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ABSTRACT

1. Capture–recapture models are crucial for estimating demographic parameters when detection is imper-

fect.

2. Assessing model fit is essential for valid statistical inference, but the non-standard distributions com-

monly encountered in capture–recapture models often render standard software inadequate, requiring

custom programming.

3. To address this, we employ a partial likelihood approach conditioned on initial capture, transforming

the problem into a binomial model. This enables goodness-of-fit testing for closed capture–recapture

models using the R package DHARMa (Diagnostics for HierArchical Regression Models).

4. We provide practical guidance on implementing this approach and demonstrate DHARMa’s application

using both simulated and real-world capture–recapture data.

5. Our findings show that DHARMa effectively detects misspecified heterogeneity in capture probabili-

ties within closed capture–recapture models. Additionally, under the partial likelihood framework, the

power to detect goodness-of-fit issues improves with an increasing number of capture occasions.

1 INTRODUCTION

Capture–recapture (CR) models are fundamental to population ecology, offering a means of estimating demographic

parameters when individuals are not always detected (McCrea & Morgan, 2014). These methods involve tracking marked

individuals over time through repeated captures or sightings, resulting in capture histories and associated covariates. It is

crucial to recognize that the observed data are inherently conditional on individuals being captured at least once. When

populations are closed (no births, deaths, immigration, or emigration) during the study period, a key objective is often to

estimate the unknown population size.

Otis et al. (1978) pioneered a suite of closed population CR models that accounted for individual heterogeneity, time

effects, and behavioral responses. Huggins (1989) later proposed a more general conditional likelihood approach, offering

greater flexibility by avoiding restrictive distributional assumptions and addressing potential identifiability problems. Ex-

isting methodologies for fitting closed population CR models include sample coverage (Lee & Chao, 1994), finite mixture

models (Pledger, 2000; Dorazio & Royle, 2003; Pledger, 2005; Morgan & Ridout, 2008), empirical likelihood (Liu et al.,

2017) and many others. In this paper, we concentrate on the Huggins (1989)’s heterogeneity-only model (Mh), where

capture probabilities are modeled as functions of unknown parameters and individual covariates, which we estimate using

maximum likelihood or Bayesian methods.

Regardless of the chosen statistical framework, assessing model fit is critical for drawing valid demographic infer-

ences from CR data (Gimenez et al., 2018). Early approaches to formal goodness-of-fit (GOF) testing for closed CR

models were often ad hoc and relied on chi-squared tests comparing observed and expected capture frequencies (e.g.,

see Carothers, 1971; Otis et al., 1978). However, these methods often suffered limitations due to the sparse nature of

CR data, particularly with small or highly heterogeneous populations. The inherent dependence among captures further
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complicates the application of standard statistical tests. Furthermore, the variety of model structures (e.g., accounting for

heterogeneity via observed covariates or latent variables) necessitates tailored GOF procedures.

The R-package DHARMa (Diagnostics for Hierarchical Regression Models, Hartig, 2024) offers a useful set of GOF

tests and readily interpretable residual plots for a wide range of models, including generalized linear mixed models.

Residual plots have the potential as a diagnostic tool for CR models, however, DHARMa’s current capabilities do not extend

to the positive binomial distribution, which is fundamental to the Huggins (1989)’s conditional likelihood approach. This

limitation often necessitates custom programming, as illustrated by Warton et al. (2017), who developed bespoke code for

graphical diagnostics in occupancy-detection models.

To address this issue, we employ the partial likelihood methodology described by Stoklosa et al. (2011). This ap-

proach, which conditions on the initial capture event, results in a binomial model amenable to parameter estimation based

on recapture data. This formulation facilitates the use of standard software packages such as DHARMa for GOF model

evaluation, as DHARMa is specifically designed for residual analysis in binomial models, among others.

After outlining the methodological background, we illustrate DHARMa’s utility using simulated datasets with different

levels of individual heterogeneity, followed by analyses of two real CR datasets. Our results demonstrate that DHARMa

effectively detects lack of fit in CR models, especially when heterogeneity in capture probabilities is incorrectly specified.

The reliability of these diagnostics improves as the number of capture occasions increases, suggesting that studies with

more sampling periods will benefit most from this approach.

BL conducted the computer programming, data analysis, writing, and checking earlier drafts of the report.

2 METHODS

2.1 Notation and Models

We consider a closed population of unknown size N and a CR experiment with τ capture occasions (j = 1, . . . , τ).

Assuming independence among individuals, we define two random variables for the ith individual: Yi, the number of

captures, and ti, the time of the first capture.

We model heterogeneity in capture probabilities using individual-specific covariates Xi, assumed to be independent

and identically distributed. Let Xi be the covariate vector for individual i and β the associated parameter vector. The

number of captures for individual i is then Yi ∼ Bin(τ, pi(β)), where pi(β) = H(βTXi) and H(u) = exp(u)/(1 +

exp(u)) is the logistic function. The probability of individual i being captured at least once is πi(β) = 1−{1− pi(β)}τ .

Captured individuals are indexed by i = 1, . . . , D, and uncaptured individuals by i = D + 1, . . . , N where D is the

number of distinct captures in the study. As in Stoklosa et al. (2011), the full likelihood (proportional to) is given by

ℓ(β) =

D∏
i=1

pi(β)
Yi{1− pi(β)}τ−Yi

πi(β)

D∏
i=1

πi(β)

N∏
i=D+1

{1− πi(β)}.

The first product represents the contribution of captured individuals, the second the probability of being captured

at least once, and the third the probability of not being captured. Because the covariates of uncaptured individuals are
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unknown, this full likelihood is not directly calculable. Huggins (1989)’s conditional likelihood, which conditions on the

event that the first D individuals are captured, uses only the first product. It can be expressed as

D∏
i=1

pi(β)
Yi−1{1− pi(β)}τ−ti−(Yi−1)

D∏
i=1

[
{1− pi(β)}ti−1pi(β)

πi(β)

]
. (1)

The first term in (1) constitutes the partial likelihood (Stoklosa et al., 2011) which represents the probability of the

observed recaptures, given the time of first capture. Specifically, conditional on ti, the number of recaptures for individual

i, (Yi − 1), follows a binomial distribution:

(Yi − 1) | ti ∼ Bin(τ − ti, pi(β)). (2)

After obtaining β̂ from fitting model (2), the Horvitz–Thompson estimator: N̂ =
∑D

i=1 1/πi(β̂) is often used to

estimate population size. While Stoklosa et al. (2011) observed a potential minor efficiency loss in parameter estimation

with partial likelihood, their simulations demonstrated substantial improvements with increasing τ . Furthermore, the

practical advantages of leveraging existing software to fit complex models like generalized additive models (GAMs) or

generalized linear mixed models (GLMMs) often outweigh efficiency concerns. Consequently, this work concentrates on

assessing model fit using readily available software. Although parameter estimation can follow once a suitable model is

identified, it is not the primary objective here.

2.2 Goodness-of-Fit assessment using DHARMa

The R-package DHARMa provides tools for assessing GOF for a variety of models, including, generalized linear models

(GLMs), GLMMs, GAMs, etc., and can handle Bayesian software. It uses simulated (quantile) residuals to generate

readily interpretable diagnostic plots and perform formal GOF tests. For technical and theoretical details on quantile

residuals for regression models, see Dunn & Smyth (1996). By comparing the distribution of simulated residuals to

the expected distribution under the null hypothesis (that the model adequately fits the data), analysts can use DHARMa’s

functions to evaluate model adequacy. Rather than providing a single “yes/no” answer, DHARMa offers a comprehensive

suite of diagnostic tools to assess model fit thoroughly.

Several graphical diagnostics are available in DHARMa to visually assess the distribution of simulated residuals. By

default, these include: a quantile–quantile (QQ) plot, which compares the distribution of simulated residuals to a uniform

distribution (deviations from the diagonal line indicate potential issues), and a plot of residuals vs. fitted values, used

to check for patterns in residuals across the range of predicted values. Plots of residuals vs. predictor variables, which

examine relationships between residuals and specific predictors can also be obtained. Patterns in these latter two plots

also suggest departures from model assumptions. Other diagnostics plots are also available but they are not explored here.

DHARMa also includes statistical tests to assess the distribution of simulated residuals formally. For example, the

Kolmogorov–Smirnov (KS) test checks if the residuals are significantly different from a uniform distribution. Beyond

uniformity testing, DHARMa assists in diagnosing and handling overdispersion/underdispersion (Dispersion test), a com-

mon issue in many models, and in detecting residual outliers (Outlier test). Other tests also include zero-inflation, residual
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spatial, temporal, and phylogenetic autocorrelation but they are not considered here.

2.3 Guidelines for practitioners

Prior to model fitting, we recommend evaluating the assumption of population closure using the test proposed by Stanley

& Burnham (1999). This can be easily implemented within the secr package (Efford, 2024). However, as emphasized

by Efford (2024), the Stanley and Burnham test should be interpreted cautiously. It can suggest non-closure in truly closed

populations if, for example, trap response is present. Furthermore, the test is sensitive to individual heterogeneity, a factor

that should prompt consideration of the species’ biology.

If a closed population is considered, then any binomial model of interest that is compatible with DHARMa can be fitted

to the closed population CR data discussed in Section 2.1, and its GOF evaluated. It’s important to note however that using

Yi=1,...,D directly in a binomial model will lead to poor fit because Yi=1,...,D follows a positive binomial distribution, not

a standard binomial.

The following R-code demonstrates how to construct recapture data (Y representing the number of captures, t1 the

time of first capture, X a covariate vector, and tau the number of capture occasions), fit a GLM with a covariate, and

assess its GOF using DHARMa:

recap_opp <- tau - t1[!t1 == tau]

Y_recap <- Y[!t1 == tau] - 1

X_recap <- X[!t1 == tau]

model <- glm(Y_recap / recap_opp ˜ X_recap,

family = binomial(link = "logit"),

weights = recap_opp)

res0 <- simulateResiduals(fittedModel = model)

plot(res0)

Notice that in the code above, to use Model (2), individuals captured only on the last occasion are excluded to allow

the calculation of recapture opportunities.

Figure 1 presents an example of DHARMa diagnostics applied to real CR data following the fit of a GLM. Further

details on the study, data, and GOF analysis can be found in Section 3.2.2. Small p-values (highlighted in red) on the

QQ-plot, as well as red-highlighted curves in the residuals vs. fitted values plot, signal potential model misfit. When

assessing Mh-type CR models, all three diagnostic tests should be considered. In particular, the Dispersion test can

detect overdispersion, which may indicate unmodeled individual heterogeneity in capture probabilities. Additionally, the

residuals vs. fitted values plot should be carefully examined, as patterns in the residuals may reveal misspecification in

the relationship between capture probabilities and covariates.
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Figure 1: DHARMa diagnostics when fitting a GLM to the Harvest mouse capture–recapture data (see Section 3.2.2 for
further details). The figure gives a QQ plot (left panel), which compares the distribution of simulated residuals to a
uniform distribution (deviations from the diagonal line indicate potential issues) and a plot of residuals vs. fitted values
(right panel), used to check for patterns in residuals across the range of predicted values. A Kolmogorov–Smirnov (KS)
test to check if residuals are significantly different from a uniform distribution, an overdispersion/underdispersion test
(Dispersion test), a common issue in many models, and an Outlier test in detecting residual outliers.

3 APPLICATION TO DATA

How effective are DHARMa diagnostic tools at detecting a lack of fit for CR data? This question was explored, using

simulations and two-real CR data sets.

3.1 Simulations

First, we evaluated DHARMa’s performance in detecting GOF issues in various simulation scenarios/cases where hetero-

geneity was present in capture probabilities.

Under a closed population setting, we generated CR data for three scenarios where the true model for pi had the

following structures:
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• Case 1 (two covariates): pi = H(β0 + β1Xi + β2Wi) where Wi ∼ N(1, 2) or Wi ∼ Bern(0.5). This scenario

models capture probabilities influenced by two observed sources of individual heterogeneity.

• Case 2 (random effect): pi = H(β0 + β1Xi + Zi) where Zi ∼ N(0, 1). This scenario incorporates both an

observed (Xi) and an unobserved (Zi) source of individual heterogeneity.

• Case 3 (non-linearity): pi = H(β0 + β1 sin(Xi)). This scenario explores a non-linear, smooth relationship

between capture probability and the observed covariate Xi.

In each case above, we generated data from a population of size N = 500, with an individual continuous covariate

Xi drawn from a standard normal distribution, Xi ∼ N(0, 1). Capture occasions were set at either τ = 7 or τ = 15.

The true model parameters (β0, β1, β2) varied depending on the specific simulation scenario. For each scenario and

parameter/covariate combination, we generated 20 datasets. We then fit both the correctly specified model (as described

above) and a misspecified model that omitted a key component (descriptions given below). This misspecification allowed

us to evaluate the performance of the DHARMa package in detecting a lack of fit. Specifically, we counted the number

of any significant issues reported by DHARMa’s three diagnostic tests for each model fit. We also reported the average

number of unique individuals detected (D̄) to quantify the average number of individuals captured across the simulations.

We also considered a fourth scenario, Case 4 (open population), where data were generated under a true open popula-

tion design. In this scenario, individuals could permanently leave the population with a survival rate ϕ, and new individuals

could enter at a rate ψ on each capture occasion. Capture probabilities were modeled as pi(β) = H(β0 + β1Xi) where

Xi ∼ N(0, 1) or a Bernoulli distribution with a probability of success of 0.5, Xi ∼ Bern(0.5). Here, we set N = 200

and τ = 12, and ϕ = ψ = 0.8 to maintain a balanced influx and efflux of individuals. This simulation was designed to

assess the robustness of DHARMa when the population structure is misspecified (i.e., when a closed population model is

fit to open population data).

The complete simulation results, encompassing the number of GOF issues/outcomes determined by DHARMa for

each simulation case and parameter combination, are documented in Appendix A, presented in tabular format as Tables

A1–A10.

3.1.1 Simulation case 1 (two covariates)

We fitted standard GLMs using (2). Both the correctly specified (Model 1) and misspecified (Model 2) models included

Xi as a linear term, but the misspecified model omitted Wi. Figure 2 presents bar charts comparing the number of GOF

issues reported by DHARMa for both model fits. The top panel displays results for Wi ∼ N(1, 2), while the bottom panel

shows results for Wi ∼ Bern(0.5). The left panel corresponds to τ = 7 capture occasions and the right panel to τ = 15.

Omitting the covariate Wi in the GLM fit (Model 2) resulted in frequent diagnostic flags from DHARMa, with the

dispersion test consistently indicating model misspecification. This issue was less pronounced when Wi was binary,

although misspecification was still detected in approximately half of the simulations. Other tests and quantile deviations

also more frequently identified significant issues in the misspecified model compared to the correctly specified model.

Furthermore, the performance of DHARMa improved with increasing τ for both models, suggesting greater reliability for

a large number of capture occasions.
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Figure 2: (Simulation case 1) Bar charts comparing the number of goodness-of-fit (GOF) issues reported by DHARMa
for the correct model (Model 1) and misspecified model (Model 2). The top panel displays results for the case where
Wi ∼ N(1, 2), while the bottom panel shows results for Wi ∼ Bern(0.5). The left panel corresponds to τ = 7 capture
occasions and the right panel to τ = 15.

3.1.2 Simulation case 2 (random effect)

Next, we fitted both a GLM and a GLMM using (2) for Case 2. The misspecified GLM (Model 2) omitted the random

effect present in the true model. The GLMM (Model 1) was fit using the glmer() function from the lme4 package.

Figure 3 presents bar charts comparing the number of GOF issues reported by DHARMa for both the correctly specified

GLMM and the misspecified GLM.

When including a random effect, Model 1, DHARMa reported minimal diagnostic flags across both τ = 7 and τ = 15,

whereas excluding the random effect (Model 1) there were frequent issues. These issues were more prominent for τ = 15.

Occasionally, when the dispersion test was deemed significant for the correct model, the actual shape of the QQ plot still

indicated that the model gave a good fit, as compared to the incorrect model where the QQ plot shape also supports the

significant test, see Figure 4.
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Figure 3: (Simulation case 2) Bar charts comparing the number of goodness-of-fit (GOF) issues reported by DHARMa
when fitting the correct (GLMM, Model 1) and incorrect model (GLM, Model 2). The left panel corresponds to τ = 7
capture occasions and the right panel to τ = 15.

Figure 4: (Simulation case 2) Diagnostic plots for a selected simulation when fitting the correct model (left panel) and the
wrong model (right panel). Notice the difference in the shape of the QQ plot even though both have significant dispersion
tests.

When the random effect was correctly included, DHARMa reported minimal diagnostic warnings at both τ = 7 and

τ = 15. Conversely, omitting the random effect resulted in frequent warnings, particularly at τ = 15. Occasionally,

although the dispersion test flagged the correctly specified model as significant, the corresponding QQ plot indicated a

good fit. In contrast, for the misspecified model, the QQ plot visually confirmed the lack of fit indicated by the significant

test, as illustrated in Figure 4.

3.1.3 Simulation case 3 (non-linearity)

We fitted both a GLM and a GAM using (2) for Case 3. The misspecified GLM (Model 2) failed to account for the

non-linear relationship between capture probability and Xi. The GAM (Model 1) was fit using the gam() function from

the mgcv package. Figure 5 presents bar charts comparing the number of GOF issues reported by DHARMa for both the

correctly specified GAM and the misspecified GLM.

8



Figure 5: (Simulation case 3) Bar charts for the number of GOF issues reported by DHARMa when fitting the correct
(GAM, Model 1) and incorrect model (GLM, Model 2). The left panel is for τ = 7 and the right panel is for τ = 15.

The GAM performed well, with DHARMa reporting no diagnostic warnings in either scenario. In contrast, the mis-

specified GLM performed poorly, with DHARMa consistently flagging significant tests and quantile deviations.

3.1.4 Simulation case 4 (open population)

Finally, we fit two misspecified models, a GLMM (Model 1) and a GLM (Model 2), using (2), both incorrectly assuming

a closed population structure. For the GLM, DHARMa consistently flagged issues with the dispersion, outlier, and KS

tests. These flags indicated substantial deviations from the expected distribution, demonstrating the poor performance of

closed-population GLMs when applied to open population data.

When fitting the GLMM, however, DHARMa largely failed to detect significant GOF issues, despite the model’s in-

correct specification. Although residual plots and diagnostic tests (e.g., QQ plots and KS tests) suggested an adequate fit,

this result highlights a potential limitation of DHARMa in identifying structural misspecification when using glmer() on

open population data. Figure 6 provides diagnostic plots from a selected representative simulation, comparing the GLM

(left panel) and GLMM (right panel) fits. While DHARMa successfully identified issues with the GLM, it failed to detect

the same underlying structural problems when individual random effects were included in the GLMM. This underscores

a potential weakness of DHARMa in assessing/evaluating GOF for open population models.

3.2 Real Data Examples

To assess DHARMa’s ability to detect GOF issues in real-world scenarios, we analyzed two well-known CR datasets

previously studied in the literature. The first dataset originates from a study of taxi cabs in Edinburgh, Scotland (Carothers,

1973), and the second from a CR experiment on harvest mice in Taiwan (Stoklosa et al., 2011).

3.2.1 Example 1: Taxi cab data

The taxi cab dataset comprised capture histories from τ = 10 capture occasions. A “capture” was recorded each time

a taxi cab passed a pre-defined location in Edinburgh. The population was assumed closed (supported by the Stanley
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Figure 6: (Simulation case 4) Diagnostic plots for a selected simulation when fitting a GLM (left panel) and a GLMM
(right panel). The GLMM resulted in a significant dispersion test; however, the QQ plot does not show strong evidence
of misfit, similar to the correctly specified models examined earlier. This suggests that the diagnostic plots may not fully
reflect this issue despite the model being incorrect due to the data originating from an open population.

and Burnham closure test), with a known size of N = 420. Given that only capture histories were available (i.e., no

individual covariates were measured), an intercept-only GLM with binomial logistic regression was used to model capture

probabilities. Figure 7 displays the resulting DHARMa diagnostic plots.

DHARMa detected no significant goodness-of-fit issues. The QQ plot showed no substantial deviations, and the KS test,

overdispersion and underdispersion test, and outlier test all yielded non-significant p-values. The residual plot confirmed

an adequate model fit, with no within-group deviations from uniformity. Overall, the model provided a reasonable fit to

the taxi cab data, with DHARMa raising no diagnostic warnings.

3.2.2 Example 2: Harvest mouse data

The harvest mice dataset contained capture histories and individual covariates conducted across τ = 14 capture occasions.

Two key covariates were available: body weight (standardized weight at first capture) and sex (a binary variable: 1 for

males, 0 for females). After conducting the Stanley and Burnham closure test, initial analysis strongly suggested an open

population structure (p-value < 0.001), although the high heterogeneity in the data introduces some uncertainty in this

result (Stoklosa et al., 2011).

We fit three models to the data (each model includes the sex covariate): a GLM, a GLMM with a random effect and

a linear term for body weight, and a GLMM with a random effect and a quadratic (squared) term for body weight. The

quadratic term was included based on AIC, which indicated improved model fit. In Figures 1 and 8, we plot the DHARMa

diagnostics for each model.

While the initial GLM and GLMM with the linear body weight term showed some lack of fit (explain what specifically

was wrong with the linear models), the GLMM with the quadratic body weight term showed substantial improvement,

with no goodness-of-fit issues detected by DHARMa. A curved downward pattern observed in the DHARMa residual vs.

predicted plot (right panel) for the linear models was addressed by including the squared weight term, which further

improved the model fit and straightened the residual plot. The final model (GLMM with the quadratic term) was selected
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Figure 7: DHARMa diagnostics when fitting a GLM to the taxi cab CR data.

Figure 8: DHARMa diagnostics plots when fitting a GLMM with a random effect and a linear term for body weight (left
panel), and a GLMM with a random effect and a quadratic (or squared) term for body weight (right panel) to the Harvest
mouse data (both models also includes the sex covariate).

as the best fit based on DHARMa diagnostics and AIC comparisons.
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4 DISCUSSION

Our study addresses a gap in GOF assessment/diagnostics for closed population CR models. Using a partial likelihood

approach with recapture data, we leverage specialized software to provide improved GOF evaluation. While diverse

analysis methods exist for closed populations (see Section 1), they typically lack the ease and flexibility, particularly

for visual diagnostics, that our approach offers. Interpreting graphical diagnostics can however be subjective, and these

methods are often used in conjunction with other GOF tests. While DHARMa serves as a powerful diagnostic tool for

identifying potential GOF issues, it does not guarantee that the selected model is correct or optimal, nor does every

flagged issue necessarily indicate a model deficiency.

In this study, we primarily focused on GOF assessment for closed population models (specifically the heterogeneity

model, Mh). For closed populations, the VGAM package can fit all eight models described by Huggins (1989), including

the most general model, Mtbh, and it provides residuals. However, VGAM model objects are currently incompatible with

the DHARMa package. Further work is also needed to assess GOF when simpler models (e.g., Mh) are fitted to data

generated from more complex models (e.g., with time and behavioral effects). We intend to address these limitations in

future research.

For open populations models, Gimenez et al. (2018) introduced the R-package R2ucare which implements and ex-

pands upon existing tests based on contingency tables (Pollock et al., 1985), providing a comprehensive tool for assessing

the fit of the well-known Cormack-Jolly-Seber and other related open population models (Pradel et al., 2003). It tests

for the presence of transients, trap dependence, and overdispersion. To further enhance its utility, the addition of residual

plots as a graphical diagnostic, similar to those provided by the DHARMa would be highly beneficial for model evaluation

in open population studies.

Finally, we note that GOF assessment differs from model selection, though the two are related (Warton et al., 2017).

Model selection involves comparing the relative fit of candidate models (e.g., choosing the model with the lowest AIC).

GOF, conversely, seeks an absolute measure: does the model adequately explain the observed data? For example, while

model selection using AIC identifies the best relative fit, GOF asks whether the AIC value for that model is sufficiently

low to suggest plausibility, perhaps by comparing it to a null distribution.
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Appendix A: Results tables for all simulation studies

Table A1: (Simulation case 1) Tabulated results comparing the number of goodness-of-fit (GOF) issues/outcomes reported
by DHARMa for the correct model (Model 1, left column) and misspecified model (Model 2, right column) where N =
500, τ = 7,Wi ∼ N(1, 2) and D̄ = 350.50 for 20 simulated data sets.

Outcome reported by DHARMa
Run # Model 1 (correct model, includes Wi) Model 2 (misspecified model, excludes Wi)

1 None KS test, dispersion test; 0.25
2 None Dispersion test
3 None Dispersion test
4 None Dispersion test
5 None Dispersion test
6 None Dispersion test; 0.25
7 None Dispersion test
8 None Dispersion test; 0.25
9 None; 0.75 Dispersion test

10 None None
11 None Dispersion test
12 None Dispersion test
13 None Dispersion test
14 None; 0.25 None
15 None Dispersion test
16 None Dispersion test
17 None Dispersion test
18 None None
19 None None
20 None Dispersion test
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Table A2: (Simulation case 1) Tabulated results comparing the number of goodness-of-fit (GOF) issues reported by
DHARMa for the correct model (Model 1, left column) and misspecified model (Model 2, right column) where N =
500, τ = 15,Wi ∼ N(1, 2) and D̄ = 417.75 for 20 simulated data sets.

Outcome reported by DHARMa
Run # Model 1 (correct model, includes Wi) Model 2 (misspecified model, excludes Wi)

1 None KS test, dispersion test, outlier test; 0.25
2 None KS test, dispersion test; 0.25
3 None KS test, dispersion test; 0.25, 0.75
4 None KS test, dispersion test, outlier test; 0.25
5 None KS test, dispersion test, outlier test; 0.25
6 None KS test, dispersion test; 0.25
7 None KS test, dispersion test, outlier test; 0.25
8 None KS test, dispersion test; 0.25
9 None KS test, dispersion test; 0.25

10 None KS test, dispersion test; 0.25
11 None Dispersion test
12 None Dispersion test; 0.25, 0.75
13 None KS test, dispersion test; 0.25
14 None KS test, dispersion test; 0.25
15 None KS test, dispersion test; 0.25
16 None KS test, dispersion test; 0.25, 0.75
17 None Dispersion test, outlier test
18 None KS test, dispersion test; 0.25, 0.75
19 None KS test, dispersion test
20 None Dispersion test, outlier test; 0.25
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Table A3: (Simulation case 1) Tabulated results comparing the number of goodness-of-fit (GOF) issues reported by
DHARMa for the correct model (Model 1, left column) and misspecified model (Model 2, right column) where N =
500, τ = 7,Wi ∼ Bern(0.5) and D̄ = 366.85 for 20 simulated data sets.

Outcome reported by DHARMa
Run # Model 1 (correct model, includes Wi) Model 2 (misspecified model, excludes Wi)

1 None Dispersion test; 0.25
2 None None
3 None None
4 None None
5 None; 0.75 None
6 None Dispersion test
7 None KS test, dispersion test; 0.25
8 None None
9 None Dispersion test; 0.75

10 None Dispersion test
11 None Dispersion test
12 None Dispersion test
13 None None
14 None None
15 None Dispersion test
16 None None
17 None None
18 None None
19 None None; 0.25
20 None Dispersion test
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Table A4: (Simulation case 1) Tabulated results comparing the number of goodness-of-fit (GOF) issues reported by
DHARMa for the correct model (Model 1, left column) and misspecified model (Model 2, right column) where N =
500, τ = 15,Wi ∼ Bern(0.5) and D̄ = 424.25 for 20 simulated data sets.

Outcome reported by DHARMa
Run # Model 1 (correct model, includes Wi) Model 2 (misspecified model, excludes Wi)

1 None Dispersion test; 0.75
2 None KS test, dispersion test; 0.25, 0.75
3 None KS test, dispersion test, outlier test; 0.25, 0.75
4 None Dispersion test; 0.25
5 None KS test, dispersion test; 0.25
6 None KS test, dispersion test; 0.25, 0.75
7 None KS test, dispersion test; 0.25
8 None KS test, dispersion test; 0.25, 0.75
9 None KS test, dispersion test; 0.25

10 None KS test, dispersion test; 0.25
11 None Dispersion test
12 None Dispersion test; 0.25, 0.75
13 None KS test, dispersion test; 0.25
14 None KS test, dispersion test; 0.25
15 None KS test, dispersion test; 0.25
16 None KS test, dispersion test; 0.25, 0.75
17 None Dispersion test, outlier test
18 None KS test, dispersion test; 0.25, 0.75
19 None KS test, dispersion test
20 None Dispersion test, outlier test; 0.25
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Table A5: (Simulation case 2) Tabulated results comparing the number of goodness-of-fit (GOF) issues reported by
DHARMa for the correct model (Model 1, left column) and misspecified model (Model 2, right column) where N =
500, τ = 7 and D̄ = 361.10 for 20 simulated data sets.

Outcome reported by DHARMa
Run # Model 1 (correct model, includes random effect) Model 2 (misspecified model, excludes random effect)

1 None Dispersion test, outlier test
2 None Dispersion test, outlier test
3 None Dispersion test; 0.75
4 None; 0.25 Dispersion test, outlier test; 0.25, 0.75
5 Dispersion test KS test, dispersion test, outlier test; 0.25
6 Dispersion test Dispersion test, outlier test; 0.25
7 Dispersion test KS test, dispersion test; 0.25
8 Dispersion test KS test, dispersion test, outlier test; 0.25
9 None KS test, dispersion test; 0.25

10 None KS test, dispersion test; 0.25
11 None KS test, dispersion test; 0.25, 0.75
12 None KS test, dispersion test; 0.25, 0.75
13 Dispersion test Dispersion test; 0.25
14 None KS test, dispersion test, outlier test; 0.25
15 None KS test, dispersion test; 0.25
16 None KS test, dispersion test, outlier test; 0.25
17 None KS test, dispersion test, outlier test; 0.25, 0.75
18 None KS test, dispersion test; 0.25, 0.75
19 Dispersion test Dispersion test
20 Dispersion test Dispersion test; 0.25, 0.75
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Table A6: (Simulation case 2) Tabulated results comparing the number of goodness-of-fit (GOF) issues reported by
DHARMa for the correct model (Model 1, left column) and misspecified model (Model 2, right column) where N =
500, τ = 15 and D̄ = 443.80 for 20 simulated data sets.

Outcome reported by DHARMa
Run # Model 1 (correct model, includes random effect) Model 2 (misspecified model, excludes random effect)

1 None KS test, dispersion test, outlier test; 0.25, 0.50, 0.75
2 None KS test, dispersion test, outlier test; 0.25, 0.50, 0.75
3 Dispersion test KS test, dispersion test, outlier test; 0.25, 0.50, 0.75
4 Dispersion test KS test, dispersion test, outlier test; 0.25, 0.75
5 Dispersion test KS test, dispersion test, outlier test; 0.25, 0.75
6 Dispersion test KS test, dispersion test, outlier test; 0.25, 0.75
7 None KS test, dispersion test, outlier test; 0.25, 0.75
8 None KS test, dispersion test, outlier test; 0.25, 0.75
9 None KS test, dispersion test, outlier test; 0.25, 0.75

10 None KS test, dispersion test, outlier test; 0.25, 0.75
11 None KS test, dispersion test, outlier test; 0.25, 0.75
12 None KS test, dispersion test, outlier test; 0.25, 0.75
13 Dispersion test KS test, dispersion test; 0.25, 0.75
14 None; 0.25, 0.50 KS test, dispersion test, outlier test; 0.25, 0.75
15 None KS test, dispersion test; 0.25
16 None KS test, dispersion test, outlier test; 0.25
17 None KS test, dispersion test, outlier test; 0.25, 0.75
18 None KS test, dispersion test; 0.25, 0.75
19 None KS test, dispersion test, outlier test; 0.25, 0.50, 0.75
20 None KS test, dispersion test, outlier test; 0.25
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Table A7: (Simulation case 3) Tabulated results comparing the number of goodness-of-fit (GOF) issues reported by
DHARMa for the correct model (Model 1, left column) and misspecified model (Model 2, right column) where N =
500, τ = 7 and D̄ = 368.05 for 20 simulated data sets.

Outcome reported by DHARMa
Run # Model 1 (correct model, GAM) Model 2 (misspecified model, GLM)

1 None None; 0.25, 0.50, 0.75
2 None None; 0.25, 0.50, 0.75
3 None None; 0.75
4 None None; 0.25, 0.50, 0.75
5 None None; 0.25, 0.50, 0.75
6 None None; 0.25, 0.50, 0.75
7 None None; 0.25, 0.50, 0.75
8 None None; 0.50, 0.75
9 None None; 0.25, 0.50, 0.75

10 None Dispersion test; 0.25, 0.50, 0.75
11 None Dispersion test; 0.25, 0.50, 0.75
12 None None; 0.25, 0.50, 0.75
13 None None; 0.25, 0.50, 0.75
14 None Dispersion test; 0.25, 0.50, 0.75
15 None None; 0.25, 0.50, 0.75
16 None None; 0.25, 0.50, 0.75
17 None None; 0.25, 0.50, 0.75
18 None None; 0.25, 0.50, 0.75
19 None None; 0.25, 0.50, 0.75
20 None None; 0.25, 0.50, 0.75
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Table A8: (Simulation case 3) Tabulated results comparing the number of goodness-of-fit (GOF) issues reported by
DHARMa for the correct model (Model 1, left column) and misspecified model (Model 2, right column) where N =
500, τ = 15 and D̄ = 434.4 for 20 simulated data sets.

Outcome reported by DHARMa
Run # Model 1 (correct model, GAM) Model 2 (misspecified model, GLM)

1 None Dispersion test, outlier test; 0.25, 0.50, 0.75
2 None Dispersion test, outlier test; 0.25, 0.50, 0.75
3 None Dispersion test, outlier test; 0.25, 0.50, 0.75
4 None Dispersion test, outlier test; 0.25, 0.75
5 None Outlier test; 0.25, 0.50, 0.75
6 None Dispersion test, outlier test; 0.25, 0.50, 0.75
7 None Dispersion test, outlier test; 0.25, 0.50, 0.75
8 None None; 0.25, 0.50, 0.75
9 None None; 0.25, 0.50, 0.75
10 None Dispersion test; 0.25, 0.50, 0.75
11 None Dispersion test; 0.25, 0.50, 0.75
12 None Dispersion test; 0.25, 0.50, 0.75
13 None Dispersion test; 0.25, 0.50, 0.75
14 None KS test, dispersion test; 0.25, 0.50, 0.75
15 None Dispersion test; 0.25, 0.50, 0.75
16 None Dispersion test; 0.25, 0.50, 0.75
17 None Dispersion test, outlier test; 0.25, 0.50, 0.75
18 None Dispersion test, outlier test; 0.25, 0.50, 0.75
19 None KS test, dispersion test, outlier test; 0.25, 0.50, 0.75
20 None Dispersion test, outlier test; 0.25, 0.50, 0.75
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Table A9: (Simulation case 4) Tabulated results comparing the number of goodness-of-fit (GOF) issues reported by
DHARMa for two closed population models, Model 1 (left column) and Model 2 (right column) where X ∼ N(0, 1),
initial N = 200, τ = 12, φ = ψ = 0.8 and D̄ = 546.50 for 10 simulated data sets.

Outcome reported by DHARMa
Run # Model 1 (GLMM) Model 2 (GLM)

1 Dispersion test; 0.25 KS test, dispersion test, outlier test; 0.25, 0.75
2 KS test, dispersion test; 0.75 KS test, dispersion test, outlier test; 0.25, 0.75
3 Dispersion test KS test, dispersion test, outlier test; 0.25, 0.75
4 KS test, dispersion test; 0.75 KS test, dispersion test, outlier test; 0.25, 0.75
5 Dispersion test; 0.75 KS test, dispersion test, outlier test; 0.25, 0.75
6 Dispersion test KS test, dispersion test, outlier test; 0.25, 0.75
7 Dispersion test KS test, dispersion test, outlier test; 0.25, 0.75
8 Dispersion test KS test, dispersion test, outlier test; 0.25, 0.75
9 Dispersion test KS test, dispersion test, outlier test; 0.25, 0.75
10 Dispersion test KS test, dispersion test, outlier test; 0.25, 0.75
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Table A10: (Simulation case 4) Tabulated results comparing the number of goodness-of-fit (GOF) issues reported by
DHARMa for two closed population models, Model 1 (left column) and Model 2 (right column) where X ∼ Bern(0.5),
initial N = 200, τ = 12, φ = ψ = 0.8 and D̄ = 577.70 for 10 simulated data sets.

Outcome reported by DHARMa
Run # Model 1 (GLMM) Model 2 (GLM)

1 Dispersion test; Levene test KS test, dispersion test, outlier test; Within-group deviation from uniformity
2 None; Levene test KS test, dispersion test, outlier test; Within-group deviation from uniformity, Levene test
3 Dispersion test KS test, dispersion test, outlier test; Within-group deviation from uniformity
4 Dispersion test KS test, dispersion test, outlier test; Within-group deviation from uniformity
5 Dispersion test KS test, dispersion test, outlier test; Within-group deviation from uniformity
6 Dispersion test; Levene test KS test, dispersion test, outlier test; Within-group deviation from uniformity
7 Dispersion test; Levene test KS test, dispersion test, outlier test; Within-group deviation from uniformity, Levene test
8 Dispersion test KS test, dispersion test, outlier test; Within-group deviation from uniformity
9 Dispersion test KS test, dispersion test, outlier test; Within-group deviation from uniformity

10 Dispersion test KS test, dispersion test, outlier test; Within-group deviation from uniformity
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