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Abstract

Magnetic skyrmions are stable magnetisation textures that have potential applications in improving our data

storage technology. An analytic expression for the energy of a skyrmion in a bulk material was found by

considering the DMI, anisotropy, demagnetising, exchange and Zeeman energy density contributions. To find

an analytic expression and to simplify the calculations, the skyrmion radius was assumed to be significantly

larger than the wall width. The total energy was then minimised to find the favourable helicity, radius, and

wall width.

1 Introduction

A magnetic skyrmion is a stable magnetisation texture found within magnetic materials. A picture of one is

given in Fig. 1, with the arrows showing the direction of the local magnetisation. The magnetisation arrows

inside its circular core (blue arrows into the page) are in the opposite direction to the magnetisation outside

(red arrows out of the page).

The way in which the magnetisation rotates from up to down from the skyrmion core to outside can vary

and is known as its helicity. In Fig. 1, the skyrmion has a “whirlpool” shape with the magnetization pointing

along the azimuthal direction in the transition or wall region of the skyrmion. Another helicity would be for

magnetization in the wall region to point radially outwards.

Skyrmions could be utilised in future data storage technology that is lower energy and higher density

than our existing technology (Tomasello et al. 2014). To build future technology with skyrmions, we must

better our understanding of their behaviour and features. The characteristics of skyrmions have been measured

experimentally and calculated numerically, but there are few analytic equations that describe their geometry.

Such an equation is useful as it can be used to predict skyrmion features for any given magnetic material and

for external parameters such as applied magnetic field strength. An analytic equation describing the radius and

wall width of skyrmions in thin films has been found (Lu et al. 2023), but there are few equivalent equations

for skyrmions in bulk materials.

Figure 1: A top-down view of a Bloch type skyrmion in the x-y plane, showing the radial dependence of the

out-of-plane magnetisation component, mz.
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In this report, we characterise skyrmions in bulk materials by predicting their radius, wall width and helicity

using an analytic equation. This is done by extending the method used by Lu et al. (2023), which is an energy

minimisation technique. The total skyrmion energy is found by considering the relevant energy contributions

from magnetic phenomena. One such notable contribution is the Dzyaloshinskii-Moriya interaction (DMI),

which is responsible for stabilising skyrmions by favouring rotation in the magnetisation.

Statement of Authorship

All derivations presented in this report have been developed by the author, Jack Humphreys, based on ideas

developed by A/Prof Karen Livesey. The author acknowledges this project follows the methods used by Ellen

Lu, a previous AMSI scholar supervised by A/Prof Livesey.

2 Definitions

Before discussing and deriving the magnetic energy contributions of a skyrmion, we detail expressions for the

magnetisation of a skyrmion, which has cylindrical symmetry. Some useful expressions will also be derived,

which are needed before moving to Sec. 3.

2.1 Magnetisation Vector

The magnetisation is assumed to vary only in the radial direction and so can be defined as a unit vector using

cylindrical coordinates

m̂(r) = cosΦ sin θ(r)︸ ︷︷ ︸
mr

r̂+ sinΦ sin θ(r)︸ ︷︷ ︸
mφ

φ̂+ cos θ(r)︸ ︷︷ ︸
mz

ẑ, (1)

where the polar angle of the magnetisation profile, θ, only varies in the radial direction, and where the helicity

of the skyrmion, Φ, is constant and defined in the range −π < Φ ≤ π. The cylindrical coordinate system is

drawn on the skyrmion picture in Fig. 1.

If Φ = 0 or π, then mφ = 0 and the magnetisation only rotates in the radial direction given by mr =

± sin θ(r). This creates a ‘hedgehog’ rotation known as a Néel-type skyrmion. The different signs of mr

represent two opposite chiralities.

Conversely, if Φ = ±π
2 , then mr = 0 and the magnetisation only rotates in the azimuthal direction given

by mφ = ± sin θ(r). This creates a ‘whirlpool’ rotation known as a Bloch-type skyrmion. Again, the different

signs of mφ represent two opposite chiralities.

In this project, we aim to find both the helicity Φ and the profile θ(r) for a skyrmion in a given magnetic

material.
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Figure 2: A slice of the r-z plane showing the radial rotation in Néel (left) and azimuthal rotation in Bloch

(right) skyrmions

2.2 Magnetisation Profile, θ(r)

An ansatz is used for the magnetisation profile. Namely, the polar angle is given by

θ(r) = 2 arctan

(
sinh

(
r
w

)
sinh

(
R
w

)) , (2)

where R is the skyrmion radius, and w is the wall width. This represents the magnetisation pointing in the

positive z-direction within the core of the skyrmion. The skyrmion radius is defined as the distance from the

center of the core to the edge (mz = 0).

Figure 3: A plot of the magnetisation profile, θ(r), varying with radius, r.

This ansatz is useful for finding analytical solutions and has been used in previous studies on skyrmion

size (Wang et al. 2018). Essentially, the problem will be reduced to finding the constants R, w and Φ which

minimize the total skyrmion energy.

Using a t-result substitution where

t = tan

(
θ

2

)
=

sinh
(
r
w

)
sinh

(
R
w

) ,
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a simplified form for the out-of-plane magnetisation component mz can be found

mz(r) = cos θ(r)

=
1− t2

1 + t2

=
sinh

(
R+r
w

)
sinh

(
R−r
w

)
cosh

(
R+r
w

)
cosh

(
R−r
w

)
− 1

≈
sinh

(
R+r
w

)
sinh

(
R−r
w

)
cosh

(
R+r
w

)
cosh

(
R−r
w

) (when R ≫ w)

= tanh

(
R+ r

w

)
tanh

(
R− r

w

)
≈ tanh

(
R− r

w

)
(for r ≥ 0 when R ≫ w)

∴ cos θ(r) ≈ tanh

(
R− r

w

)
. (3)

This approximation assumes the skyrmion radius is significantly larger than the wall width, which will be

assumed throughout each calculation. The accuracy of these expressions compared to the exact forms is shown

in Fig. 4.

Using the Pythagorean trigonometric and equivalent hyperbolic identities, the in-plane component of the

magnetisation is given by

sin θ(r) ≈ sech

(
R− r

w

)
. (4)

The gradient of the polar angle θ′(r) will also be required in our subsequent derivations of the skyrmion energy

contributions, in Sec. 3. By differentiating (3) implicitly, and then substituting (4), it is found to be

θ′(r) ≈ 1

w
· sech

(
R− r

w

)
. (5)

3 Energy Contributions

The total energy of a skyrmion can be expressed as the sum of the DMI, anisotropy, exchange, demagnetizing

and Zeeman energies, namely

Etotal = EDMI + Eanis + Eex + Ed + Ezee.

These contributions will be described in more detail in the following subsections. Each energy contribution can

be found by integrating the corresponding energy density, U , across the magnetic material’s volume v according

to

E =

∫
v

U dv

=

∫ t

0

∫ 2π

0

∫ ∞

0

U(r) · rdr dφ dz

= 2πt

∫ ∞

0

r · U(r) dr. (6)
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Figure 4: Comparisons between the exact and approximate expressions for the out-of-plane magnetisation

component (left), the in-plane magnetisation component (middle), and the gradient of the polar angle (right),

for varying ratios of R
w .

3.1 DMI

The Dzyaloshinskii-Moriya interaction (DMI) is a quantum-mechanical interaction between neighbouring mag-

netic moments inside a material. As mentioned in the introduction, DMI favours the rotation of magnetisation

and is therefore important for the existence of magnetic skyrmions (Camley & Livesey 2023). The energy

density of the DMI in bulk materials is given in Cartesian coordinates by

U bulk
DMI = D

(
my

∂mz

∂x
−mz

∂my

∂x
+mz

∂mx

∂y
−mx

∂mz

∂y
+mx

∂my

∂z
−my

∂mx

∂z

)
, (7)

where D is the strength of the atomic DMI vector (Camley & Livesey 2023). This expression was converted to

cylindrical coordinates, assuming that there is no variation in the magnetisation in either the z or φ directions.

The result is

U bulk
DMI = D

(
mφ

∂mz

∂r
−mz

∂mφ

∂r
− mzmφ

r

)
. (8)
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Substituting the components from Eq. (1) with the ansatz approximations Eqs. (3), (4) & (5) into this DMI

energy density expression Eq. (8) leads to

U bulk
DMI = −D sinΦ

(
θ′(r) +

sin θ(r) cos θ(r)

r

)
≈ −D sinΦ

(
1

w
· sech

(
R− r

w

)
+

sech
(
R−r
w

)
tanh

(
R−r
w

)
r

)
. (9)

This simplified expression for the DMI energy density using the magnetisation profile ansatz enables the

energy contribution due to DMI to be derived analytically by substituting Eq. (9) into Eq. (6). Namely,

EDMI = 2πt× (−D sinΦ)

∫ ∞

0

(
r

w
sech

(
R− r

w

)
+ sech

(
R− r

w

)
tanh

(
R− r

w

))
dr

≈ 2πt× (−D sinΦ)

∫ ∞

0

R

w
sech

(
R− r

w

)
dr − 2πt×D sinΦ

∫ −∞

R
w

sech(ρ) tanh (ρ) · (−w) dρ

(For R ≫ w)

≈ 2πt× (−D sinΦ)× (−R)

[
arctan

(
sinh

(
R− r

w

))]∞
0

− 2πt×D sinΦ

∫ −∞

∞
sech(ρ) tanh (ρ) · (−w) dρ

(For R ≫ w)

= 2πt× (−D sinΦ)× (−R)

[
arctan (−∞)− arctan

(
sinh

(
R

w

))]∞
0

− 2πt×D sinΦ× 0

(Odd function)

≈ 2πt× (−D sinΦ)×R
(π
2
+

π

2

)
(For R ≫ w)

= 2πt× (−D sinΦ)× πR. (10)

The DMI inherently favours chiral structures. One sees that this energy contribution is reduced if the chirality

Φ = π/2 (Bloch skyrmion). The magnetisation rotation occurs in the wall of the skyrmion (the transition from

up to down), which has a total length of 2πR. Eq. (10) validates this prediction as the energy indeed scales as

2πR.

We note that the bulk DMI energy found here matches the result by Wang et al. (2018). It is also of the

same form as the DMI energy in thin film magnets, apart from sinΦ replacing cosΦ (Lu et al. 2023). The

replacement of sin by cos reflects that Bloch skyrmions are found in bulk materials while Néel skyrmions – with

opposite chirality Φ – are found in magnetic thin films with DMI.

3.2 Anisotropy

Anisotropy describes the energy cost when the local magnetisation is misaligned from a preferred axis. Here,

the preferred axis is in the z direction, meaning magnetisation in the skyrmion core and outside the skyrmion

reduces this energy contribution. Skyrmions, that involve gradual changes in the magnetisation away from

the out-of-plane axis, inherently have an anisotropy energy cost. The anisotropy energy density that favours

alignment in the z direction is given by (Aharoni 2000)

Uanis = K(1−mz
2), (11)
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where K is the anisotropy constant for a particular magnetic material with units of J/m3. This expression can

be substituted into our energy integral, Eq. (6), to give

Eanis = 2πt×K

∫ ∞

0

r sech2
(
R− r

w

)
dr

≈ 2πt×K

∫ ∞

0

R sech2
(
R− r

w

)
dr (for R ≫ w)

= 2πt×KRw

(
1 + tanh

(
R

w

))
≈ 2πt× 2KRw. (for R ≫ w)

This result predicts that the anisotropy energy increases as the skyrmion grows in size. This is because the

region with magnetisation misaligned from the preferred axis grows. Consequently, anisotropy energy favours

small skyrmions.

3.3 Demagnetising Energy

Magnets have an internal magnetic field, which interacts with the internal magnetization m⃗. Maxwell’s equations

govern this internal magnetic field, which is also known as a “demagnetising field” Hd. Assuming the skyrmion

varies only in the radial direction, the simplified expression for demagnetising energy density arising from the

demagnetising field is (van Dijk 2015)

Ud(r) = −µ0

2
Msm⃗(r) · H⃗d(r) =

µ0

2
Ms

2mr
2, (12)

where µ0 is the magnetic permeability of free space and Ms is the magnetic saturation of a given material. SI

units are used here. This energy density can be substituted into the energy integral, Eq. (6), and simplified

with the same approximations that were used in Sec. 3.2 to find the anisotropy energy. Namely,

Ed = 2πt× µ0

2
Ms

2 cos2 Φ

∫ ∞

0

r · sech2
(
R− r

w

)
dr

≈ 2πt× µ0Ms
2 cos2 Φ×Rw. (for R ≫ w)

This result predicts that the demagnetising energy is similar to both DMI, in that it favours Bloch type skyrmions

(cosΦ = 0), and to anisotropy, favouring small skyrmions.

3.4 Exchange

Neighbouring atomic spin sites in a ferromagnet have a tendency to align in the same direction, due to the

exchange interaction. This is quantum mechanical in origin. Hence, there is an associated energy cost for

gradients in the magnetisation. The energy density of the exchange interaction in bulk materials is given in

cylindrical coordinates byby (Aharoni 2000)

Uex = A

((
dmr

dr

)2

+

(
dmz

dr

)2

+
mr

2

r2

)
, (13)
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where A is the exchange stiffness, dependent upon the given material and the temperature. This can be

substituted into the energy integral, Eq. (6), which is then approximately solved. Namely,

Eex = 2πt×A

∫ ∞

0

sech2
(
R− r

w

)
·
(

1

w2
+

1

r2

)
· r dr

≈ 2πt× A

w

(
R

w
+

w

R

)∫ ∞

0

sech2
(
R− r

w

)
dr (for R ≫ w)

≈ 2πt× 2A

(
R

w
+

w

R

)
. (for R ≫ w)

The exchange energy is dependent on the ratio between the skyrmion’s radius R and its wall width w. By

inspection, this will be minimised when R = w. For skyrmions with a thin wall relative to the radius (large R
w ),

there is a sudden change in magnetisation, increasing the exchange energy. In the limit considered (R ≫ w), the

w
R term will not grow and is far less significant than the R

w term. Hence, the exchange energy favours skyrmions

with a large wall width relative to its radius.

3.5 Zeeman Energy

In the presence of an external magnetic field, magnetic dipoles will have a tendency to align with this field,

costing energy to deviate away. This is known as the Zeeman energy and its energy density is given by

UZee = −MsB(mz + 1), (14)

where the externally applied magnetic field has a strength B in Tesla and acts in the positive z-direction. Ms

is the magnetic saturation. The energy density can be substituted into the energy intergral (6) to produce

EZee = 2πt× (−MsB)

∫ ∞

0

r ×
(
tanh

(
R− r

w

)
+ 1

)
dr

≈ 2πt× (−MsB)

(
R2 + w2

∫ ∞

0

ρ

1 + eρ
dρ

)
(for R ≫ w)

= 2πt× (−MsB)

(
R2 + w2π

2

12

)
.

Because the external magnetic field acts in the same direction as the core of the skyrmion, the Zeeman energy

favours large skyrmions. Our result supports this prediction, as the Zeeman energy is proportional to the area

of the skyrmion πR2. Additionally, skyrmions with thicker walls have a larger area outside the skyrmion w2

that is not misaligned against the external field.

4 Minimising Energy

With all the energy contributions expressed now as functions of R, w and Φ (skyrmion radius, wall width, and

helicity), one can minimise the energy to find these quantities.
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Each energy contribution can now be substituted into Eq. (3) resulting in the total energy

Etotal

2πt
(R,w,Φ) =−D sinΦ× πR (DMI)

+ 2KRw (Anisotropy)

+ µ0Ms
2 cos2 Φ×Rw (Demagnetising)

+ 2A

(
R

w
+

w

R

)
(Exchange)

−MsB

(
R2 +

w2π2

12

)
. (Zeeman)

(15)

This is an analytic, approximate equation describing the total energy of a skyrmion in a bulk magnetic material.

4.1 Skyrmion Helicity

To begin characterising the skyrmion geometry, the values of skyrmion helicity Φ that minimise the total energy

can be found by solving
∂Etotal

∂Φ
= 0, (16)

to find the stationary points. This leads to

−R cosΦ
(
2µ0Ms

2 w sinΦ + πD
)
= 0,

which can be solved by considering each case, namely,

cosΦ = 0 and sinΦ =
−πD

2µ0Ms
2 w

Φ = −π

2
,
π

2
(−π < Φ ≤ π) ≡ deff , (17)

where deff is defined as a unitless ratio of the DMI energy per unit area to the demagnetising energy per unit

area of the skyrmion.

To determine the nature of these stationary points, the size of deff must be considered. When |deff| ≥ 1,

there are only two solutions to Eq. (16) so either the helicity Φ = −π
2 , or Φ = π

2 is the local minimum, which

are both Bloch-type skyrmions. This depends on the sign of deff, and hence the sign of the DMI strength D.

When |deff| < 1, both Φ = −π
2 and Φ = π

2 are always local minima. Φ = sin−1(deff) is always a local maximum

and so can be disregarded.

These values for skyrmion helicity correspond with Bloch type skyrmions, which are commonly known to

form in bulk magnetic materials (Camley & Livesey 2023). The two different helicities represent rotation in

opposing directions. Therefore, different materials with different signs of D will favour skyrmions with different

chiralities.

Substituting Φ = π
2 into Eq. (15) gives

Etotal

2πt
= −DπR+ 2KRw + 2A

(
R

w
+

w

R

)
+MsB

(
R2 +

w2π2

12

)
, (18)

which can be analysed to predict the radius and wall width.
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4.2 Skyrmion Radius and Wall Width

To find the skyrmion radius, R, and wall width, w, that minimises the skyrmion energy, we must solve both

∂Etotal

∂R
= 0,

∂Etotal

∂w
= 0, (19)

using Eq. (18). Setting the externally applied magnetic field to zero enables an analytic solution to be found.

Simplifying Eqs. (19) with B = 0 leads to two quadratics of similar forms,

R2 =
2Aw2

2Kw2 + 2A− πDw
, w2 =

2AR2

2KR2 + 2A
. (20)

By solving Eqs. (20) simultaneously, we find an analytic prediction for the skyrmion’s wall width,

w =
πD

4K
, (21)

and its radius,

R = πD

√
A

16AK2 − π2KD2
. (22)

Firstly, these results show the larger the DMI strength, D, the larger the skyrmion will be. Conversely,

the stronger the anisotropy constant, K, the smaller the skyrmions will be. Additionally, there is a critical

relationship between the DMI, anisotropy, and the exchange stiffness, A, for skyrmions to be stable. Namely,

|D| < 4

π

√
AK. (23)

Furthermore, the forms of both Eqs. (21) and (22) are similar to the existing predictions for skyrmions in

thin-films (Lu et al. 2023).

5 Conclusion and Future Work

By assuming the skyrmion radius is significantly larger than the wall width, approximate expressions for the

DMI, anisotropy, demagnetising, exchange and Zeeman energy contributions of a skyrmion were found for a

bulk material. The total energy was then minimised to find analytic expressions for the helicity Φ, radius R,

and wall width w. These are given in Eqs. (17), (21), and (22).

The next step in this work is to substitute real magnetic parameters into these analytic expressions to see if

they accurately predict the geometry of skyrmions that have been experimentally measured. These parameters

include the exchange stiffness A, saturation magnetisation Ms, anisotropy constant K and DMI strength D.

This research could be built upon by combining the interfacial DMI (presented in the literature, such as

in Lu et al. (2023)) and the bulk DMI (derived here) energy contributions to form a comprehensive model of

skyrmions in thick films. The helicity could also be researched further to investigate the potential bistable

nature of skyrmion chirality.

So-called “intermediate skyrmions” with chirality Φ ∼ π/4 – between that of Bloch and Néel skyrmions –

can also be found using our analytic model. These are of great interest currently as they can be pushed in a

straight line for memory application (Dai et al. 2023). Bloch or Néel skyrmions instead have an issue of always

moving in curved trajectories. This issue currently limits the technological use of skyrmions.
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