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Abstract

The study of Vertex Operator Algebras is a relatively young field of mathematics which came to promi-

nence due to its role in the solution of the Monstrous Moonshine conjectures. Vertex operators, initially

studied by physicists working on the precursor to string theory known as dual resonance theory, first en-

tered mathematics as part of the representation theory of infinite-dimensional Lie algebras known as affine

Kac-Moody algebras. In this paper we introduce some of the basic techniques of vertex operator theory,

ultimately working up to the twisted vertex operator realization of the simplest nontrivial affine Kac-Moody

algebra sl2K .̃
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1 Introduction

A crowning achievement of 20th century mathematics was the classification of finite simple groups, officially

wrapped up in 2004 (see e.g. Aschbacher (2004)) as the culmination of over 10 thousand pages of mathematical

proof. Although most of the finite simple groups can be constructed as the automorphisms of easily defined

objects falling into regular infinite families, among these also lurk the much more mysterious sporadic groups,

the largest of which is the so-called Fischer-Griess Monster or Friendly Giant M having order

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 (1.1)
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with its smallest faithul representation on a complex vector space requiring 47 · 59 · 71 = 196,883 dimensions.

The Monster’s identity is steeped in cöıncidence and mystique: In the intervening time between the prediction

of the group’s existence and its construction, mathematicians had already accumulated an astonishing number

of curious connections to seemingly disparate areas of mathematics, collectively termed moonshine.

The modular group

Γ = PSL2 Z = SL2 Z/{±1} (1.2)

acts on the upper-half complex plane H = {τ ∈ C : ℑ(τ) > 0} via Möbius transformations

γ ⊙ τ =
aτ + b

cτ + d
, γ = ±

a b

c d

 ∈ Γ, τ ∈ H (1.3)

and a modular function is a meromorphic function on H ∪ {i∞} which is invariant under Γ. It turns out that

the set of all such functions is given by the field of rational functions of the so-called J-invariant

J(τ) =
∑
n∈Z

anq
n = q−1 + 0 + 196884q + 21493760q2 + · · · q = e2πiτ (1.4)

It was McKay who first noticed the near cöıncidence of a1 with the minimal dimension of a faithful representation

of M, and a profusion of relations of this sort soon followed:

a1 = d0 + d1 (1.5)

a2 = d1 + d2 + d3 (1.6)

a3 = 2d1 + 2d2 + d3 + d4 (1.7)

a4 = 3d1 + 3d2 + d3 + 2d4 + d5 (1.8)

a5 = 4d1 + 6d2 + 3d3 + 2d4 + d5 + d6 + d7 (1.9)

where dn is the dimension of the nth smallest irreducible representation of M over C. Many dismissed these

concurrences as meaningless, after all any integer is expressible in terms of the dimensions of irreducible repre-

sentations, since d0 = 1! What was compelling were the small coëfficients involved in these expressions, which

lead Thompson (1979) to conjecture the existence of a natural infinite-dimensional representation of M

V ♮ = V1 ⊕ V−1 ⊕ V−2 ⊕ · · · (1.10)

such that dimV−n = an, whose rich structure should be responsible for the cöıncidences of monstrous moonshine.

Up until this point, constructions of the Monster lacked the elegance and canonical character of the other

sporadic groups. For example, the Mathieu groups arise naturally as the symmetries of the 24-bit Golay code,

an exceptional error-correcting code; and the Conway groups arise as the symmetries of the Leech lattice,

representing the best known sphere packing in 24 dimensions.

The eventual construction of the moonshine module V ♮ involves vertex operators, bringing M into proximity

with yet another area of mathematics: The theory of Lie algebras. A classificiation of finite-dimensional simple
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Lie algebras over C was known as early as 1888, and later Kantor, Kac (1968), and Moody (1968) began studying

infinite-dimensional generalizations of these, which came to be known as Kac-Moody algebras. An important

class of these are the affine Kac-Moody algebras, the simplest nontrivial example of which is sl2K ,̃ the focus of

this paper. Lepowsky and Wilson (1978) constructed the basic representation of sl2K˜ using apparently novel

differential operators in infinitely many variables. It was Garland who first observed a similarity between these

differential operators and the “vertex operators” physicists had been using in dual resonance theory, an early

form of string theory, and the notions were shown to cöıncide in Frenkel and Kac (1980). The concept of vertex

operators was refined by Borcherds, who axiomatised vertex operator algebras an example being V ♮.

In this paper, we lay out the foundations of the theory of vertex operators by studying them in their

original mathematical context of the representation theory of sl2K .̃ We introduce affine Lie algebras and the

Heisenberg algebras which often arise as subalgebras, paying particular attention to the uniqueness of the so-

called Heisenberg modules by an algebraic analogue to the Stone-Von Neumann theorem of quantum mechanics.

We finish by constructing the twisted vertex operator realisation of sl2K˜ from an underlying Heisenberg module.

This paper assumes basic knowledge from the theory of algebras over a field, in particular unital associative

and Lie algebras, including the Poincaré-Birkhoff-Witt theorem, a treatment of which is found in Humphreys

(1972). We also invoke some basic notions from category theory. We work over an algebraically closed field K

of characteristic 0.

1.1 Statement of authorship

The majority of the historical background, definitions, and results are adapted or motivated from the introduc-

tion and first three chapters of Frenkel, Lepowsky, and Meurman (1988). Examples from physics are based on

Schottenloher (2008). The proof of Dixmier’s lemma in appendix A expands a sketch in Quillen (1969) and

uses definitions from Roman (2008).

2 Formal calculus

Let V be a vector space over K. We denote by V {z} formal sums with exponents in K and coëfficients in V∑
n∈K

vnz
n ∈ V {z} (2.1)

which can be thought of as notation for a function K → V . Then V {z} is a vector space, with the subspaces

• V [[z]] has exponents in N0 only, and is called Taylor series over V ;

• V [[z, z−1]] has exponents in Z only, and is called Laurent series over V ;

• V [z] = V ⊗K[z] has exponents in N0 only and finitely many terms, and is called polynomials over V ;

• V [z, z−1] = V ⊗K[z, z−1] has exponents in Z only and finitely many terms, and is called Laurent polyno-

mials over V .
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Given v(z) =
∑

n∈Z vnz
n ∈ V [[z, z−1]] we define v(αz) =

∑
n∈Z α

nvnz
n for α ∈ K, and if in addition v(z) ∈

V [z, z−1] we define evaluation similarly. There are well-defined bilinear multiplication maps defined in the

obvious way:

V [z, z−1]×K{z} → V {z} (2.2)

V [z, z−1]×K[[z, z−1]] → V [[z, z−1]] (2.3)

For formal sums l{z} over a Lie algebra l, we extend the bracket to a bilinear map

[−,−] : l{z1} × l{z2} → l{z1, z2} (2.4)

so that given xm, yn ∈ l for all m,n ∈ K[∑
m∈K

xmzm1 ,
∑
n∈K

ynz
n
2

]
=

∑
m,n∈K

[xm, yn]z
m
1 zn2 (2.5)

We fix the notation D = z d
dz for the ‘degree operator’1 on V {z}

D : V {z} → V {z} (2.6)

vtn → nvtn (2.7)

for n ∈ K, and use Dj = Dzj = zj
d

dzj
in case multiple variables are present. If V is a K-graded vector space

with degree operator d ∈ EndK V , and letting

v(z) =
∑
n∈K

vnz
n ∈ V {z} X(z) =

∑
n∈K

x(n)z−n ∈ (EndV ){z} (2.8)

where vn ∈ V and x(n) ∈ EndV for all n ∈ K we have

Dv(z) = dv(z) ⇐⇒ (∀n ∈ K)[deg vn = n] (2.9)

−DX(z) = [d,X(z)] ⇐⇒ (∀n ∈ K)[deg x(n) = n] (2.10)

Often we will deal with formal sums (EndK V ){z} over endomorphisms, in which case we can define algebraic

operations under certain circumstances. We say a family {xi}i∈I ⊆ EndK V of endomorphisms is summable iff

for all v ∈ V we have xiv = 0 for all but finitely many i ∈ I, whence∑
i∈I

xi : V → V (2.11)

v 7→
∑
i∈I

xiv (2.12)

The sum of a family {Xi(z)}i∈I ⊆ (EndK V ){z} with Xi(z) =
∑

n∈K xi(n)z
n exists iff {xi(n)}i∈I are

summable for all n ∈ K, whence

∑
i∈I

Xi(z) =
∑
n∈K

(∑
i∈I

xi(n)

)
zn (2.13)

1. D cannot be a true degree operator as V {z} is not K-graded, however it is a degree operator on subspaces such as V [z]
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The product of a finite sequence (Xi(z))
r
i=1 ⊆ (EndK V ){z} with Xi(z) =

∑
n∈K xi(n)z

n exists iff for every

n ∈ K the set

Pn =

{
r∏

i=1

xi(ni) :

r∑
i=1

ni = n ∧ {ni}ri=1 ⊆ K

}
(2.14)

is summable, whence

r∏
i=1

Xi(z) =
∑
n∈K

∑
p∈Pn

p

 zn (2.15)

Finally, let

X(z1, z2) =
∑

m,n∈K
x(m,n)zm1 zn2 ∈ (EndV ){z1, z2} (2.16)

Then limz1→z2 X(z1, z2) exists iff for every n ∈ K the family {x(m,n−m)}m∈K is summable, and is given by

lim
z1→z2

 ∑
m,n∈K

x(m,n)zm1 zn2

 =
∑
n∈K

(∑
m∈K

x(m,n−m)

)
zn2 (2.17)

We can mimic many techniques from calculus formally. An important object is the formal exponential

exp(z) = ez =
∑
n∈N0

zn

n!
∈ K[[z]] (2.18)

Theorem 2.1. Let A be an associative algebra over K and ∆ be a derivation on A, and x ∈ A such that ex

exists and x commutes with ∆[x]. Then

∆[ex] = ∆[x]ex (2.19)

Proof. By the Leibniz rule, ∆[xn] = nxn∆[x]. Thus

∆[ex] = ∆

[∑
n∈N0

xn

n!

]
= ∆[x]

∑
n∈N

xn−1

(n− 1)!
= ∆[x]

∑
n∈N0

xn

n!
= ∆[x]ex (2.20)

as claimed.

3 Some representation theory

Consider a unital associative algebra A over K. By a representation of A on a vector space M over K, we

understand a unital algebra homomorphism Γ : A → EndK(M). It is useful to change perspective, and think of

(M,π) as a single object. This unifying concept is the A-module. Recall that given a ring R, a (left) R-module

M is an abelian group (M,+) with a left R-action satisfying distributivity properties analogous to a vector

space. A homomorphism f : M → N of R-modules M,N is a map satisfying f(pu + qv) = pf(u) + qf(v) for

any p, q ∈ R and u, v ∈ M , and together with R-modules these form the category RMod. A submodule N ≤ M

is a subset which is an R-module under the same operations. Since K forms a subring of A, an A-module M is
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a vector space over K equipped with an appropriate left A-action, and an A-module homomorphism is K-linear.

We will typically denote the left-action by (⊙).

Now by a representation of a Lie algebra g on a vector space V , we understand a Lie algebra homomorphism

Γ : g → EndK(M). By the universal property of the universal enveloping algebra, this induces a unique

representation2 of the unital associative algebra U(g). Hence we may identify a representation of a Lie algebra

g with a U(g)-module. Hereinafter the terms g-module and U(g) module are used interchangeably.

Given a unital associative subalgebra B ≤ A, we would like a way to canonically extend any B-module to an

A-module. The A-module induced by the B-module V is a pair consisting of an A-module IndAB V = A⊗BV and

a B-module homomorphism ι : V → IndAB V such that given any A-module W and B-module homomorphism

f : V → W , there exists a unique A-module homomorphism f̄ : IndAB V → W such that f = f̄ ι.

V IndAB V

W

ι

f
∃!f̄ (3.1)

The induced module is easily constructed as the quotient vector space

A⊗B V =
A⊗K V

⟨ab⊗ v − a⊗ b · v : a ∈ A, b ∈ B, v ∈ V ⟩≤KV

(3.2)

Remark 3.1. The induced module is also defined for Lie algebras: If h ≤ g is a Lie subalgebra, and V is a

h-module, then Indgh V = U(g)⊗U(h) V .

A module is called simple or irreducible iff it has no nontrivial proper submodules. We will need:

Theorem 3.2 (Schur’s lemma). Let V,W be simple R-modules. Then any nonzero module homomorphism

f : V → W is an isomorphism. In particular, the endomorphism ring EndR(V ) of a simple module V is a

division algebra.

Proof. Since ker f ≤ V and im f ≤ W are submodules of simple modules, they must either be trivial or equal to

V and W respectively. If f ̸= 0 then ker f ̸= V and im f ̸= 0, hence f is epic and monic and thus an R-module

isomorphism

Corollary 3.3. If K is algebraically closed, A is a unital associative algebra over K, and V is an A-module

such that dimK V < |K|, then EndA V = K.

Proof. See appendix A.

4 Affine Lie algebras

Given a Lie algebra g over K, the Loop algebra is defined as the tensor product algebra3

g[t, t−1] = g⊗K[t, t−1] (4.1)

2. As an abuse of notation we use the same symbol for the representation of g and U(g).

3. This notation agrees with (2.5).
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giving the Lie bracket structure

[xtn, ytm] = [x, y]tn+m (4.2)

for x, y ∈ g and n,m ∈ Z.

A bilinear form ⟨−,−⟩ : g× g → K on a Lie algebra g is said to be invariant or g-invariant iff the following

identity holds

⟨x, [y, z]⟩ = ⟨[x, y], z⟩ (4.3)

A quadratic Lie algebra g is a Lie algebra with a symmetric g-invariant bilinear form. The affinization ĝ of a

quadratic Lie algebra g is a certain central extension of the loop algebra

0 → Kc ↪→ ĝ ↠ g[t, t−1] → 0 (4.4)

Theorem 4.1. Let g be an algebra equipped with a bilinear form ⟨−,−⟩, with no additional assumed structure

and define the vector space

ĝ = g⊗K[t, t−1]⊕Kc (4.5)

for nonzero c, with algebra structure given by the bilinear product [−,−] : ĝ× ĝ → ĝ

[c, ĝ] = [ĝ, c] = 0 (4.6)

[xtn, ytm] = [x, y]tn+m + δn+mn⟨x, y⟩c (4.7)

where δn = δ0n is the Kronecker delta. Then ĝ is a Lie algebra iff g and ⟨−,−⟩ form a quadratic Lie algebra.

Proof. First note the bracket on ĝ is alternating iff that on g is. Let N = n+m+ k. Then the Jacobi identity

on ĝ is equivalent to

0 = [xtn, [ytm, ztk]] + [ytm, [ztk, xtn]] + [ztk, [xtn, ytm]] (4.8)

= [xtn, [y, z]tm+k +��C1c] + [ytm, [z, x]tk+n +��C2c] + [ztk, [x, y]tn+m +��C3c] (4.9)

= ([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) tN + (⟨x, [y, z]⟩n+ ⟨y, [z, x]⟩m+ ⟨z, [x, y]⟩k) δN,0c (4.10)

which holds iff the Jacobi identity holds for g along with

⟨x, [y, z]⟩n+ ⟨y, [z, x]⟩m+ ⟨z, [x, y]⟩k = 0 (4.11)

for all n,m, k such that n + m + k = 0. The latter is equivalent to the bilinear map being symmetric and

g-invariant, as can be shown by varying n,m, k.

The (untwisted) affine Lie algebra ĝ is the Lie algebra defined in thm. 4.1 with the Z-grading ĝ =
⊕

n∈Z ĝn

where

ĝn =

gt0 ⊕Kc n = 0

gtn n ̸= 0

(4.12)
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By adjoining the degree derivation, we form the extended affine Lie algebra

g̃ = ĝ⋊Kd (4.13)

where deg d = 0. Note we have inclusions

g ∼= gt0
i
↪→ ĝ

j
↪→ g̃ (4.14)

and we may extend ·̂ : QLieAlgK → GrZLieK and ·̃ : QLieAlgK → GrZLieK so that

i : 1 ⇒ ·̂ : QLieAlgK → LieK (4.15)

j : ·̂ ⇒ ·̃ : GrZLieK → GrZLieK (4.16)

become natural transformations.4

We now consider a variant of the above construction called the twisted affine lie algebra: Let g be a quadratic

Lie algebra with bilinear form ⟨−,−⟩, and ϑ ∈ Aut(g) be an involutive isometry so that ⟨ϑx, ϑy⟩ = ⟨x, y⟩ for

x, y ∈ g. Let

l = g[t1/2, t−1/2]⊕Kc (4.17)

with the Lie bracket defined by

[c, ĝ] = [ĝ, c] = 0 (4.18)

[xtn, ytm] = [x, y]tn+m + δn+mn⟨x, y⟩ (4.19)

and the Z/2-grading

ln =

gt0 +Kc n = 0

gtn n ̸= 0

(4.20)

Defining the following involution on K[t1/2, t−1/2]

v : t1/2 7→ −t1/2 (4.21)

t 7→ t (4.22)

and extending ϑ to l so that for x ∈ g and f ∈ K[t1/2, t−1/2]

ϑ : c 7→ c (4.23)

xf 7→ (ϑx)(vf) (4.24)

we define the twisted affine Lie algebra ĝ[ϑ] as the even subalgebra under ϑ

ĝ[ϑ] = {x ∈ l : ϑx = x} (4.25)

= g(0) ⊗K[t, t−1]⊕ g(1) ⊗ t1/2K[t, t−1]⊕Kc (4.26)

4. We omit obvious forgetful functors in expressions such as (4.15)
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with the inherited Z/2-grading. As in the untwisted case, we may for the extended twisted affine Lie algebra

g̃[ϑ] = ĝ[ϑ]⋊Kd (4.27)

where deg d = 0. The use of half-integer powers of t is a notational convention. Note this construction admits

a natural generalization to automorphisms of any finite order.

We may rephrase the commutation relations of the untwisted affine Lie algebra g̃ by defining a ‘generating

function’

x(z) = xZ(z) =
∑
n∈Z

(x⊗ tn)z−n ∈ g̃[[z, z−1]] (4.28)

for x ∈ g whence

[x(z1), x(z2)] = [x, y](z2)δ(z1/z2)− ⟨x, y⟩(Dδ)(z1/z2)c (4.29)

[c, x(z)] = 0 (4.30)

[d, x(z)] = −Dx(z) (4.31)

[c, d] = 0 (4.32)

For the twisted affine Lie algebra g̃[ϑ] we set

x(z) = xZ+1/2(z) =
∑
n∈Z

(x(n) ⊗ tn/2)z−n/2 ∈ g̃[ϑ][.z
1/2, z−1/2]. (4.33)

for x ∈ g where

x 7→ x(i) =
1

2
(x+ (−1)iϑx) (4.34)

denotes the appropriate projecion into the ϑ-eigenspace decomposition g = g(0) ⊕ g(1), whence

[x(z1), x(z2)] =
1

2

∑
i∈Z2

[ϑix, y](z2)δ((−1)iz
1/2
1 /z

1/2
2 )− 1

2

∑
i∈Z2

⟨ϑix, y⟩D1δ((−1)i)z
1/2
1 /z

1/2
2 )c (4.35)

[c, x(z)] = 0 (4.36)

[d, x(z)] = −Dx(z) (4.37)

[c, d] = 0 (4.38)

5 Heisenberg Lie algebras

In order to study the representation theory of affine Lie algebras in the following sections, we first study the

much simpler case of Lie algebras termed Heisenberg, which are familiar from quantum mechanics. A Heisenberg

algebra l is a Lie algebra with a 1-dimensional centre cöınciding with its commutator ideal, i.e.

l0 = z(l) = l′ = Kz (5.1)

for some nonzero z ∈ l.
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Example 5.1. Consider the quantum-mechanical canonical commutation relations for a particle in one dimen-

sion

[x̂, p̂] = iℏ (5.2)

where x̂, p̂ are the position and momentum operators respectively. Then spanR{x̂, p̂, iℏ} is a Heisenberg algebra

over R. If we complexify and rotate so that

â± =
1√
2ℏ

(x̂∓ ip̂) (5.3)

we find

[â−, â+] = 1 (5.4)

thus spanC{â+, â−, 1} forms a Heisenberg algebra over C. In the context of the one-dimensional simple harmonic

oscillator, â+ and â− are called the creation and annihilation operators respectively, and are interpreted as

adding or removing fixed quanta from the system.

It is natural to demand that the centre of l is represented centrally, so z acts as multiplication by some scalar

k ∈ K. Already in this very simple example of a Heisenberg algebra we find there can be no such representations

of finite dimension: For the trace of the left hand side of (5.4) would be zero, while the right hand side would

have nonzero trace.

In the more general case of a countable-dimensional Heisenberg algebra l, it is expedient to assume5 a

Z-grading l =
⊕

i∈Z li with l0 central and dim li < ∞ for all i ∈ Z. Letting l± =
⊕∞

i=1 li, it follows that

b± = l0 ⊕ l± are maximal abelian subalgebras of l. One obtains an alternating bilinear form on l by

[x, y] = (x, y)z (5.5)

which is nondegenerate on ln ⊕ l−n for n ∈ N, so one may form bases (xi)i∈I of l+ and (yi)i∈I of l− such that

(xi, yj) = δij , giving the Heisenberg commutation relations

[xi, z] = [yi, z] = [xi, xj ] = [yi, yj ] = 0 [xi, yj ] = δijz (5.6)

for i, j ∈ I. By the same argument as above, there is no finite-dimensional l-module V . Instead, we turn our

attention to Z-graded l-modules truncated from above, i.e. so that Vn = 0 for sufficiently large n. An l-module

is said to satisfy Sk iff it is truncated above and z acts as multiplication by k ∈ K. This implies the existence

of a vacuum: A nonzero vector v ∈ V is called a vacuum vector iff l+ ⊙ v = 0. The vacuum space ΩV consists

of all vacuum vectors and zero

ΩV = {v ∈ V : A+ ⊙ v = 0} =
⊕
n∈Z

ΩVi (5.7)

5. In general it is possible to impose such a grading by taking the following construction in reverse, starting with bases for two

maximal abelian subalgebras whose intersection is l0.
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and is a graded vector subspace, i.e. all vacuum vectors are linear combinations of homogeneous vacuum vectors.

The vacuum of a Sk module thus forms a b+-module. We may construct basic Sk representations of l by

starting with a one-dimensional Z-graded b+-module Kk spanned by a vacuum vector 1 so that

z ⊙ 1 = k b+ ⊙ 1 = 0 deg 1 = 0 (5.8)

defining the Heisenberg module M(k) to be the induced module

M(k) = Indlb+ Kk = U(l)⊗U(b+) Kk (5.9)

It follows from the Poincaré-Birkhoff-Witt theorem that M(k) is isomorphic as a vector space to the symmet-

ric algebra S•l−, which we interpret as the algebra of polynomials in indeterminates {yi}i∈I . Given such a

polynomial f ∈ S•l−, we have the following action for i ∈ I

z ⊙ f = kf yi ⊙ f = yif xi ⊙ f = k
∂f

∂yi
(5.10)

which is called the canonical realization of the Heisenberg commutation relations, and makes the irreducible

nature of these representations clear. Assuming K is algebraically closed, it follows from cor. 3.3 that all

l-module endomorphisms of M(k) are homotheties. The significance of Heisenberg modules is revealed by the

following theorem:

Theorem 5.2. Let V be an l-module satisfying Sk, and v ∈ ΩV be a vacuum vector. Then the l-module

l ⊙ v generated by v is isomorphic to M(k). In particular M(k) is the unique l-module satisfying Sk up to

isomorphism.

Proof. Let v ∈ ΩV be a vacuum vector, and W = l ⊙ v be the irreducible l-module generated by v. Now

Kv ∼= Kv as b+-modules, so M(k) ∼= Indlb+ Kv. By the universal property of the induced module, there exists

a unique l-module homomorphism φ : M(k) → W such that the following diagram commutes

Kv M(k) ∼= Indlb+ Kv

W

ι

∃!φ (5.11)

which by Schur’s lemma is a l-module isomorphism.

Thm. 5.2 may be viewed as a purely algebraic analogue of the Stone-Von Neumann theorem, which ex-

presses the uniqueness of the canonical commutation relations of position and momentum operators in quantum

mechanics. Indeed, constructing the appropriate Heisenberg module for ex. 5.1 gives the usual realisation of p̂

and x̂ as differential operators.

Of particular interest are Heisenberg algebras constructed via affinisation. Let h be a non-degenerate finite-

dimensional quadratic space, which we give the structure of an abelian Lie algebra. Let gZ = h̃ and gZ+ 1
2
= h̃[−1]

11



denote untwisted and twisted affinisations of h respectively. Then the commutator ideals of each of these form

Heisenberg algebras

ĥZ = g′Z =VectK Kc⊕
⊕

n∈Z\{0}

h⊗ tn (5.12)

ĥZ+ 1
2
= g′Z+ 1

2
=VectK Kc⊕

⊕
n∈Z+ 1

2

h⊗ tn = ĥ[−1] (5.13)

which we call the Z- and (Z+ 1
2 )-natural Heisenberg algebras of h respectively.

Hereinafter Z = Z or Z = Z+ 1
2 . We have the commutation relations

[c, ĥZ ] = 0 (5.14)

[x⊗ tm, y ⊗ tn] = ⟨x, y⟩mδm+nc (5.15)

for x, y ∈ h and m,n ∈ Z \ {0}.

Example 5.3. Let h = Cα so that ⟨α, α⟩ = 1. Form the Z-natural Heisenberg algebra hZ and consider the

corresponding Heisenberg module M(1) = S•(h−Z ). For x ∈ h and n ∈ Z \ {0} denote the action of xtn on M(1)

as x(n). M(1) is the Fock space for an unspecified number of bosons, each of which may be in any eigenstate

labelled by n ∈ N. The state 1 ∈ M(1) represents the vacuum, the operator α(−n) is the creation operator for

state n, and the operator α(n) is the annihilation operator for state n. We can express any Fock state by acting

on the vacuum, e.g.

α(−3)α(−2)2α(−1)1 ∈ M(1) (5.16)

6 A twisted affinization of sl2K

The Lie algebra sl2K, hereinafter a, consists of traceless 2×2 matrices with the bracket given by the commutator.

One (ordered) basis is (α1, xα1
, x−α1

) where

α1 =

1 0

0 −1

 , xα1
=

0 1

0 0

 , x−α1
=

0 0

1 0

 (6.1)

with the commutation relations

[α1, x±α1 ] = ±2x±α1 = ⟨α1,±α1⟩x±α1 (6.2)

[xα1
, x−α1

] = α1 (6.3)

where we have the nondegenerate invariant symmetric bilinear form with Gram matrix
2 0 0

0 0 1

0 1 0

 (6.4)
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given by the trace form ⟨x, y⟩ = trxy of the fundamental representation, making a a quadratic Lie algebra.

Consider the suggestively named6 involutive isometry

σ1 : α1 7→ −α1 (6.5)

x±α1
7→ x∓α1

(6.6)

Furthermore we let

x+
α1

= xα1
+ x−α1

(6.7)

x−
α1

= xα1
− x−α1

(6.8)

We consider the twisted affine Lie algebra â1 = â[σ1] which has the basis

â1 = ⟨c, α1 ⊗ tm+1/2, x+
α1

⊗ tm, x−
α1

⊗ tm+1/2 : m ∈ Z⟩ (6.9)

The 1-dimensional subalgebra h = Kα ≤ a generates the natural Heisenberg algebra

ĥZ+ 1
2
= Kc⊕

⊕
n∈Z+ 1

2

α1 ⊗ tn ≤ h̃[−1] ≤ â1 (6.10)

as a Lie subalgebra and we have

[c, â1] = 0 (6.11)

[α1 ⊗ tm, α1 ⊗ tn] = 2mδm+nc (6.12)

In terms of generating functions, we express the commutation relations of â1 by defining the formal sums

x±α1(z) =
1

2

∑
n∈Z

(x+
α1

⊗ tn)z−n ± 1

2

∑
n∈Z+ 1

2

(x−
α1

⊗ tn)z−n ∈ â1[[z
1/2, z−1/2]] (6.13)

α1(z) =
∑

n∈Z+ 1
2

(α1 ⊗ tn)z−n ∈ â1[[z
1/2, z−1/2]] (6.14)

whence

[α1 ⊗ tm, x±α1(z)] = ±2zmx±α1(z) = ⟨α1,±α1⟩zmx±α1(z) (6.15)

[xα1(z), x−α1(z2)] =
1

2
(α1(z2)− cD1)δ(z

1/2
1 /z

1/2
2 ) (6.16)

and we also have

x−α1
(z) = lim

z1/2→−z1/2
xα1

(z) (6.17)

7 Twisted vertex operators

Let V denote the Q-graded irreducible Heisenberg module M(1) = S•(h−Z+ 1
2

), which we extend to a h̃[−1]-

module on which d acts as the degree operator. We denote the action of α⊗ tn on V by α(n), which we realise

6. For K = C, we can conjugate by the Pauli matrix σ1 for the same result.
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by multiplication and partial differentiation operators on V , and we have the commutation relations

[α(m), β(n)] = ⟨α, β⟩mδm+n (7.1)

[d, α(m)] = mα(m) (7.2)

for α, β ∈ h and m,n ∈ Z+ 1
2 . We wish to represent the rest of ã1 as operators on V , which amounts to finding

x±α1(n) ∈ EndK V (7.3)

for n ∈ Z/2 so that the generating functions

X(±α1, z) =
∑

n∈Z/2

x±α1(n)z
−n ∈ (EndK V )[[z1/2, z−1/2]] (7.4)

satisfy the commutation relations

[β(m), X(±α1, z)] = ⟨β,±α1⟩zmX(±α1, z) (7.5)

[d,X(±α1, z)] = −DX(±α1, z) (7.6)

for β ∈ h and m ∈ Z+ 1
2 , by (6.15) and (2.10). Motivated by thm 2.1, Frenkel, Lepowsky, and Meurman (1988)

define the following for α ∈ h

E±(α, z) = expA±(α, z) A±(α, z) =
∑

n∈±(N0+
1
2 )

α(n)

n
z−n (7.7)

Theorem 7.1. E±(α, z) is well-defined for α ∈ h and for α, β ∈ h we have:

E±(0, z) = 1 (7.8)

E±(α+ β, z) = E±(α, z)E±(β, z) (7.9)

[d,E±(α, z)] = −DE±(α, z) =

 ∑
n∈±(N0+

1
2

α(z)z−n

E±(α, z) (7.10)

E±(−α, z) = lim
z1/2→−z1/2

E±(α, z) (7.11)

For α, β ∈ h and m ∈ Z+ 1
2 we have:

[β(m), E+(α, z)] =

0 m > 0

−⟨β, α⟩zmE+(α, z) m < 0

(7.12)

[β(m), E−(α, z)] =

−⟨β, α⟩zmE+(α, z) m > 0

0 m < 0

(7.13)

Proof. If we expand E±(α, z), we find the coëfficient of any power of z to be a finite linear combination of

operator products, thus it is well-defined. (7.8) and (7.9) follow from basic properties of the exponential. Since

[d,A±(α, z)] =
∑

n∈±(N0+
1
2 )

α(n)z−n = −DA±(α, z) (7.14)

commutes with A±(α, z), (7.10) follows from thm. (2.1). (7.11) follows from the analogous expression for

A±(α, z). Once again applying thm. 2.1 to the derivation adβ(m) yields (7.12) and (7.13).
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The commutation relations (7.12) and (7.13) suggest a product of E+(α, z) and E−(α, z) as a solution to

(7.5). The vacuum property of V means that if E+(α, z) acts first, only finitely many coëfficients of z−n will

survive. Thus the following twisted vertex operator is well-defined in the sense of (2.15)

X(±α1, z) =
1

4
E−(∓α1, z)E

+(∓α1, z) (7.15)

Theorem 7.2. X(±α1, z) is the unique solution to the commutation relations (7.12) and (7.13) up to scaling.

Proof. Suppose W (z) ∈ (EndK V ){z} is a solution, and define

U(z) =
∑
n∈K

u(n)z−n = E−(±α1, z)W (z)E+(±α1, z) (7.16)

which again is well-defined by virtue of the vacuum property. Then for β ∈ h and m ∈ Z+ 1
2

[d, Z(z)] = −DU(z) (7.17)

[β(m), U(z)] = 0 (7.18)

whence deg u(n) = n and [β(m), u(n)] = 0, the latter implying u(n) are Heisenberg module endomorphisms,

which by cor. 3.3 are homotheties. Thus U(z) = u(0)z0 ∈ K, and solving for W (z) using (7.8) and (7.9) gives

W (z) = 4u(0)X(±α1, z).

8 Final comments

With a little extra work, and the introduction of a multiplication convention called normal ordering, one

can show that the twisted vertex operators generate all the commutation relations of ã1, thus enabling a full

representation of ã1 on V . Uniqueness of these ã1-modules as extensions of the underlying Heisenberg module

then follows from thm. 7.2.

The untwisted case sl2K˜ has some more subtle features, and one has to modify the Heisenberg module hZ

to form an appropriate representation space. Frenkel, Lepowsky, and Meurman (1988) continues on from this

point by introducing a uniform way of constructing the Lie algebras of type An, Dn, En from a root lattice,

as well as creating vertex operator representations of the corresponding affine Lie algebras from this lattice

directly. This same process is applied to the Leech lattice in the construction of the moonshine module V ♮.

Another important ingredient, omitted from this discussion, is the Virasoro algebra v, which is the unique

nontrival 1-dimensional central extension of the Witt algebra d and plays an important role in conformal field

theory. Heisenberg modules for the natural Heisenberg algebras carry natural representations of v, and thus so

do the vertex operator representations of affine Lie algebras. The existence of such a representation is the main

feature distinguishing vertex operator algebras from more general vertex algebras, and plays an important role in

the conjectured uniqueness of the moonshine module, which if proven would be analogous to the constructions

of the Mathieu and Conway groups as the symmetries of unique objects.
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A Dixmier’s lemma

Let K be a field and A be a unital associative algebra over K. An element a ∈ A is called algebraic over K

iff there exists a nonzero polynomial p(x) ∈ K[x] such that p(a) = 0, whence the solving monic polynomial of

smallest degree ma(x) ∈ K[x] is called the minimal polynomial of a. Otherwise a is called transcendental.

Theorem A.1. Let K be an algebraically closed field and A be a division algebra such that every element a ∈ A

is algebraic. Then A ∼= K.

Proof. Let a ∈ A and ma(x) ∈ K[x] be its minimal polynomial. Since A has no zero divisors, ma(x) must be

an irreducible polynomial: For if ma(x) = p(x)q(x) then p(a)q(a) = 0 and hence either p(a) = 0 or q(a) = 0, a

contradiction. Since ma(x) is irreducible it is linear, thus ma(x) = x− λ whence a = λ ∈ K.

Theorem A.2. Let K be a field and K(x) be its field of rational functions. Then dimK K(x) ≥ |K|.

Proof. We will show the following set to be linearly independent:

S =

{
1

x− λ
: λ ∈ K

}
Let

fn(x) =
pn(x)

qn(x)
=

n∑
i=1

1

x− λi

where

qn(x) =

n∏
i=1

(x− λi)

then

fn+1(x) =
pn(x)

qn(x)
+

1

x− λn+1
=

pn(x)(x− λn+1) + qn(x)

qn(x)(x− λn+1)

which is zero iff qn(x) = −(x− λn+1)pn(x). But this is impossible since (x− λn+1) ̸ | qn(x).

Theorem A.3 (Dixmier’s lemma). Let A be a unital associative algebra over K and V be a simple A-module.

If |K| > dimK V , then every A-module endomomorphism ϑ ∈ EndA(V ) is an algebraic element over K.

Proof. By Schur’s lemma (thm. 3.2), EndA(V ) is a division algebra over K. Suppose ϑ ∈ EndA(V ) is transcen-

dental over K, i.e. p(ϑ) = 0 iff p = 0 for p(x) ∈ K[x]. The division algebra generated by ϑ is then
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K(ϑ) =

{
p(ϑ)

q(ϑ)
: p(x), q(x) ∈ K[x], q ̸= 0

}
(A.1)

= {f(ϑ) : f(x) ∈ K(x)} (A.2)

where K(x) is the field of rational functions for K, and we have a straightforward isomorphism of division

K-algebras K(x) ∼= K(ϑ). By thm A.2 we have the inequality

|K| ≤ dimK K(x) = dimK K(ϑ) (A.3)

Since V is a vector space over K(ϑ) with scalar multiplication given by the action of ϑ, we have

dimK K(ϑ) ≤ dimK V (A.4)

and thus

|K| ≤ dimK V (A.5)

a contradiction.
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