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Abstract

Electromagnetically driven flows in free liquid films have gained significant attention due to their theoretical and
practical relevance in magnetohydrodynamics, microfluidics, and industrial processes. This report investigates
the stability and bifurcation behavior of such flows, focusing on a thin electrolyte film subjected to a uniform
magnetic field and radial electric current. The governing equations are derived under the lubrication approxima-
tion, leading to a weakly nonlinear analysis that produces an amplitude equation describing flow instabilities.
Successive perturbation orders provide corrections to the amplitude equation, accounting for nonlinear effects
and saturation mechanisms. A linear stability analysis identifies critical conditions for instability and bifurca-
tion, revealing the emergence of non-trivial fixed points. The results highlight the occurrence of a transcritical
bifurcation, where the trivial and non-trivial fixed points exchange stability, governing the transition between
different flow states.

Introduction

Electromagnetically driven flows in free liquid films have attracted much attention due to their importance in
magnetohydrodynamic networks (Bau et al., 2003), and electromagnetic stirring (Bau, Zhong and Yi, 2001).
These systems are of both theoretical interest and practical significance, with applications in microfluidics
(Shang, Cheng and Zhao, 2017) and liquid bridges (Eksevora et al., 2018). The dynamics and stability of these
films are influenced by various factors, including electromagnetic forces, fluid viscosity, surface tension, and
boundary conditions, making them an ideal platform for exploring hydrodynamic instabilities and flow bifur-
cations. For instance, in microfluidics electromagnetic forcing provides a non-invasive method for controlling
small fluid volumes, enabling advancements in lab-on-a-chip technologies, drug delivery systems, and diag-
nostics. Similarly, in industrial processes, such as froth flotation and wastewater treatment, the stability and
behavior of thin films are critical for efficiency and effectiveness.

1 Problem Formulation

The experimental setup for studying these flows involves a horizontal free electrolyte film stretched between two
coaxial cylindrical electrodes with radii r1 and r2, r2 > r1. A uniform vertical magnetic field B = (0, 0, B)
is applied, and an electric current passes radially through the film. The interaction between the current and
the magnetic field generates Lorentz force that drives fluid motion in the azimuthal direction. Key assump-
tions include: the fluid is incompressible and has constant density ρ, dynamic viscosity µ, surface tension
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2 GOVERNING EQUATIONS

γ, and electrical conductivity σ; the electrolyte film contains dissolved salts, ensuring electrical conductivity;
the surface of the electrodes is assumed to be chemically inert and impenetrable to the salts dissolved in the
film; small magnetic Reynolds number ensures that the induced magnetic field is negligible; it is defined as

Rem = µ0σ

√
γ⟨h⟩
ρ

Q, where µ0 is the magnetic permeability, Q is the Lorentz force parameter which will be

discussed in section (2) and h is the thickness of the film, which is small compared to the distance between
the electrodes justifying the lubrication approximation. The fluid motion is described by the Navier-Stokes
equations augmented by the Lorentz force term (Müller and Bühler, 2001),

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+

1

ρ
j×B , (1.1)

∇ · u = 0, (1.2)

where u = (u, v) represent the horizontal velocity components in the radial and azimuthal directions respec-
tively, t is the time, p is the pressure, ρ is the fluid density, ν =

µ

ρ
represents kinematic viscosity, where µ is the

dynamic viscosity. Current density is represented by j while the B represents magnetic flux density. Viscous
dissipation is accounted by ∇2u. The Lorentz force per unit volume is represented by j×B. Equation (1.1) is
the momentum equation while equation (1.2) states the conservation of mass for incompressible fluids, mean-
ing that the total mass remains constant within a closed system, even as the fluid flows and undergoes various
changes.

Boundary conditions play a crucial role in defining the system’s dynamics. The normal stress at the free sur-
faces ensures that the pressure is balanced by surface tension. The tangential stress accounts for surface tension
gradients, which arise due to variations in surfactant concentration due to the soluto-Marangoni effect balancing
the tangential viscous stresses. The kinematic boundary condition ensures that the normal velocity at the free
surface is equal to the rate of change of the film height. The contact line dynamics describe how the contact
angle deviates from its static value, as governed by the molecular kinetic model (Ruckenstein and Dunn, 1977;
Slattery, 1991; Blake and Haynes, 1969; Blake, 2006) and relate this deviation to the velocity of the contact
line. The no-slip condition ensures that both the tangential and normal velocities vanish on the electrode sur-
faces, except at the contact line, where partial slip conditions may apply depending on the wetting-line friction
coefficient.

2 Governing Equations

Driven by Lorentz force, the system maintains a steady azimuthal base flow. However, when the applied voltage
exceeds a critical value, this steady state destabilises. The reduced hydrodynamic model derived under the
lubrication approximation, simplifies the Navier-Stokes equations for azimuthally invariant flow fields (Pototsky
and Suslov, 2024). The governing equations that describe the destabilised fluid flow are,
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h

∂h

∂r
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u
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∂r

)
+ CaHa2u− 4Ca

(
− u

r2
+

∂2u

∂r2
+

1

r
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∂r3
− 1
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r
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∂t
= 0 , (2.1)
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+
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= 0 , (2.2)

hu

r
+ u

∂h

∂r
+ h

∂u

∂r
+

∂h

∂t
= 0 , (2.3)

where constant K is determined by requiring that the potential difference between the electrodes is equal to
the (scaled) applied voltage. These equations describe complex interplay between various forces acting on the
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3 WEAKLY NON-LINEAR ANALYSIS

fluid. Incorporating both shear and extensional contributions to the stresses, the viscous terms account for the
dissipation of fluid flow. Damping terms are introduced to capture the dissipative effects of friction, particularly
near the contact line, where wetting-line friction influences the dynamics. Advection terms represent the non-
linear transport of momentum due to the motion of the fluid itself contributing to the convective acceleration in
both radial and azimuthal direction. The equations also incorporate several parameters that quantify the relative
importance of different forces in the system. These parameters have been derived using the Buckingham Pi
procedure and are given below

Ca =
µ√
ργ⟨h⟩

, Ha2 =
B2(r2 − r1)

2σ

µ
, Q =

σBV (r2 − r1)

Uµ
.

The capillary number Ca characterises the ratio of viscous to surface tension forces. The Hartmann number Ha
measures the strength of the Lorentz force relative to the viscous drag in the bulk of the fluid. The Lorentz force
parameter Q quantifies the influence of electromagnetic force, which arise from the interaction of the radial
electric current and the vertical magnetic field. Together, these terms and parameters define a system of coupled
nonlinear partial differential equations that govern the evolution of the fluid velocity and the film thickness
capturing the intricate dynamics of electromagnetically driven flows.

3 Weakly non-linear analysis

Given the non-linear nature, establishing analytical solutions of equations (2.2), (2.3), and (2.3) is a laborious
task. Thus, to explore the dynamics of the unstable fluid flow a weakly nonlinear analysis is employed. Variables
h, u, and v are expanded in asymptotic series as

h = h00 + ϵ
(
Ah11 + Āh̄11

)
+ ϵ2

(
AĀh20 +A2h22 + Ā2h̄22

)
+ϵ3

(
A2Āh31 +AĀ2h̄31 +A3h33 + Ā3h̄33

)
+ ... ,

u = u00 + ϵ
(
Au11 + Āū11

)
+ ϵ2

(
AĀu20 +A2u22 + Ā2ū22

)
+ϵ3

(
A2Āu31 +AĀ2ū31 +A3u33 + Ā3ū33

)
+ ... ,

v = v00 + ϵ
(
Av11 + Āv̄11

)
+ ϵ2

(
AĀv20 +A2v22 + Ā2v̄22

)
+ϵ3

(
A2Āv31 +AĀ2v̄31 +A3v33 + Ā3v̄33

)
+ ... ,

where ϵ is a formal small parameter introduced to conveniently represent the size of small complex amplitude
A, and the bar represents complex conjugates. The terms h00, u00, and v00 correspond to the base flow while the
higher-order terms hij , uij , vij , i = 1, 2, 3, j = 0, 1, 2, 3, represent the perturbed flow at respective successive
orders of ϵ. These terms describe the spatial distributions of the perturbations at each order. These expansions
are substituted into the governing equations (2.2)–(2.3) which yields several systems of equations at successive
orders of the perturbation parameter ϵ.

At the zeroth-order, ϵ0, the system of equations derived are,

u00h
′
00 + h00u

′
00 +

h00u00

r
= 0 , (3.1)
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+

CaKQ

rh00
+ Ca

(
v00
r2

− v′′00 −
v′00
r

)
+u00v

′
00 +
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4 FIRST-ORDER ANALYSIS (O(ϵ))

Once the numerical solutions of h00, u00, and v00 are obtained, the equations (2.2) – (2.3), are linearised about
the base flow.

4 First-Order Analysis (O(ϵ))

At the order ϵ, the system of equations take the form of an eigenvalue problem which is then analysed to
determine the growth rate of amplitude,

Lλw11 = (A+ λB)w11 = 0 , (4.1)

where Lλ, A and B are matrix-differential and matrix operators, respectively, arising from the linearised pertur-
bation equations and boundary conditions. Explicitly, B is a matrix of the form,

B =

1 0 0
0 1 0
0 0 1

 ,

and A is a matrix-differential operator of the form,

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

where the elements anm are

a11 = Du00 + u′
00 +

u00

r
,

a12 = Dh00 + h′
00 +

h00

r
,

a13 = 0,
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rh00
+ Ha2 +

4

r2

)
+D (h00 + h′

00) ,

a22 = Ca
(
− 4D

h00

(
u′
00 +

u00

2r

)
+

2h′
00

h2
00

(
2u′

00 +
u00

r

))
−D3 − D2

r
+

D

r2
,

a23 = −2v00
r

,

a31 = Ca
(
− D

h00

(
v′00 −

v00
r

)
+

h′
00

h2
00

(
v′00 −

v00
r

)
− KQ

rh2
00

)
,

a32 = v′00 +
v00
r

,

a33 = Ca
(
−D2 − D

r
+

1

r2

)
+ Ca

h′
00

h00

(
−D +

1

r

)
+Du00 +

u00

r
.

wnm = [hnm, unm, vnm]T is the vector of terms that represent the perturbed flow at higher orders of ϵ for
n = 1, 2, 3 and m ∈. Clearly any vector of the form aw11, where a is some constant, is also a solution. If we
solve equation (4.2), we obtain

dA

dt
= λA , (4.2)

where λ represents the growth rate of amplitude. This means that the solution of the linearised problem is
A ∼ eλt. If λ > 0, the solution will grow exponentially in time and most importantly, it would grow infinitely.
From an energy point of view, this is nonphysical. Realistically what we expect is that the perturbations grow
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5 SECOND-ORDER ANALYSIS (O(ϵ2))

quickly initially but once their amplitude becomes large enough its growth slows down and eventually becomes
zero when the amplitude saturates. From observation, it can be concluded that equation (4.2) does not take
the saturation of the amplitude into account. We must derive an amplitude equation which describes takes
into account of amplitude saturation. Let us analyse equations at highers orders to achieve the solution we are
looking for.

5 Second-Order Analysis (O(ϵ2))

At the second order ϵ2, we obtain

L2λw22 +K22w11 = (A+ 2λB)w22 +K22w11 = f22, , (5.1)
Lλ+λ̄w20 +K20w11 =

(
A+ (λ+ λ̄)B

)
w20 +K20w11 = f20 , (5.2)

where the vector fnm = [f
(1)
nm, f

(2)
nm, f

(3)
nm]T, represents the right-hand side of the matrix equation for n = 1, 2, 3

and m ∈. The elements of vector f22 are defined as

f
(1)
22 = −h11

(
u′
11 +K22 +

u11

r

)
− u11h

′
11 ,

f
(2)
22 = Ca

[
h2
11h

′
00

h3
00

(
4u′
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The elements of the vector f20 are defined as,

f
(1)
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r
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f
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h3
00

(
v′00 −

v00
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− h′
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(
h11v̄
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11 −

h11v̄11
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+ h̄11v
′
11 −

h̄11v11
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− h̄11h

′
11v

′
00

h2
00

(
1− v00

r

)
− h11h̄

′
11v

′
00

h2
00

(
1− v00

r

)
+

h′
11

h00

(
v̄′11 −

v̄11
r

)
+

h̄′
11

h00

(
v′11 −

v11
r

)]
− 2CaKQh11h̄11
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00

−K20v11 −K2̄0v̄11 − u11v̄
′
11 −

u11v̄11
r

− ū11v
′
11 −

ū11v11
r

.

In equations (5.2) and (5.2), w22, K22, w20, K20 are unknown. In order to solve the equations, we apply
orthogonality conditions,

⟨w22,Bw11⟩ = 0 ,

⟨w20,Bw11⟩ = 0.
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6 THIRD-ORDER ANALYSIS (O(ϵ3))

The orthogonality condition is applied to solve the second-order equations because the system of equations at
this order is underdetermined. Specifically, the equations for w22 and w20 are coupled with the first-order solu-
tions w11, and without additional constraints, the system would have infinitely many solutions. This condition
eliminates the components of the second-order solutions that are linearly dependent on the first-order solutions.
The amplitude equation must also be corrected at this stage to include quadratic terms proportional to A2. This
is because the second-order analysis introduces nonlinear interactions that were not captured in the first-order
analysis. The corrected amplitude equation takes the form,

dA

dt
= λA+ (K22A

2 +K20AĀ).

The corrections introduce quadratic terms into the amplitude equation, ensuring that perturbations do not only
grow exponentially but also saturate. To achieve higher accuracy for the asymptotic series expansions, we shall
analyse the system of equations at ϵ3.

6 Third-Order Analysis (O(ϵ3))

At ϵ3, we further obtain,

L3λw33 +K33w11 = (A+ 3λB)w33 +K33w11 = f33, , (6.1)
L2λ+λ̄w31 +K31w11 =

(
A+ 2λ+ λ̄B

)
w31 +K31w11 = f31 , (6.2)

where the elements of vector f33 are defined as,
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+
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,
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6 THIRD-ORDER ANALYSIS (O(ϵ3))

and the elements of vector f31 are defined as,

f
(1)
31 = −

(
h11(u

′
20 +

u20

r
+K31) + u20h

′
11

)
−
(
h̄11(u

′
22 +

u22

r
) + u22h̄

′
11

)
−
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h20(u
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11 +

u11

r
+K2̄0 +K22) + u11h

′
20

)
−
(
h22(ū

′
11 +

ū11

r
+ 2K20) + ū11h

′
22

)
,

f
(2)
31 = 2Ca

[
h2
11

rh3
00

(
ū11h

′
00 + u00h̄

′
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)
+

2h2
11h

′
00

h3
00

(
h̄′
11u

′
00 + ū′
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)
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′
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(
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′
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)
+

2h11
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(
h20u00h

′
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00 + h̄11u00h

′
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)
+
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h20h

′
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00 + h̄11h

′
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′
00 + h̄11h

′
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′
11 + h′

11ū
′
11 + h′

00u
′
20

)
− h11

rh2
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u20h

′
00 + ū11h

′
11 + u11h̄

′
11 + u00h

′
20

)
−K31u11 −

(
K2̄0 +K22

)
u20 − 2K20u22 +

2

r

(
v11v20 + v̄11v22

)
+

2

rh3
00

(
h̄11h22u00h

′
00 + u20h

′
11 + u22h̄

′
11 + u11h

′
20 + ū11h

′
22

)
+

2

h00

(
h′
20u

′
11 + h′

22ū
′
11 + h′

11u
′
20 + h̄′

11u
′
22

)
− 2

h2
00

(
h20h

′
11u

′
00 + h22h̄

′
11u

′
00 + h̄11h

′
22u

′
00 + h20h

′
00u

′
11

+ h̄11h
′
11u

′
11 + h22h

′
00ū

′
11 + h̄11h

′
00u

′
22

)
− 1

rh2
00

(
h20u11h

′
00 + h22ū11h

′
00 + h̄11u22h

′
00 + h20u00h

′
11

+ h̄11u11h
′
11 + h22u00h̄

′
11 + h̄11u00h

′
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,

f
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00

[
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+
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′
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7 LINEAR STABILITY ANALYSIS

− 3h̄11h
′
00v

′
00

h2
00

]
+

Cah11

rh2
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[
v20h

′
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′
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′
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′
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]

+
Ca
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[
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′
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− h̄′
11v

′
11h11 − h′

11v̄
′
11h11 − h′

00v
′
20h11 − h20h

′
11v

′
00 − h22h̄

′
11v

′
00

− h̄11h
′
22v

′
00 − h20h

′
00v

′
11 − h̄11h

′
11v

′
11 − h22h

′
00v̄

′
11 − h̄11h

′
00v

′
22

]
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′
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′
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]
− 2CaKQ
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[
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′
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]

− 1

r

[
u20v11 + u22v̄11 + u11v20 + ū11v22

]
− u20v

′
11 − u22v̄

′
11 − u11v

′
20

− ū11v
′
22 +

Ca
h00

[
h′
20v

′
11 + h′

22v̄
′
11 + h′

11v
′
20 + h̄′

11v
′
22

]
.

In equations (6.2) and (6.2), w33, K33, w31, K31 are unknown. Thus, we apply the orthogonality conditions,

⟨w33,Bw11⟩ = 0 ,

⟨w31,Bw11⟩ = 0.

Again, we should correct our amplitude equation so that there are proportional terms at the order of A3. These
terms arise from the third-order nonlinear interactions and are necessary to capture the higher-order saturation
effects that were not accounted for in the second-order analysis. Further correcting the amplitude equation we
finally obtain,

dA

dt
= λA+ (K22A

2 +K20AĀ) + (K33A
3 +K31A

2Ā). (6.3)

The inclusion of these cubic terms ensures that the amplitude equation describes the saturation of perturbations
more accurately which is essential for predicting the long-term behavior of the system.

Now that the electromagnetically driven flow has been modeled using an amplitude equation, a linear stability
analysis is carried in order to determine when the fluid flow destabilises.

7 Linear Stability Analysis

It was stated in section (3) that the amplitude, A is a complex quantity. Let us consider the amplitude A =
|A|eiθ, where |A| is the magnitude of the amplitude.

For mathematical simplicity, let the amplitude A = |A|. This simplifies equation (6.3) to,

dA

dt
= A

(
λ+A(K22 +K20) +A2(K33 +K31)

)
.

8
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This equation is further simplified by considering K22 +K20 = K2 and K33 +K31 = K3. Thus we have,

dA

dt
= λA+K2A

2 +K3A
3 , (7.1)

where A = A(t), with parameters, λ and Ki.

The fixed points are determined by considering that
dA

dt
= 0. Thus,

⇒ λA+K2A
2 +K3A

3 = 0,

⇒ A
(
λ+K2A+K3A

2
)
= 0.

A trivial fixed point exists if A = 0. On the other hand, non-trivial fixed points exist if the quadratic equation
λ+K2A+K3A

2 = 0 has real solutions for,

K2
2 − 4λK3 ≥ 0.

Let us consider A = a, where a is a small quantity representing a small perturbation. This means the terms a2

and a3 are smaller and we can neglect K2a
2 and K3a

3. Thus,

⇒ da

dt
= λa ⇒ a(t) = a0e

λt , (7.2)

where a0 is the initial perturbation. If λ < 0, the solution will decay to zero. In other words we will approach
the fixed point A = 0 even though initially we were away from it at a0. The initial perturbation of a fixed point
a0 will decay in time. Such a fixed point is called stable. If λ > 0 then the initial perturbation a0 will grow
exponentially quickly and we will depart further and further away from the fixed point. In such a case, the fixed
point is unstable. In this simple analysis we neglected nonlinear terms assuming that they are negligible. This
procedure is called linearisation which always leads to a linear ordinary differential equation that has analytical
exponential solution regardless of how complicated the original problem is. In this particular problem, in the
case of an unstable fixed point, the amplitude becomes so large that our assumption of non-linear terms being
negligible is not valid anymore since from an energy point of view it is unrealistic. Since non-linear effects do
become important, let us investigate the stability of the non-trivial fixed points.

Let, A = Ā+ a, where Ā is a fixed point a is a small quantity. Substituting this in equation (7.1) we obtain,

dĀ

dt
+

da

dt
= λĀ+ λa+K2Ā

2 + 2K2Āa+K3Ā
3 + 3K3Ā

2a+ ...

Note that
dĀ

dt
= 0 and again since a is a small quantity, the terms a2, a3 are even smaller. Thus,

Ā = 0 ,

or

Ā =
−K2 ±

√
K2

2 − 4λK3

2K3
.

Since
dĀ

dt
, we are left with,

da

dt
= a

(
λ+ 2K2Ā+ 3K3Ā

2
)
.

Let µ = λ+ 2K2Ā+ 3K3Ā
2. Thus,

da

dt
= µa ⇒ a(t) = a0e

µt ,

9
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Figure 1: Case: K2 = −1 and K3 = 1

If Ā = 0, then µ = λ and we again obtain equation (7.2). However, if Ā =
−K2±

√
K2

2−4λK3

2K3
, then µ simplifies

to
µ = K2Ā+ 2K3Ā

2.

If µ < 0, a0 will approach the fixed point Ā. In this case, Ā is considered a stable fixed point. On the other
hand, for µ > 0 a0 will move further away from the fixed point Ā and it is considered unstable.

Though similar conclusions have been reached for both the trivial and non-trivial fixed points, the sign of µ does
depend on the values of K2 and K3. Figure 1 presents the bifurcation diagram for the amplitude A as a function
of the bifurcation parameter λ, using the numerical values K2 = −1 and K3 = 1. For λ < 0, the trivial fixed
point at Ā = 0 is stable. As λ decreases further, two additional non-trivial fixed points emerge at Ā = ±0.5.
One of these fixed points move away from Ā = 0 and remains stable, while the other initially approaches Ā = 0
and is unstable before becoming stable again as it moves further away.

At λ = 0, the trivial fixed point Ā = 0 exchanges stability with one of the non-trivial fixed point. Specifically,
for λ > 0, the trivial fixed point becomes unstable, while the previously unstable non-trivial fixed point becomes

10
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stable as it moves away from Ā = 0.

This stability exchange is characteristic of a transcritical bifurcation, where two fixed points intersect and swap
their stability properties. The bifurcation diagram effectively captures this nonlinear behavior, demonstrating
how the system transitions from a single stable equilibrium at A = 0 to a regime where multiple fixed points
coexist and exchange stability.

Conclusion

This report has analysed the stability of electromagnetically induced flows in a free electrolyte film. Through
weakly nonlinear analysis, an amplitude equation was derived to capture the growth and saturation of per-
turbations. Higher-order corrections demonstrated the role of nonlinear interactions in stabilizing the system.
Linear stability analysis revealed that when the bifurcation parameter exceeds a critical value, the trivial steady-
state solution destabilizes, leading to the emergence of stable non-trivial fixed points. The bifurcation diagram
confirmed the presence of a transcritical bifurcation, where the stability is exchanged between fixed points. Al-
though the values of the coefficients K2 and K3 have been assumed to be -1 and 1 respectively for this report,
they have to be computed through MATLAB, which the author of this report will aim to achieve for future
prospects of this project.
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