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Abstract

Japanese encephalitis virus (JEV) is a zoonotic disease endemic in Southeast Asia and the Pacific. It is

of increasing importance within Australia, as evidenced by the 2022 outbreak which killed six people, and

the confirmed 2025 cases. The role of feral pigs and circumstances when endemic transmission of Japanese

encephalitis virus might be maintained within Australia were investigated through a compartmental trans-

mission model. This model included both the established pig-to-mosquito-to-pig (vector-borne) transmission

cycle, and the direct pig-to-pig transmission supported by emerging evidence. A transmission model was

developed to capture these transmission pathways, and analytical expressions of threshold conditions and

steady states were found. The model was then parameterised using values obtained from the literature,

except the pig-to-pig transmission rate which was unknown in the Australian context. We explored the

impact of no, low and high scenarios for this direct transmission rate on the dynamics. Whilst an outbreak

of JEV can occur without the contribution of direct pig-to-pig transmission, this model solution reduced

the magnitude of peak incidence, and did not result in an endemic steady state. These results suggest that

pig-to-pig transmission of JEV could be a significant contributor to the endemicity of JEV within Australia.

Although we focussed on North Queensland, ongoing transmission in northern Australia has strong implica-

tions for incursions into southern regions where there are both more domestic piggeries and denser human

populations, increasing risks to both agriculture and human health.

1 Introduction

Japanese encephalitis virus (JEV) is of increasing importance in Australia, as evidenced by the 2022 Australian

outbreak which killed six people and infected many others (Wadman (2023)), and the confirmed 2025 cases

(Goondiwindi Regional Council (2025), McGrath, Christian (2025)). JEV is a flavivirus endemic in Southeast

Asia and the Pacific (Diallo et al. (2018)). Global JEV cases, whilst underreported, are estimated to be between

50,000 and 68,000 annually, with 3 billion people at risk (Diallo et al. (2018), De et al. (2016)). Approximately

20% to 30% of people who develop encephalitis die, and 30% to 60% of survivors develop long-term neurological

illnesses, including tremors, paralysis, and convulsions (De et al. (2016), Khan et al. (2014)). As depicted in

Figure 1, the sylvatic cycle of JEV is between wild reservoir hosts of Ardeid birds (nomadic waterbirds such as

egrets and herons), with mosquitoes the primary vector, and pigs as an amplifying host (Diallo et al. (2018),

De et al. (2016), Lord et al. (2015)). Humans, and several other mammals, are potential dead-end hosts (Diallo

et al. (2018), De et al. (2016), Lord et al. (2015)). Culex tritaeniorhynchus (Culex t.) is the primary vector

within Southeast Asia, and Culex annulirostris (Culex a.) has been identified as a possible primary vector

within Australia (Diallo et al. (2018), Klein et al. (2024), Lord et al. (2015), Furlong et al. (2022)).

The transmission of JEV by mosquitoes, known as vector-borne transmission, is the primary transmission

pathway (Furlong et al. (2022, 2023), Mulvey et al. (2021)). Factors such as climate can potentially result in

seasonal fluctuations of mosquito populations, and hence mosquito-borne transmission: mosquito populations

decline during the winter in temperate regions such as in China, Japan, and southern Australia, and during the

dry season in tropical climates (Diallo et al. (2018)). Despite this, JEV transmission persists year-round within
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Figure 1: Graphical representation of Japanese encephalitis virus (JEV) transmission cycle. Dashed line indi-

cates transmission to a ‘dead-end host’.

endemic countries (Diallo et al. (2018)). One proposed contributor to maintaining endemicity is the presence

of feral pigs, since they produce sufficiently high viraemia to infect mosquitoes (Diallo et al. (2018), Lord et al.

(2015), Furlong et al. (2023)). Another is that of direct pig-to-pig transmission through oronasal (mouth and

nose) secretions (De et al. (2016), Diallo et al. (2018), Ricklin et al. (2016)).

There is much uncertainty about the role of potential pig-to-pig transmission, especially within Australia

(Furlong et al. (2022, 2023)). Australia has the world’s largest feral pig population, making the role of feral

pigs as a reservoir host of specific interest to the Australian context (Furlong et al. (2023)), and the maintained

endemicity more likely. High population density of feral pigs means this project is of particular interest for the

North Queensland context (Furlong et al. (2023)). Possible endemicity of JEV within northern Australia could

have national impact due to the wide distribution of waterbirds (Furlong et al. (2023)) and increased likelihood

of incursions into southern Australia, and international impact due to their large range of movements (Furlong

et al. (2023)).

2 Statement of Authorship

The research contained within this report is the work of Emma Naumann, under direct supervision of Roslyn

Hickson and Justin Sexton. This study is a continuation of Naumann’s research undertaken during university

coursework, and meets the guidelines of the author’s home institution plagiarism policy.

3 Method

3.1 Transmission Model

In this section, we constructed a compartmental model for the dynamics of combined direct pig-to-pig and

vector-borne transmission of JEV in feral pig populations (see Fig. 2). For this model, subscripts p and v
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were used to indicate pig and vector compartments, respectively. The base model structure corresponding

to pig compartments was a susceptible-infectious-recovered model with an additional compartment to capture

maternal antibodies for piglets (MSIR). The total population of pigs (Np) was divided into four compartments,

and the female mosquito population (Nv) was divided into two vector compartments. More specifically, the

compartments capture the following biology:

1. Pig physiology was considered by including a maternal antibodies compartment (M̂p) to ensure the disease

dynamics within pig populations were fully captured. This compartment represents piglets born with

maternal antibodies, specifically, piglets born to either infectious, or recovered sows. Piglets transfer to

the Ŝp compartment at a rate ψ, which is the waning rate of maternal antibodies.

2. Susceptible pigs (Ŝp), are pigs who may become infected after direct contact with an infectious pig. Piglets

of susceptible sows are born into this compartment. Whilst biologically inaccurate, to ensure the system

balances, piglets born to piglets in the M̂p compartment are also born into this compartment.

3. Infectious pigs (Îp), have JEV and may infect susceptible pigs through oronasal secretions. They transition

to compartment R̂p at a rate γ.

4. Recovered pigs (R̂p), are pigs which have recovered from JEV and are no longer infectious. It was assumed

that pigs are incapable of re-infection and have lifelong immunity once recovered.

5. Susceptible vectors (Ŝv) are vectors that may become infectious after an interaction with an infected pig,

and have a force of infection described by λp→v .

6. Infected vectors (Îv) are vectors that have JEV. They can infect susceptible pigs with a force of infection

λv→p .

Figure 2: Compartmental model of combined direct and vector-borne JEV transmission.

Only the adult female mosquitoes require blood as a source of nutrients for the development of their eggs,
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and hence male mosquitoes are neglected unless modelling intervention methods (see, for example, (Keeling &

Rohani (2011))).

Population turnover is a critical component of the long-term behaviour of a transmission model (Keeling &

Rohani (2011)). Since the long-term behaviour of the system is of specific interest, demography was included

in the model under the assumption of a constant population. Mathematically, this was enforced by equating

the birth rate and natural death rate for each species, µp and µv respectively. Hence, the results are only true

for regions with stable feral pig and vector populations. Similarly, ‘exposed’ compartments were neglected from

the model since the period of exposure was short compared to the period of interest.

In Figure 2, the flow into the compartment from births is adjusted by the proportion expected to have

maternal antibodies,

θ̂ =
Îp + R̂p

Np
, (1)

where Îp is the number of infectious pigs, R̂p is the number of recovered pigs, and Np is the total feral pig

population within a 16 km2 grid. It was assumed that offspring of sows from Îp and R̂p have perfect inheritance

of maternal antibodies, whilst those born into Ŝp do not have any maternal antibodies. Mathematically, θ̂p is

unitless, leaving the system with the correct overall units given it is multiplied by the birth rate µp. Since (1)

is unitless and µp is a rate, the units are consistent for in-flow and out-flow of each compartment.

The force of infection notation, λx→y represents the force of infection from species x to species y. Using this

notation, the direct transmission force of infection is

λp→p = βÎp , (2)

where λp→p represents the force of infection from direct contact of susceptible and infectious pigs through

oronasal secretions, and β is the transmission rate from infectious to susceptible pigs per day (see Table 1). We

assumed the direct transmission is density-dependent, where the contact rate and per-capita force of infection

increase directly with population density. By letting β equal zero, the direct transmission can be ‘switched

off’, and the contribution of vector-borne transmission can be assessed. From this, it can be determined if

vector-borne transmission alone can sustain JEV within a population. The inter-species force of infection terms

represent a mosquito biting a pig,

λv→p =
bvppvpÎv
Np

, (3)

λp→v =
bvpppv Îp
Np

, (4)

where bvp describes the vector biting rate, pvp is the probability a susceptible mosquito becomes infected after

biting an infectious pig, and ppv is the probability a susceptible pig becomes infected after being bitten by

an infectious mosquito (see Table 1). The mosquito compartments can also be ‘switched off’ by letting the

inter-species force of infection terms equal zero.
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The dynamics are described by a system of ordinary differential equations (ODEs),

dM̂p

dt
= µp(Îp + R̂p)− µpM̂p − ψM̂p , (5)

dŜp

dt
= µp(Ŝp + M̂p) + ψM̂p − µpŜp − βŜpÎp −

bvppvpŜpÎv
Np

, (6)

dÎp
dt

= βŜpÎp +
bvppvpŜpÎv

Np
− µpÎp − γÎp , (7)

dR̂p

dt
= γÎp − µpR̂p , (8)

dŜv

dt
= µvNv − µvŜv −

bvpppv ÎpŜv

Np
, (9)

dÎv
dt

=
bvpppv ÎpŜv

Np
− µv Îv , (10)

M̂p + Ŝp + Îp + R̂p = Np , (11)

Ŝv + Îv = Nv . (12)

To non-dimensionalise this system such that each compartment represents a proportion of each respective

total population Np and Nv, we let

Mp =
M̂p

Np
(13)

=⇒ M̂p =MpNp . (14)

Similarly, all other compartmental variables (Ŝp, Îp, R̂p, Ŝv, Îv) were proportionalised. We note the density

dependent transmission means Np is retained in the equations. To determine the effect of this on the behaviour

of the model, we then explored how our otherwise-generalised results change for differing values of Np.

The contact rate (where ‘contact’ refers to the mosquito biting) and probability of transmission are always

multiplied together, and can be combined into a single variable for simplicity. The transmission rates are then

Tp = bvppvp , (15)

Tv = bvpppv , (16)

and the ratio of mosquitoes is

m =
Nv

Np
. (17)
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The system of ODEs becomes

dMp

dt
= µp(Ip +Rp)− µpMp − ψMp , (18)

dSp

dt
= µp(Sp +Mp) + ψMp − µpSp − βSpIpNp − TpSpIvm, (19)

dIp
dt

= βSpIpNp + TpSpIvm− µpIp − γIp , (20)

dRp

dt
= γIp − µpRp , (21)

dSv

dt
= µv − µvSv − TvIpSv , (22)

dIv
dt

= TvIpSv − µvIv , (23)

Mp + Sp + Ip +Rp = 1 , (24)

Sv + Iv = 1 . (25)

Equations (24) and (25) represent our assumption of a constant total population size for each species, now

non-dimensionalised.

3.2 Analytical Analyses

There are multiple analytical analyses we conducted on the model to describe key information about the

behaviour of the system.

3.2.1 The Basic Reproduction Number

The basic reproduction number (R0) is defined as the average number of secondary infections produced by one

infectious individual in a fully susceptible population (Diekmann et al. (2010)). R0 is referred to as a ‘threshold

value’ for deterministic models because for an outbreak to occur, the number of infectious individuals over

time must increase, which only occurs if an infectious individual spreads the infection to more than one other

individual on average. As such, if R0 > 1, an outbreak will occur, and if R0 < 1, an outbreak will not occur.

R0 can be calculated in different ways depending on the complexity of the system of ODEs.

For System (18)–(23) in §3.1, the Next Generation Matrix (NGM) method was used to calculate the basic

reproduction number. The NGM relates the number of newly infected individuals within each compartment for

consecutive generations (Diekmann et al. (2010)). An infected generation refers to the consecutive infections

caused by each infectious individual: the individuals which are infected as a result of an infectious person are

referred to as the next generation (Diekmann et al. (2010)). The basic reproduction number is the dominant

eigenvalue of the NGM (Diekmann et al. (2010)).

3.2.2 Long-term Behaviour of the System

The steady state, or long-term behaviour, of the system of ODEs describes the infection dynamics when there

is no change in the system over time, such as near an endemic steady state solution (Diekmann et al. (2013)).
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The two types of steady state solutions we were interested in are the trivial (at disease free equilibrium), and

non-trivial steady states. Since we assumed a constant population size, the system is fully described by one less

equation per species, and it is not necessary to solve for Rp.

To evaluate the stability of each steady state, the Jacobian (Deisenroth et al. (2020)), and hence eigenvalues,

were calculated using symbolic manipulation in MATLAB (2024b). This required use of the ‘Symbolic Math

Toolbox’ MATLAB package for symbolic mathematics (The MathWorks Inc. (2024b)). The steady state type

was then classified by the characteristics of the Jacobian eigenvalues (positive or negative, real or complex)

(Diekmann et al. (2013)).

3.3 Numerical Simulations

An ODE solver was used to solve the system of ODEs. Ode45 was used since it is a versatile, high-order ODE

solver and has low error: it is the ODE solver of choice when using MATLAB (The MathWorks Inc. (2024a)).

From this, the transmission dynamics of the system could be observed by parameterising the model using the

values provided in Table 1 and plotting the solution.

In the absence of local data to fit the transmission rate, we assumed a critical density of pigs, Np = Ncrit, was

needed for an outbreak to occur in the absence of mosquitoes and calculated the transmission rate (β) from the

analytical expression for R0, by assuming R0 = 1. We chose Ncrit = 5 (β = 0.0755) and Ncrit = 50 (β = 0.0077)

to demonstrate an order of magnitude difference in the assumption, within the range of feasible Np values

identified. The values calculated for β are reported in Table 1. A one-way sensitivity analysis was then

completed to numerically explore the impact of key parameter values on R0, and Ip. The parameter ranges

detailed in Table 1, specifically the pig population density, ratio of vector to pig population, transmission rate,

and pig recovery rate, were varied, and the corresponding R0 and Ip values calculated.

4 Results

4.1 The Basic Reproduction Number

The basic reproduction number, which was calculated using the NGM method, is

R0 =
1

2(µp + γ)

[
βNp +

√
µv

µv

√
µv(βNp)2 + 4TpTvm(µp + γ)

]
. (26)

The full NGM is provided in §A.1.

By ‘switching off’ inter-species interactions (vector-borne transmission), R0 for a direct pig-to-pig transmis-

sion only model is

R0 =
1

2(µp + γ)

[
βNp ±

√
(βNp)2

]
(27)

=
βNp + βNp

2(µp + γ)
(28)

=
βNp

µp + γ
. (29)
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Table 1: Parameter descriptions, expected values and ranges for the transmission model depicted in Figure 2.

Rates are per day.

Symbol Description Value (Range) Source(s)

Np Pig density in a 16 km2 grid 5 (1 – 83) Furlong et al.

(2023), West

(2008)

m Ratio of vector to pig population 1 (0 – 100) Assumed

µp Pig death rate 5.4795 ×10−4 Verbeek (2023)

µv Vector death rate 0.04 (0.033 – 0.047) Diallo et al. (2018)

ψ Waning rate of maternal antibodies 0.5055 (0.011 – 1) Diallo et al. (2018)

β Transmission rate from infectious to

susceptible pigs for R0 = 1 corre-

sponding to Ncrit = 5 and Ncrit =

50, respectively

0.0755, 0.00766 Calculated based

on assumption

Ncrit Critical pig population density cho-

sen to calculate β

5, 50 Assumed

bvp Average vector bite rate 0.25 (0.2 – 0.3) Diallo et al. (2018)

pvp Probability a susceptible vector be-

comes infected after biting an infec-

tious pig

0.56 (0.3 – 0.82) Diallo et al. (2018)

ppv Probability a susceptible pig be-

comes infected after being bitten by

an infectious vector

0.205 (0.1 – 0.31) Diallo et al. (2018)

γ Pig recovery rate 0.375 (0.25 – 0.5) Diallo et al. (2018)

Note the inclusion of the Np term as this is a density dependent transmission model.

Similarly, by ‘switching off’ the pig-to-pig direct transmission possibility, to capture vector-borne transmis-

sion only, R0 became

R0 =
1

2(µp + γ)

√
µv

µv

√
4TpTvm(µp + γ) (30)

=

√
4TpTvmµv(µp + γ)

2µv(µp + γ)
. (31)

4.2 Long-term Behaviour of the System

The trivial steady state solution of the combined model is

(Mp, Sp, Ip, Sv, Iv) = (0, 1, 0, 1, 0) , (32)
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with the derivation in §A.2.

As shown in §A.3, the non-trivial steady state of the combined model is

(Mp, Sp, Ip, Sv, Iv) =

(
(µp + γ)Ip
µp + ψ

,
(µp + γ)(µv + TvIp)

βNp(µv + TvIp) + TpTvm
, Ip,

µv

µv + TvIp
,

TvIp
µv + TvIp

)
, (33)

where

Ip =
−g1 ±

√
g21 − 4g2g0
2g2

. (34)

This is defined in terms of

g2 = dβNpTv , (35)

g1 = dβNpµv + dc+ fTv − βNpTv , and (36)

g0 = fµv − βNpµv − c . (37)

In turn, these are defined in terms of

d = a+ b+ 1 , (38)

a =
µp + γ

µp + ψ
, (39)

b =
γ

µp
, (40)

c = TpTvm, and (41)

f = µp + γ . (42)

To ensure biological feasibility of the solution, it is required that Ip > 0. This condition can be met by

ensuring that the following two conditions are satisfied:

g21 − 4g2g0 > 0 , (43)

and,
√
g21 − 4g2g0 > g1 . (44)

When using values obtained from the literature, the Ip minus case for the non-trivial steady state of the combined

model was biologically infeasible since it resulted in negative Ip values. This steady state solution was therefore

neglected during the following analyses.

The Jacobian of the combined model was

J(Mp, Sp, Ip, Sv, Iv) =



−µp − ψ 0 µp 0 0

µp + ψ −βIpNp − TpIvm −βSpNp 0 −TpSpm

0 βIpNp + TpIvm βSpNp − µp − γ 0 TpSpm

0 0 −TvSv −µv − TvIp 0

0 0 TvSv TvIp −µv


. (45)

The eigenvalues corresponding to both the trivial and non-trivial state were evaluated using symbolic math-

ematics in MATLAB and found to be analytically intractable.
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4.3 Numerical Simulations

Figure 3 depicts the transmission dynamics of the proposed model during a 10 year period, for parameter values

from Table 1, and values of R0 corresponding to both β = 0.0755 (Fig. 3a), and β = 0.0077 (Fig. 3b) solved

using ode45. A ten year study period was chosen to ensure that the long-term behaviour was reached for each

solution. The initial proportion of Sp and Sv were 0.99 of each respective population. From Figure 3a, it

is evident that the system tends towards the steady state solution after approximately 550 days, with peak

pig infection of 0.79 on day 2 of the outbreak. The peak vector incidence occurs on day 8, with 0.11 of the

population being infected. The solution corresponding to β = 0.0077, exhibits a series of outbreaks, and the

steady state solution is not reached within the 10 year simulation. The peak pig infection proportion is 0.17

after 12 days of disease outbreak, and the peak vector incidence occurs on day 20 with 0.07 of the population

infected (Fig. 3b).

(a) Model solution for β = 0.0755 (Ncrit = 5). (b) Model solution for β = 0.0076 (Ncrit = 50).

Figure 3: Numeric solutions for differing β values, Np = 100, m = 1, and the remaining parameter values per

Table 1.

The cumulative pig and vector incidence is depicted in Figure 4. The cumulative pig and vector incidence

corresponding to β = 0.0755 has a sharp increase in the first 2 days of the simulation, then plateaus until

approximately day 200 of the outbreak, before exhibiting a linearly increasing relationship throughout the

remainder of the 10 year simulation (Fig. 4a). This corresponds to a constant increase due to having reached

an endemic steady state. The maximum cumulative incidence for this case is 2.84 for pigs, and 0.38 for

vectors. Figure 4b, which is the cumulative incidence for the β = 0.0077 case, has a sharp increase for the first

approximately 50 days, before plateauing, and then exhibiting a series of rapid increases in cumulative incidence

for the remainder of the ten year period. The maximum cumulative incidence is 1.81 and 0.2428, for pigs and

vectors respectively. For both cases, the cumulative incidence of pigs is approximately triple that of the vectors.

By letting β = 0, the direct transmission was turned off (vector-borne only), and the effect on the system

dynamics is depicted in Figure 5a. Figure 5a depicts a peak pig infection proportion of 0.01 and a peak vector

infection proportion of 0.01. Peak infection occurs after 1 day of an outbreak for the pig population, and 2 days
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(a) Cumulative incidence for β = 0.0755 (Ncrit = 5). (b) Cumulative incidence for β = 0.0076, (Ncrit = 50).

Figure 4: Cumulative pig incidence over time (days) for differing β values, Np = 100, m = 1, and the remaining

parameter values per Table 1.

for the vector population. The cumulative pig and vector incidence for the β = 0 case is depicted in Figure 5b.

This figure exhibits a large, rapid increase in cumulative incidence for both species, during approximately the

first 250 days for pigs, and 150 days for vectors. The maximum cumulative pig incidence for this case is 0.07,

and the maximum cumulative vector incidence is 0.01.

(a) Model solution. (b) Cumulative incidence.

Figure 5: Model solution and cumulative incidence over time (days) for β = 0, Np = 100, m = 1, and the

remaining parameter values per Table 1.

4.4 Sensitivity Analysis of the Basic Reproduction Number with Population Den-

sity

Figure 6a depicts how the basic reproduction number changes with pig population Np, for three different

transmission rate cases. We explored the maximum estimated pig density of 1 to 83 pigs in a 16 km2 grid
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(Table 1). All three transmission rate cases have R0 values greater than 1, for the entire range of pig population

densities reported. The most interesting result here is the non-monotonic relationship between R0 and Np for

β = 0.07555, suggesting further exploration of the dynamics could yield interesting results. The maximum R0

value is 21.96, corresponding to β = 0.0755 and Np = 1. For high feral pig population densities, specifically

Np = 83, the R0 value corresponding to β = 0.0755 is 17.02, compared to the β = 0.0077 and β = 0 cases which

have R0 values of 3.39 and 2.40, respectively.

(a) R0 as a function of pig population density, for three

transmission rate cases, where m = 1. Np is varied from

1 to 83 as an informed estimate of pig density in a

16 km2 grid, as per Table 1.

(b) R0 as a function of vector to pig population

ratio (m) for three transmission rate cases, where Np = 83.

Figure 6: One-way sensitivity analysis, varying Np and m, to determine the effect on R0. The dotted lines

corresponds to R0 = 1.

The relationship between the basic reproduction number and m is demonstrated in Figure 6b for three

transmission rates. This figure explores the effect of vector-borne transmission on the basic reproduction

number. The dotted line represents R0 = 1. All three transmission rates exhibit an increasing relationship

between m and R0. The β = 0.0077 and β = 0 cases have the greatest increase in R0 values occurring

approximately when 0 < m < 20. The case corresponding to β = 0.0755, results in R0 values approximately 2.5

to 9 times greater than the β = 0.0077 case, for every value of m. The R0 values corresponding to β = 0.0077

are consistently 1 to 1.5 times greater than the β = 0 case. The case without direct pig-to-pig transmission

(β = 0), has R0 values < 1 for values of m < 2.11. In contrast, the β = 0.0755 and β = 0.0077 cases have

values of R0 > 1 for all values of m.

4.5 Sensitivity Analysis of R0 and Ip to Assumed Parameter Values

Figure 7a depicts an approximately linearly increasing relationship between β and R0. Whereas, in Figure 7b,

increasing γ results in a decrease in R0 for all beta values. The largest beta value (β = 0.0755) corresponds

to R0 values approximately 8 times those of β = 0.0077 (Fig. 7b). Ip is most sensitive to changes in small
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(a) Sensitivity of R0 to changes in β (b) Sensitivity of R0 to changes in γ

(c) Sensitivity of Ip to changes in β (d) Sensitivity of Ip to changes in γ

Figure 7: One-way sensitivity analysis, varying β and γ, to determine the effect on R0 (a,b) and Ip (c,d).

values of β, specifically 0.003 < β < 0.35 (Fig. 7c). Values of β < 0.003 were not plotted since they resulted

in biologically infeasible values of Ip (Ip < 0). In Figure 7d, the β = 0 case was not plotted since it resulted

in undefined values of Ip for every γ value. Similarly to Figure 7b, as γ increases, Ip decreases. Values of

Ip corresponding to β = 0.0755 are approximately 1.4 to 2 times greater than values of Ip corresponding to

β = 0.0077.

5 Discussion

From Figure 3a it is evident that for small Ncrit and hence large β, an initial large outbreak occurs, resulting

in more than 90% of the pig population becoming infected and then recovered. Following this, a series of small

outbreaks occurs before the system tends towards an endemic steady state solution. Since the initial outbreak

caused such a large proportion of the pig population to transition to the Rp compartment, and the model

assumed life-long immunity for recovered pigs, the Sp compartment remained too small for large outbreaks to
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occur. This dynamic is reflected in Figure 4a, where a rapid increase in cumulative incidence of both vectors

and pigs is followed by the system tending towards a linearly increasing cumulative incidence. Figure 3b depicts

the transmission dynamics when the model was parameterised using a larger Ncrit, and hence a smaller β. The

smaller direct transmission rate has resulted in a smaller initial outbreak. Since less of the pig population has

life-long immunity, the system experiences a series of much larger outbreaks than in Figure 3a. This model

does not reach the endemic steady state within the ten year simulation, however, it is tending towards a more

endemic steady state than the model corresponding to a larger β. Fig. 3b corresponds to this model solution,

showing the cumulative incidence and exhibiting the same dynamics: a large initial increase followed by a series

of spikes which represent outbreaks. Therefore, a larger β value results in a larger initial outbreak, and a shorter

time to reach the endemic steady state (Fig. 3). Since β was calculated such that R0 > 1 and hence an outbreak

would occur, these model solutions reflect the expected system dynamics.

Figure 5a is the model solution for β = 0. Whilst an initial outbreak can be observed, the system tends

towards the trivial steady state solution described by Equation 32 for the remaining duration of the simulation.

This relationship is also depicted in Figure 5b, where the cumulative incidence plateaus after an initial increase.

From this model solution, it can be determined that when parameterised with the values contained in Table

1, the system does not tend towards an endemic steady state without the contribution of direct pig-to-pig

transmission. It should also be noted that the proposed transmission model is a conservative estimate of when

JEV could become endemic since it neglects the contribution of Ardeid birds to this dynamic process. Further

research would be necessary to determine β for the Australian context, and hence whether the Australian

steady state solution would be endemic. However, this modelling does suggest feral pigs could be a significant

contributor to achieving endemicity in Australia.

By decreasing the transmission rate by an order of magnitude, from β = 0.0755 to β = 0.0076, corresponding

to Ncrit = 5 and Ncrit = 50 respectively, a decrease of 0.62 can be observed for peak pig incidence, and 0.04

for peak vector incidence (Fig. 3). In addition to a decrease in maximum incidence for both populations,

the peak occurred 10 days later for pigs, and 12 days later for vectors. This is further evident for the β = 0

model: the peak infection proportion has a decrease of 0.16 for pigs, and 0.06 for vectors, when compared

to the β = 0.0077 case. Whilst the increase in time required to reach maximum pig incidence is only on

the scale of days, rather than years, and is not significant when considering long-term steady state dynamics,

this may be significant if intervention strategies are included in the model. Future models could potentially

include intervention strategies such as vaccination and mosquito control strategies to determine the effect on

transmission dynamics. Dissimilarly, the peak for pigs occurs 11 days earlier, and 18 days earlier for peak vector

incidence. Hence, with the removal of direct pig-to-pig transmission, the peak incidence of both populations is

reduced, and the timeline of the initial outbreak is shortened.

The cumulative incidence for both pigs and vectors decreases with a decreasing pig transmission rate (Fig.

4 and Fig. 5b). There is a decrease of 2.77 for pigs, and 0.37 for vectors, when comparing the β = 0.0755

and β = 0 solutions. Hence, by reducing the direct oronasal transmission rates, the cumulative number of

infected pigs has a 97.5% decrease after turning off direct transmission. Turning off direct transmission also
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decreases the maximum cumulative vector incidence by 97.4%. As such, the direct pig-to-pig transmission

of JEV could contribute heavily to the endemicity of JEV within Australia, especially during months when

mosquito populations decline, as evidenced by the increase in peak and cumulative incidence when considering

larger β values.

Future models may need to consider differences in the dynamics between feral and domestic pigs to determine

the effect on the disease dynamics and hence the generality of this model. Differences in dynamics could include

differing lifespans, as well as contact rates with other pigs and mosquitoes due to biosecurity measures within

domestic piggeries (Australian Pork Limited (2022)). Since there are almost no domestic piggeries in North

Queensland the contribution of domestic pigs to the JEV transmission cycle can be considered negligible and

was hence excluded, however, this may not be possible in regions with more domestic piggeries.

Whilst all three transmission rates in Figure 6a have R0 values greater than 1 for all Np values, only

the β = 0.0755 case has an increasing relationship between values of Np > 20 and R0. In particular the

non-monotonicity of the relationship between R0 and Np could result in complicated and potentially perverse

outcomes from feral pig population controls, though this would require substantial further investigation. The

other two cases both exhibit a decreasing relationship between Np and R0 for all values of Np. The largest

difference in R0 values across the three cases occurs for Np = 83, the maximum feral pig population density

in a 16 km2 area (Fig. 6a). For Np = 83, R0 decreases by 14.62 when comparing the β = 0.0755 and β = 0

cases. Hence, from Figure 6a it is evident that the contribution of direct pig-to-pig transmission to secondary

infections is negligible for small values of Np, and much greater for higher values of Np.

As expected of this model, R0 increases with m (Fig. 6b). Direct transmission has a significant effect on R0

when varying m, for a high direct transmission rate (β = 0.0755). For low direct transmission rates (β = 0.0077

and β = 0), the ratio of vector to pig population has a significant effect on the value of R0, especially when

0 < m < 20. For the β = 0.0755 and β = 0.0077 cases, R0 is greater than 1 for every m value, including

m = 0, meaning that direct transmission alone can sustain an outbreak. For β = 0, R0 was < 1 for m < 2.11,

meaning that vector-borne transmission is required for an outbreak to occur for low values of m. Hence, the

contribution of direct transmission is significant when m is small, and could have a wide-reaching impact on

both agriculture and human health by increasing peak infection proportion and hence cumulative incidence,

decreasing the time to peak outbreak, and increasing the number of secondary infections per individual in each

generation. Further sensitivity analyses with respect to key model parameters (Fig. 7) show how the threshold

condition and endemicity (Ip > 0) are affected by changes, emphasising the need for further studies.

In addition to high feral pig densities surrounding Townsville, three different mosquito types which have

been identified as possible vectors of JEV exist in the region (Furlong et al. (2023)), further contributing to the

possibility of JEV endemicity in the region. The parameter spaces with feasible endemic equilibria highlights

the need for local studies to better understand the local disease ecology, as our parameters were based on

assumptions and are taken from a range of Southeast Asian contexts.
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A Appendix: Derivations of key epidemiological metrics

A.1 R0 calculation using the NGM method

The NGM is

KL =

 βNp

µp+γ
Tpm
µv

Tv

µp+γ 0

 . (46)

Since R0 is the dominant eigenvalue,

λ =
1

2(µp + γ)

[
βNp +

√
µv

µv

√
µv(βNp)2 + 4TpTvm(µp + γ)

]
. (47)
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A.2 Trivial Steady State Solution

In the standard way, for steady state solution there is no change with respect to time, hence the left hand side

of the system of ODEs equals zero. Then, from (21),

Rp =
γ

µp
Ip . (48)

Substitute Eqn (48) into Eqn (18), and rearrange to find

Mp =
(µp + γ)

µp + ψ
Ip . (49)

From Equation (22),

Sv =
µv

µv + TvIp
. (50)

Substitute Eqn (50) into Eqn (23),

Iv =
TvIp

µv + TvIp
. (51)

Substitute (51) into (20),

Ip

(
βSpNp +

TpTvSpm

µv + TvIp
− µp − γ

)
= 0 , (52)

∴ Ip = 0 or, Sp

(
βNp +

TpTvm

µv + Tv

)
= µp + γ . (53)

Therefore, the trivial steady state can be found by substituting Eqn (53) into Equations (48) and (49), and

then all of these equations into Eqn (24). Therefore,

Sp = 1 . (54)

Also, substituting Eqn (53) into Eqn (25), results in:

Sv + Iv = 1 , (55)

∴ Sv = 1 . (56)

Hence, the trivial steady state for the combined transmission model is,

(Mp, Sp, Ip, Sv, Iv) = (0, 1, 0, 1, 0) . (57)

A.3 Non-Trivial Steady State Solution

The non-trivial steady state can be determined using Equation (53), by first rearranging the equation,

Sp =
(µp + γ)(µv + TvIp)

βNp(µv + TvIp) + TpTvm
. (58)

Then, substituting Equations (48), (49), and (58) into Equation (24),

(µp + γ)

µp + ψ
Ip +

γ

µp
Ip + Ip +

(µp + γ)(µv + TvIp)

βNp(µv + TvIp) + TpTvm
= 1 . (59)
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For simplicity, let,

a =
µp + γ

µp + ψ
, (60)

b =
γ

µp
, (61)

c = TpTvm, (62)

f = µp + γ . (63)

Letting d = a+ b+ 1,

I2p(dβNpTv) + Ip(dβNpµv + dc+ fTv − βNpTv) + fµv − βNpµv − c = 0 . (64)

For simplicity, let

g2 = dβNpTv , (65)

g1 = dβNpµv + dc+ fTv − βNpTv , (66)

g0 = fµv − βNpµv − c . (67)

Using the quadratic formula,

Ip =
−g1 ±

√
g21 − 4g2g0
2g2

. (68)
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