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Abstract

Fractal curves on the plane can be obtained as limit sets of the so-called Schottky groups. These are

groups of non-singular complex matrices acting as fractional linear transformations on the extended complex

plane. The Hausdorff dimension of the associated fractal is intimately associated with the geometry and

algebra of the corresponding Schottky group. Coarse properties of the space of all Schottky groups are

well understood since the 1970s through work of Jorgensen, Marden and Maskit. Recent theoretical and

computational advances allow a finer study of Schottky space, and helped understand the groups and limit

sets associated with two 2-dimensional slices in the 6-dimensional space of space of all 2-generator Schottky

groups. This report explicitly finds a 1-parameter family of 2-generator Schottky groups, and utilises an

iterative formula to approximate the Hausdorff dimension of the limit set.

1 Introduction

Fractals are geometric shapes that have contains detail at any arbitrarily small length scale. Some examples

include the Koch snowflake and the Mandelbrot Set. Moreover, objects in real life such as leaves and coastlines

are approximately fractals, and display many fractal-like properties, such as irregularity with self-similarity.

One way to construct a fractal curve on the complex plane is through the so-called Schottky groups. These

are groups of non-singular complex matrices acting as fractional linear transformations on the extended complex

plane. These transformations allows certain disks in the complex plane to be nested inside other disks. This

nesting process can happen arbitrarily many times, creating an infinite nesting of disks. The collection of the

points that arise in the smallest disks create a fractal. The fractal created and its properties depend on the

Schottky group. Specifically, the Hausdorff dimension of the associated fractal is intimately associated with the

geometry and algebra of the corresponding Schottky group.

This report explicitly finds a 1-parameter family of 2-generator Schottky groups and and utilises an iterative

formula to approximate the Hausdorff dimension of the limit set.

1.1 Statement of Authorship

The work here is heavily based from [1]. Both the motivation for the Schottky group in Section 3, and the

iterative formula for approximating the Hausdorff dimension in Section 2.2.1 come from [1]. Calculations such

as in Section 3.1 and Section 3.2 are my own work. Any results and figures from other sources have been cited.

2 Background

2.1 Möbius transformations

The extended complex plane C := C∪ {∞} is the complex plane together with the point at infinity. Intuitively,

the point at infinity is the single point that is infinitely far away from the origin. The standard operations
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extend to C, with z +∞ = ∞ and z ×∞ = ∞, ∀z ∈ C (with ∞−∞ and 0×∞ left undefined). Furthermore,

this allows the division by zero, namely z/0 = ∞, z/∞ = 0, ∀z ∈ C (with 0/0 and ∞/∞ left undefined).

The group of Möbius transformations under function composition is

Aut(C) = {M | M(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc ̸= 0} (1)

It turns out that the automorphisms of C is precisely the set of Möbius transformations. They can be

represented by 2×2 complex matrices through the following map, which respects function composition via

matrix multiplication

az + b

cz + d
→

a b

c d

 (2)

Observe that a Möbius transformation does not change under scalar multiplication of the correspond-

ing matrix. Thus, the group of Möbius transformations is isomorphic to the projective special linear group

PSL(2,C) = SL(2,C)/ ±I, where the special linear group SL(2,C) is the group of complex 2 × 2 matrices

of determinant 1, under matrix multiplication. Therefore, it is possible to talk about the trace of a Möbius

transformation (up to multiplication by ±1) without ambiguity, by taking the trace of the corresponding, unique

(up to multiplication by ±1), determinant 1 matrix.

Möbius transformations have several interesting properties. They are orientation preserving, analytic (and

thus conformal) maps (except at z = −d/c). Additionally, Möbius transformations map generalised circles to

generalised circles, where a generalised circle is either a circle or line in C. For any two such generalised circles,

there exists Möbius transformations that maps one to the other. Möbius transformations have either one or

two fixed points, which can be explicitly calculated. For M(z) = (az + b)/(cz + d), if c ̸= 0, then

z = M(z) =
az + b

cz + d
⇒ z =

a− d±
√
(a− d)2 + 4bc

2c
=

a− d±
√
tr(M)2 − 4

2c
(3)

and if c = 0, then

z = M(z) =
az + b

d
⇒ z =

b

d− a
,∞ (4)

Lemma 1. The fixed points of Möbius transformations correspond to the eigenvectors of the corresponding

matrix.

Proof. Consider some Möbius transformation M(z) = (az + b)/(cz + d), and let A ∈ PSL(2,C) be the corre-

sponding matrix. Then given z ∈ C (not C),a b

c d

z

1

 =

az + b

cz + d

 = (cz + d)

az+b
cz+d

1

 (5)

Thus

z

1

 being an eigenvector of A is equivalent to z being a fixed point of M . Note that if cz + d = 0,

then either A has determinant zero, or the fixed point of M is ∞ ∈ C \ C, neither of which is true.

If M(∞) = ∞, then by Equation (4), c = 0 and so

1

0

 is an eigenvector of A. Similarly, if

1

0

 is an

eigenvector of A, then c = 0, and thus ∞ is a fixed point of M .
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There are three classifications of Möbius transformations. One way to distinguish the classification is by

looking at the nature of a fixed point. Fixed points may behave as sinks or sources. Intuitively, a sink is

a point which brings neighbouring points closer to the point under the transformation, whilst a source takes

neighbouring points further from the point.

Parabolic maps have only one fixed point, which is both a sink and a source. These maps are conjugate to

translations T (z) = z + a. From Equation (3) and Equation (4), it can be shown that tr(M) = ±2.

Elliptic maps have two neutral fixed points (neither sink or source). These maps are conjugate to rotations

T (z) = λz, |λ| = 1, and satisfy tr(M) ∈ (−2, 2).

Loxodromic maps have two fixed points, one which is a sink and the other a source. These maps are

conjugate to scaling T (z) = λz, |λ| > 1, and satisfy |tr(M)| > 2. When λ ∈ R, then the map is called

hyperbolic. Hyperbolic maps also have real trace.

The rest of this report will freely interchange between Möbius transformations and their corresponding

matrices, unless explicitly stated.

2.2 Schottky Groups

Take 2g disjoint disks in the complex plane, D1, D2, . . . , D2g, and choose Möbius transformations Mi which map

the exterior of Di to the interior of Di+g. The Schottky group is the group generated by the Mi. It turns out

that these Möbius transformations are loxodromic. This report focuses specifically on the 2-generator Schottky

groups case, g = 2.

Note that the above are classical Schottky groups J0, which is the focus of this report. Generalised Schottky

groups J use disjoint Jordan curves (and are not restricted to circles).

Lemma 2 (Vogt, Fricke). Consider an arbitrary 2-generator Schottky group ⟨A,B⟩. The pair (A,B) ∈

PSL(2,C)2 is uniquely determined by the triple (tr(A), tr(B), tr(AB)) ∈ C3, up to conjugation.

Proof. Conjugating A and B is equivalent to a choice of a basis for C2. So, choose a basis B′ = {vA, vB}, such

that vA is some eigenvector of A with eigenvalue λ, and vB is some eigenvector of B with eigenvalue µ. Note

that there are 2×2 = 4 unique choices of this basis, (up to scaling of eigenvectors) since A and B are loxodromic

maps. Then in this basis,

AB′ =

λ a′

0 λ−1

 , BB′ =

µ 0

b′ µ−1

 (6)

where the inverse elements are determined by the determinant 1 condition, and a′, b′ ∈ C. Note that a′, b′ ̸= 0,

since the fixed points of A and B lie inside the associated disks which are disjoint, so A and B do not share any

eigenvectors. Now, it is possible to adjust the choice of basis to B = {α1vA, α2vB} (since the basis vectors still

satisfy being eigenvectors of A and B respectively) such that

AB =

λ 1

0 λ−1

 , BB =

µ 0

b µ−1

 (7)
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with b ∈ C \ {0}. This gives

tr(AB) = λ+ λ−1 (8)

tr(BB) = µ+ µ−1 (9)

tr((AB)B) = λµ+ λ−1µ−1 + b (10)

Given tr(A) and tr(B), it is possible to solve Equation (8) and Equation (9) for 2× 2 = 4 unique solutions for

λ and µ, which can then be used to solve Equation (10) to get a unique b. The four solutions for (λ, µ, b) ∈ C3

correspond precisely with the four choices of the basis B (again up to scaling of the basis vectors). Thus,

(A,B) ∈ PSL(2,C)2 is uniquely determined by the triple (tr(A), tr(B), tr(AB)) ∈ C3.

Although all 2-generator Schottky groups have a corresponding point in C3, not every point in C3 has a

Schottky group. For example, (2, 2, 2) ∈ C3 corresponds to the identity matrices, which clearly do not form

a Schottky group. It is of interest to see which subspaces of C3 correspond to 2-generator Schottky groups.

Since C3 is a six real dimensional space which is a vast space to study, many people look at two dimensional

slices in this space. Some famous slices include the diagonal slice and the Riley slice, which consists of triples

(z, z, z) ∈ C3, and (2, 2, 2 + z) ∈ C3 respectively, for z ∈ C. Although strictly speaking the Möbius transforma-

tions are loxodromic (i.e. trA, trB > 2), it is possible to extend the definition of the Schottky group by taking

the limit of the traces approaching 2 to have parabolic maps, which is the case for the Riley slice. In fact, this

corresponds to the disks being tangentially connected.

Given the setup with 2g disks, the fundamental domain

F := C \
2g⋃
i=0

Di (11)

is the region of the extended complex plane excluding the disks. For the Schottky group Γ = ⟨M1, . . . ,Mg⟩, the

limit set is defined as the following

Λ(Γ) := C \ Γ(F) (12)

Intuitively, the Möbius transformations applied to certain disks create smaller nested disks. Thus, composing

them creates further nesting of disks. Applying certain compositions of the Möbius transformations on the

original disks, will result in smaller, nested disks, and in the limit of infinite compositions, the disk will become

a singular point. The limit set is the collection of all of these points, which creates a fractal set.

2.2.1 Dimension of the limit set

The Hausdorff or fractal dimension is a measure of “roughness” of a fractal. The fractal dimension agrees with

the standard, topological, integer dimension for standard, smooth shapes. For example, both the Hausdorff and

topological dimension of a point is 0, of a line is 1, plane is 2, and so on. In general, the Hausdorff dimension

is an (extended) real number.
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Figure 1: Example of nesting of disks from a 2-generator Schottky group, courtesy of [2]. The limit set is the

collection of points inside the nested circles.

The dimension of the limit set can be explicitly calculated for Schottky groups. The following setup and

formulas from this section is taken without proof from [1], and much more detail is given in that paper.

Definition 3 (Jenkinson, Pollicott). Let A be a g × g matrix, with A(i, j) = 1 if (i, j) is admissible, and 0

otherwise. (i, j) is called admissible if there exists an associated Mij ∈ {M1, . . . ,Mg} ⊂ ⟨M1, . . . ,Mg⟩ = Γ

(which is unique) such that Mij(Di) ⊂ int(Dj). Construct M ′
ij by restricting the domain of Mij to Di. An

admissible string of length n+1 is a tuple i
∼
= (i1, . . . , in+1), such that A(ij , ij+1) = 1 for j = 1, . . . , n. Call the

map M i
∼
= M ′

in+1in
◦M ′

inin−1
◦ · · · ◦M ′

i2i1
an admissible n-fold composition. Let Tn be the set of all admissible

n-fold compositions. Then, define

an(s) :=
1

n

∑
Tnz=z

|DTn(z)|−s

det(I − [DTn(z)]−1)
(13)

where [DTn(z)] denotes the Jacobian of Tn at z, and |DTn(z)| denotes the modulus of the real part of the

derivative of Tn at z. Define

∆N (s) := 1 +

N∑
n=1

∑
(n1,...,nm)

n1+···+nm=n

(−1)m

m!
an1

(s) · · · anm
(s) (14)

where the second summation is over all ordered m-tuples of positive integers whose sum is n. Then, the

(Hausdorff) dimension of the limit set can be approximated by sN , which is the largest zero of ∆N (s), as

|dim(Λ)− sN | ≤ CδN
3/2

(15)

where C > 0, 0 < δ < 1. Notice that the dimension converges super-exponentially in N , so practically, the

dimension of the limit set can be well approximated even for low values of N .
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3 McMullen’s three circle family

Let Cj = {z | |z − zj | = r}, where zj = ae
2πi
3 j , a = sec θ

2 and r = tan θ
2 for 0 < θ < 2π

3 and j ∈ {0, 1, 2}. This

gives 0 < r <
√
3 and 1 < a < 2. Let ρj be reflections in Cj , (which are in fact, orientation reversing). They

take the form

ρj(z) =
r2

z − zj
+ zj (16)

Figure 2: Diagram of three circle family, courtesy of [1]

3.1 Construction of a Schottky family

Consider C3 := ρ0(ρ1(C1)) and C4 := ρ0(ρ2(C2)), which creates two circles inside C0. Denote with Di the

disk enclosed by Ci. Then, it can be shown that A(z) = ρ0ρ1(z), B(z) = ρ0ρ2(z) are Möbius transformations

that map the exterior of D1 to the interior of D3 and the exterior of D2 to the interior D4 respectively. So let

Γ = ⟨A,B⟩ be the Schottky group. The one parameter family of Schottky groups is created as a varies between

1 and 2. Explicitly computing A and B gives

A(a) =
1

a2 − 1

1 + a2e
iπ
3

√
3ae−

iπ
6

√
3ae

iπ
6 1 + a2e−

iπ
3

 , B(a) =
1

a2 − 1

1 + a2e−
iπ
3

√
3ae

iπ
6

√
3ae−

iπ
6 1 + a2e

iπ
3

 (17)

The fixed points of A are

z =
a±

√
3(4− a2) + i(

√
3a∓

√
4− a2)

4
(18)

and the fixed points of B are

z =
a±

√
3(4− a2)− i(

√
3a∓

√
4− a2)

4
(19)

and the corresponding triple in C3 (up to conjugation) is

(trA, trB, trAB) =

(
2 + a2

a2 − 1
,
2 + a2

a2 − 1
,
(2a2 + 1)(a2 + 2)

(a2 − 1)2

)
(20)
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Figure 3: Schottky group for a = 2, with a few nestings of circles

It is also of interest to know what happens near the boundary of the family, namely as a approaches both 1

and 2.

As a approaches 2, all disks get larger and closer to each other, and when a = 2, the disks are tangent to

each other. The trace triple approaches (2, 2, 6), which corresponds to a point on the Riley slice. Thus, the

maps indeed turn from loxodromic to parabolic maps.

As a approaches 1, all disks get smaller, and when a = 1, each disk become a point. Each component of

trace triple grows without bound as a approaches 1, however not at the same rate. tr(AB) grows as (a2 − 1)−2,

whilst trA and trB grow as (a2 − 1)−1.

Figure 4: Schottky group as a approaches 1 Figure 5: Schottky group for a = 2
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3.2 Dimension of limit set

Notice that the reflections ρi fix the unit circle, and thus any compositions also fix the unit circle. Namely,

since A and B are compositions of reflections, the limit set is a subset of the unit circle.

Lemma 4. Recall that Γ = ⟨A,B⟩ = ⟨ρ0ρ1, ρ0ρ2⟩ and F = C \
⋃4

i=1 Di. Let Γ− = ⟨ρ0, ρ1, ρ2⟩, and F− =

C \
⋃2

i=0 Di. Then

Λ(Γ) = Λ(Γ−) (21)

Proof. Observe that Γ− = Γ ∪ ρ0Γ. Then Γ−(F−) = Γ(F ∪ ρ0F), and so

Λ(Γ−) := C \ Γ−(F−) = C \ Γ(F ∪ ρ0F) = Λ(Γ) (22)

So to calculate the dimension of the limit set for the Schottky group, it is the same as calculating the

dimension of the limit set for the reflection group Γ−. Furthermore consider f(z) = i(z − 1)/(z + 1), which is

a bi-Lipschitz function that maps the unit circle to the real line. Then Ti = f ◦ ρi|S1 ◦ f−1 is a map from the

real line to itself, and the dimension of the limit set generated by Ti is the same as the limit set generated by

ρi (because the limit set of the reflection group is a subset of the unit circle, and f is bi-Lipschitz).

In fact, the iterative formula in Section 2.2.1 works exactly the same by replacing Mij with Tij (again, more

details in [1]).

I personally calculated sN for N = 2, 3, 4, utilising Desmos and Matlab. Detailed calculations are in

Appendix A, with Matlab code in Appendix B. Note that bi, ci are merely intermediate calculations to get ai(s)

and ∆i(s).
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c2 =

(
a2 + 2− a

√
3(4− a2)

)2
4(a2 − 1)2

(23)

c3 =

(√
3a(a+ 1)(a+ 2)− (a2 + 2)(

√
3a+

√
4a2 − 1)

)2
4(a2 − 1)3

(24)

c41 =

(√
3a(a2 + 2)(

√
3 +

√
4− a2) + (a+ 1)(a3 − 4a2 − 4a− 2)

)2
4(a2 − 1)4

(25)

c42 =

(
3a(2a2 + 1 +

√
4a4 + a2 + 4)− (a+ 1)(a+ 2)(2a2 + 1)

)2
4(a2 − 1)4

(26)

b2 =
(
1− (c2)

2
)2

(27)

b3 =
(
1− (c3)

2
)2

(28)

b41 =
(
1− (c41)

2
)2

(29)

b42 =
(
1− (c42)

2
)2

(30)

a2(s) = 3
(c2)

s

b2
(31)

a3(s) = 2
(c3)

s

b3
(32)

a4(s) =
3

2

(c41)
s

b41
+ 3

(c42)
s

b42
(33)

∆2(s) = 1− a2(s) (34)

∆3(s) = 1− a2(s)− a3(s) (35)

∆4(s) = 1− a2(s)− a3(s)− a4(s) +
1

2
(a2(s))

2
(36)

Since the limit set is a subset of the unit circle, the dimension should be a number between 0 and 1. By

plotting the graph of the ∆N above for N = 2, 3, 4, sN seems to be well behaved for 0 < θ ≲ 1.8. However, as θ

approaches 2π/3, sN does not behave well (namely, sN grows larger than 1 for s2, s3, and goes negative for s4).

So larger N is required for θ values closer to 2π/3. On the other hand, as θ approaches 0, the dimension also

approaches 0, which makes sense as the disks get smaller. The dimension of the limit set is a monotonic as a

function of θ (i.e. the dimension grows monotonically from 0 to some upper bound (presumably 1) as θ ranges

from 0 to 2π/3).

Specifically for a = sec−1(π/12) (corresponding to θ = π/6),

s2 = 0.146262063398418 (37)

s3 = 0.184185463230749 (38)

s4 = 0.183987414778089 (39)

and so, the dimension of the limit set is approximately 0.18399. This generally agrees with the calculations

done in [1].
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Figure 6: Plot of ∆4(s) in desmos, along with s4 for θ = π/6

4 Discussion and Conclusion

In this report, we have constructed a one parameter family of 2-generator Schottky groups, motivated by

the three circle reflection group. An iterative formula was then used to approximate the dimension of the

corresponding limit set. Future work could involve a more detailed analysis on the limiting behaviours of the

parameter a, specifically as a approaches both 1 and 2. Furthermore, the one parameter family could be turned

into a two parameter family by making a complex (thus making it a 2-dimensional slice). This could involve

taking the trace triple obtained in the one parameter case, extending the definition for a complex, and seeing

which complex numbers make a Schottky group.
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A Limit set calculation

Recall that

an(s) :=
1

n

∑
Tnz=z

|DTn(z)|−s

det(I − [DTn(z)]−1)
(40)

∆N (s) := 1 +

N∑
n=1

∑
(n1,...,nm)

n1+···+nm=n

(−1)m

m!
an1

(s) · · · anm
(s) (41)
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As outlined in Section 3.2, the transformations used will be compositions of the Ti, where Ti = f ◦ ρi|S1 ◦ f−1,

f(z) = i(z − 1)/(z + 1), ρi(z) =
r2

z−zi
+ zi. Computing gives

T0(x) =
a− 1

(a+ 1)x
=

 0 a− 1

a+ 1 0

 (42)

T1(x) =

√
3ax+ (2 + a)

−(2− a)x−
√
3a

=

 √
3a 2 + a

−(2− a) −
√
3a

 (43)

T2(x) =

√
3ax− (2 + a)

(2− a)x−
√
3a

=

√
3a −(2 + a)

2− a −
√
3a

 (44)

Note that Ti is a map from the real line to itself, but can be analytically extended to the extended complex

plane. Ti are Möbius transformations, with fixed points which lie on the real line. It can be verified that the

matrix from Section 2.2.1 which shows if a given pair is admissible is the following matrix
0 1 1

1 0 1

1 1 0

 (45)

Due to the diagonal elements being 0, the set of admissible 1-fold compositions is empty, so a1(s) = ∆1(s) = 0.

For Möbius transformation M(z) = (az + b)/(cz + d), the Jacobian matrix is

[DM(x+ iy)] =
ad− bc

((cx+ d)2 + (cy)2)2

(cx+ d)2 − (cy)2 2yc(cx+ d)

−2yc(cx+ d) (cx+ d)2 − (cy)2

 (46)

and so evaluating at any strictly real number gives

[DM(x)] =
ad− bc

(cx+ d)2

1 0

0 1

 (47)

det(I − [DM(x)]−1) =

(
1−

(
(cx+ d)2

ad− bc

)2
)2

(48)

Also,

DM(z) =
ad− bc

(cz + d)2
(49)

|DM(x)|−s =

∣∣∣∣ (cx+ d)2

ad− bc

∣∣∣∣s (50)

where DM(z) is the real part of the derivative of M at z.

In the case of the three circle family, there are two symmetries that can be exploited. These symmetries

are rotation by 2π/3, and a reflection about the real line. What this means is that the derivative information

above about fixed points for a transformation in one circle, correspond to derivative information for a similar

transformation in a different circle. For example, DT0T1(z0) = DT1T2(z1) = DT2T0(z2) (rotational symmetry)

and DT0T1(z0) = DT0T2(z4) (reflection symmetry), where zi are the relevant fixed points. Practically speaking,

it is enough to do the above calculations for unique n-fold compositions starting in T0, up to swapping T1 and

T2. Note that by the admissibility restriction, Ti (and any compositions) only have one fixed point.
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A.1 N = 2

There are six 2-fold compositions (T0T1, T0T2, T1T0, T1T2, T2T0, T2T1), however utilising the symmetry, calcula-

tions only need to be done for one transformations, say T0T1. Let xf denote the fixed point.

T0T1(z) =

(a− 1)(2− a)
√
3a(a− 1)

−
√
3a(a+ 1) −(a+ 1)(2 + a)

 (51)

xf =
−
√
3−

√
4− a2

a+ 1
(52)

c2 =
(cxf + d)2

ad− bc
=

(
a2 + 2− a

√
3(4− a2)

)2
4(a2 − 1)2

(53)

b2 =
(
1− (c2)

2
)2

(54)

a2(s) =
1

2

(
6
(c2)

s

b2

)
(55)

∆2(s) = 1 +
(−1)1

1!
a2(s) (56)

A.2 N = 3

Again, there are six 3-fold compositions (T0T1T2, T0T2T1, T1T0T2, T1T2T0, T2T0T1, T2T1T0), however utilising the

symmetry, calculations only need to be done for one transformations, say T0T1T2. Note that a function like

T0T1T0 is not a 3-fold composition, since (1, 1) is not admissible (i.e. the reflection ρ0 does not map D0 to the

interior of D0). Let xf denote the fixed point.

T0T1T2(z) =

√
3a(a− 1)(2− a) −(a− 1)(a2 + 2)

−(a+ 1)(a2 + 2)
√
3a(a+ 1)(2 + a)

 (57)

xf =

√
3a+

√
4a2 − 1

a+ 1
(58)

c3 =
(cxf + d)2

ad− bc
=

(√
3a(a+ 1)(a+ 2)− (a2 + 2)(

√
3a+

√
4a2 − 1)

)2
4(a2 − 1)3

(59)

b3 =
(
1− (c3)

2
)2

(60)

a3(s) =
1

3

(
6
(c3)

s

b3

)
(61)

∆3(s) = 1 +
(−1)1

1!
a2(s) +

(−1)1

1!
a3(s) (62)

A.3 N = 4

There are three 4-fold compositions up to symmetry. They are T0T1T0T1, T0T1T0T2, T0T1T2T1. In fact, it

turns out that T0T1T0T2 and T0T1T2T1 give the same derivative information, since they are conjugate by a 2π/3

rotation counterclockwise with the reflection ρ0 in the original three circle setup. However, this proof is not

shown here, and instead the calculations are simply done explicitly. Let xf denote the fixed point.
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T0T1T0T1(z) =

(a− 1)(a3 + 4a2 − 4a+ 2)
√
3a(a− 1)(a2 + 2)

−
√
3a(a+ 1)(a2 + 2) (a+ 1)(a3 − 4a2 − 4a− 2)

 (63)

xf =
−
√
3−

√
4− a2

a+ 1
(64)

c41 =
(cxf + d)2

ad− bc
=

(√
3a(a2 + 2)(

√
3 +

√
4− a2) + (a+ 1)(a3 − 4a2 − 4a− 2)

)2
4(a2 − 1)4

(65)

b41 =
(
1− (c41)

2
)2

(66)

T0T1T0T2(z) =

(a− 1)(2a− 1)(a2 + 2) −3
√
3a2(a− 1)

−3
√
3a2(a+ 1) (a+ 1)(2a+ 1)(a2 + 2)

 (67)

xf =

√
3(a2 + 2) +

√
3
√
4a4 + a2 + 4

3a(a+ 1)
(68)

c42 =
(cxf + d)2

ad− bc
=

(
3a(2a2 + 1 +

√
4a4 + a2 + 4)− (a+ 1)(a+ 2)(2a2 + 1)

)2
4(a2 − 1)4

(69)

b42 =
(
1− (c42)

2
)2

(70)

T0T1T2T1(z) =

(a− 1)(2− a)(2a2 + 1) −3
√
3a(a− 1)

3
√
3a(a+ 1) −(a+ 1)(2 + a)(2a2 + 1)

 (71)

xf =

√
3(2a2 + 1) +

√
3
√
4a4 + a2 + 4

3(a+ 1)
(72)

c43 =
(cxf + d)2

ad− bc
= c42 (73)

b43 = b42 (74)

a4(s) =
1

4

(
6
(c41)

s

b41
+ 12

(c42)
s

b42

)
(75)

∆4(s) = 1 +
(−1)1

1!
a2(s) +

(−1)1

1!
a3(s) +

(−1)1

1!
a4(s) +

(−1)2

2!
(a2(s))

2 (76)

The dimension of the limit set can be found by plotting ∆N (s) in some software, and finding the zero of the

graph.

B Matlab code

1 theta = pi/6;

2 a = sec(theta/2);

3

4 syms s;

5

6 %a2

7 b2c1 = (aˆ2 + 2 −a*sqrt(3*(4−aˆ2)))/(2*(aˆ2−1));

8 b2d1 = (1−(b2c1)ˆ4)ˆ2;
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9 a2 = 3*(b2c1).ˆ(2*s)/b2d1;

10

11 %a3

12 b3c1 = (sqrt(3)*a*(a+1)*(a+2)−(aˆ2+2)*(sqrt(3)*a+sqrt(4*aˆ2−1)))ˆ2/(4*(aˆ2−1)ˆ3);

13 b3d1 = (1−(b3c1)ˆ2)ˆ2;

14 a3 = 2*(b3c1).ˆ(s)/b3d1;

15

16 %a4

17 b4c1 = (a*(aˆ2+2)*(3+sqrt(3*(4−aˆ2)))+(a+1)*(aˆ3−4*aˆ2−4*a−2))ˆ2/(4*(aˆ2−1)ˆ4);

18 b4d1 = (1−(b4c1)ˆ2)ˆ2;

19 b4c2 = (3*a*(2*aˆ2+1+sqrt(4*aˆ4+aˆ2+4))−(a+1)*(2+a)*(2*aˆ2+1))ˆ2/(4*(aˆ2−1)ˆ4);

20 b4d2 = (1−(b4c2)ˆ2)ˆ2;

21 a4 = (1/2)*(3*(b4c1).ˆ(s)/b4d1 + 6*(b4c2).ˆ(s)/b4d2);

22

23 eqn = 1−a2−a3−a4+(a2).ˆ(2)/2 == 0;

24

25 %Intercept (dimension)

26 format longg

27 xInt = double(solve(eqn))

28 yInt = zeros(size(xInt));

29

30 %Plotting

31 x=linspace(−0.05,1.3);

32

33 a2 = 3*(b2c1).ˆ(2*x)/b2d1;

34 a3 = 2*(b3c1).ˆ(x)/b3d1;

35 a4 = (1/2)*(3*(b4c1).ˆ(x)/b4d1 + 6*(b4c2).ˆ(x)/b4d2);

36

37 delta = 1−a2−a3−a4+(a2).ˆ(2)/2;

38 plot(x,delta,'k−')

39 hold on

40 plot(xInt,yInt, 'm*','MarkerSize', 10)

41 yline(0)

42 xline(0)
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