ∈ N.

Now, imagine that we start with a stick of length 1. For each value of k = 1, 2, ..., starting with k = 1, we

break of a proportion of the stick given by uk and remove it, and the remaining portion of the stick is used for

subsequent breaks. The resultant lengths, the stick-breaking weights, are given by wk = uk

∏k−1
j=1 (1−uj), where∑∞

k=1 wk = 1 and wk > 0 for all k ∈ N. Therefore, assignment of probability wk to the sample θk produces

a probability density function
∑∞

k=1 wkδθk . This is a distribution with “atoms” at each θk, and the weights

of each atom (the stick-breaking weights) are influenced by the parameter α; a larger value causes more even

distribution of weights, while a smaller value causes fewer weights to dominate others. Some samples from a

Dirichlet process can be seen in Figure 6.

Figure 6: Samples from a dirichlet process with base distribution N(0, 72) and α = 10 (left) / α = 50 (right).

A larger value of α leads to higher consistency in atom weights.

The Chinese Restaurant Process is another analogy for Dirichlet processes, this time describing the distri-

bution of one realisation conditioned on all previous realisations (i.e. Pr(dt|dt−1, ..., d1), where di ∼ DP (H,α)).

In this analogy, a person walking into a Chinese restaurant represents a new observation, and the table that

they sit at represents the discrete output produced from the process. The customer sits at an existing table with

probability proportional to the number of people already at the table, and creates a new table with probability

proportional to the stickiness parameter. This illustrates the clustering property of Dirichlet Processes [13].

5.3.2 HDPs in HMMs

In a Hidden Markov Model, say we know the state at time t. Then, we select the next state from the transition

matrix, which in turn determines the distribution of the next observation. Therefore, our overall emission dis-

tribution can be considered as a mixture of distributions from each state, weighted by the transition probability

to that state.

In the HDP-HMM, instead of having a set number of states that we can transition to, the state at the next

13

time step will be distributed according to a Dirichlet Process. Therefore, as described in the Chinese restaurant

analogy (see Section 5.3.1), we allow new states to be realised at any time step. Further, the clustering nature

of a Dirichlet Process ensures that we are more likely to travel to states which have previously been reached

many times from the current state [13], which allows the model to emulate large transition probabilities.

For every current state, we need the possible set of new states to be the same. Therefore, we need each

Dirichlet process to share the same atoms across all possibilities for the current state. This is why we draw

the base distribution for each “current state” from a Dirichlet distribution as well: it allows us to share new

states (although the likelihood of new states is specific to each starting state). This is a hierarchical Dirichlet

process, which allows us to generate sequences analogously to an HMM, without specifying the number of states.

Therefore, we have arrived at the HDP-HMM, as introduced in [13].

5.4 Discussion of Potential Deep-Learning Approaches

The unknown number of states results in a variable number of outputs required for any deep-learning approach,

which prevents the application of the RNN models from Section 4.2. While RNNs are typically able to produce

outputs of variable length by aggregating the hidden state at multiple time steps (i.e. a sequence-to-sequence

RNN), this enforces order among parameters, as each output is a function of the hidden state, which in turn

is a function of the previous hidden state. Therefore, this is not suitable for HMM parameter inference, where

there should be no dependency between distributions, for example.

One possible architecture could use pre-trained RNNs as described in Section 4.2. We can first train a new

RNN to output a natural number for the number of hidden states, which determines which pre-trained model

will be used to derive the parameters from the observation sequences. However, this will be computationally

expensive to pre-train RNNs for every possible number of states. The seemingly most promising class of deep-

learning models would be attention-based models. This is left as an area for future research.

6 Conclusion

As an alternative to the Baum-Welch algorithm in HMM parameter inference, we investigated the potential

for RNN and RNN/Baum-Welch hybrid models. Although we identified problems in all derived loss functions

(namely, from state permutations and computational costs), the implementation of the RNN model with JSD

as the loss function produced comparable results to the Baum-Welch algorithm. We also surveyed existing

approaches when the number of states is unknown: the Baum-Welch algorithm with an information criterion

and the HDP-HMM. We again highlighted the computational issue with likelihood-related loss functions for

deep-learning approaches, although we outline some potential deep-learning architectures and recommend the

use of a transformer-based approach.

14

References

[1] Bengio, Y., Boulanger-Lewandowski, N. and Pascanu, R. [2012], ‘Advances in optimizing recurrent net-

works’.

URL: https://arxiv.org/abs/1212.0901

[2] Briët, J. and Harremoës, P. [2009], ‘Properties of classical and quantum Jensen-Shannon divergence’, Phys.

Rev. A 79, 052311.

URL: https://link.aps.org/doi/10.1103/PhysRevA.79.052311

[3] Cover, T. M. and Thomas, J. A. [1991], Elements of Information Theory, John Wiley & Sons, New York,

NY.

[4] Frigyik, A. B., Kapila, A. and Gupta, M. R. [2010], Introduction to the Dirichlet distribution and related

processes.

URL: https://api.semanticscholar.org/CorpusID:8763665

[5] Hsu, D., Kakade, S. M. and Zhang, T. [2012], ‘A spectral algorithm for learning hidden Markov models’.

URL: https://arxiv.org/abs/0811.4413

[6] Jung, S. and Dickson, R. M. [2009], ‘Hidden Markov analysis of short single molecule intensity trajectories’,

J. Phys. Chem. B 113(42), 13886–13890.

[7] Liu, T. and Lemeire, J. [2017], ‘Efficient and effective learning of HMMs based on identification of hidden

states’, Mathematical Problems in Engineering 2017(1), 7318940.

URL: https://onlinelibrary.wiley.com/doi/abs/10.1155/2017/7318940

[8] Mor, B., Garhwal, S. and Kumar, A. [2021], ‘A systematic review of hidden Markov models and their

applications’, Archives of Computational Methods in Engineering 28(3), 1429–1448.

URL: https://doi.org/10.1007/s11831-020-09422-4

[9] Nielsen, F. [2020], ‘On a generalization of the Jensen–Shannon divergence and the Jensen–Shannon cen-

troid’, Entropy 22(2), 221.

URL: http://dx.doi.org/10.3390/e22020221

[10] Pascanu, R., Mikolov, T. and Bengio, Y. [2013], ‘On the difficulty of training recurrent neural networks’.

URL: https://arxiv.org/abs/1211.5063

[11] Prince, S. J. [2023], Understanding Deep Learning, The MIT Press.

URL: http://udlbook.com

[12] Rabiner, L. [1989], ‘A tutorial on hidden Markov models and selected applications in speech recognition’,

Proceedings of the IEEE 77(2), 257–286.

15

[13] Teh, Y., Jordan, M., Beal, M. and Blei, D. [2006], ‘Hierarchical Dirichlet processes’, Machine Learning

pp. 1–30.

[14] Wenzel, F., Snoek, J., Tran, D. and Jenatton, R. [2021], ‘Hyperparameter ensembles for robustness and

uncertainty quantification’.

URL: https://arxiv.org/abs/2006.13570

[15] Yu, D. and Deng, L. [2014], Automatic Speech Recognition: A Deep Learning Approach, Springer Publishing

Company, Incorporated.

16

Appendix A All Experimental Results

In Figures 7, 8, 9 and 10, the results for different values of the following variables can be seen:

• models (RNN, Baum-Welch and Baum-Welch Initialisation)

• loss functions (negative log-likelihood, sum of JSDs)

• number of initialisations (1, 5, 10)

• sequence length ranges (10-20, 100-200).

17

Figure 7: The performance of RNNs trained with JSD (light green), RNN Baum-Welch Initialisation (red)

and Baum-Welch (dark green), for 1 sequence. Smaller loss (concentration near the bottom of each plot) is

preferred. Evaluated with JSD. Observation sequence length is 10-20 for the left column and 100-200 for the

right. Number of initialisations/size of hyperparameter ensemble is 1 for the top row, 5 for the middle and 10

for the bottom.

18

Figure 8: The performance of RNNs trained with JSD (light green), RNN Baum-Welch Initialisation (red)

and Baum-Welch (dark green), for 1 sequence. Smaller loss (concentration near the bottom of each plot)

is preferred. Evaluated with Negative log-likelihood. Observation sequence length is 10-20 for the left

column and 100-200 for the right. Number of initialisations/size of hyperparameter ensemble is 1 for the top

row, 5 for the middle and 10 for the bottom.

19

Figure 9: The performance of RNNs trained with JSD (light green), RNN Baum-Welch Initialisation (red) and

Baum-Welch (dark green), for 5-10 sequences. Smaller loss (concentration near the bottom of each plot) is

preferred. Evaluated with JSD. Observation sequence length is 10-20 for the left column and 100-200 for the

right. Number of initialisations/size of hyperparameter ensemble is 1 for the top row, 5 for the middle and 10

for the bottom.

20

Figure 10: The performance of RNNs trained with JSD (light green), RNN Baum-Welch Initialisation (red)

and Baum-Welch (dark green), for 5-10 sequences. Smaller loss (concentration near the bottom of each plot)

is preferred. Evaluated with Negative log-likelihood. Observation sequence length is 10-20 for the left

column and 100-200 for the right. Number of initialisations/size of hyperparameter ensemble is 1 for the top

row, 5 for the middle and 10 for the bottom.

21

We will now remove the RNN-Baum-Welch hybrid model from Figures 7, 8, 9 and 10 to allow more suitable

axes and easier comparison between the RNN and Baum-Welch. The resultant plots are in Figures 11, 12, 13

and 14.

22

Figure 11: The performance of RNNs trained with JSD (light green), and Baum-Welch (dark green), for

1 sequence. Smaller loss (concentration near the bottom of each plot) is preferred. Evaluated with JSD.

Observation sequence length is 10-20 for the left column and 100-200 for the right. Number of initialisations/size

of hyperparameter ensemble is 1 for the top row, 5 for the middle and 10 for the bottom.

23

Figure 12: The performance of RNNs trained with JSD (light green), and Baum-Welch (dark green), for 1

sequence. Smaller loss (concentration near the bottom of each plot) is preferred. Evaluated with Negative

log-likelihood. Observation sequence length is 10-20 for the left column and 100-200 for the right. Number of

initialisations/size of hyperparameter ensemble is 1 for the top row, 5 for the middle and 10 for the bottom.

24

Figure 13: The performance of RNNs trained with JSD (light green), and Baum-Welch (dark green), for 5-10

sequences. Smaller loss (concentration near the bottom of each plot) is preferred. Evaluated with JSD.

Observation sequence length is 10-20 for the left column and 100-200 for the right. Number of initialisations/size

of hyperparameter ensemble is 1 for the top row, 5 for the middle and 10 for the bottom.

25

Figure 14: The performance of RNNs trained with JSD (light green), and Baum-Welch (dark green), for 5-10

sequences. Smaller loss (concentration near the bottom of each plot) is preferred. Evaluated with Negative

log-likelihood. Observation sequence length is 10-20 for the left column and 100-200 for the right. Number of

initialisations/size of hyperparameter ensemble is 1 for the top row, 5 for the middle and 10 for the bottom.

26

