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Abstract

In this report, we give a generalisation of the notion of modular algorithms to quadratic algebraic number

fields. We show that there are infinitely many integer primes that we can use for fast and effective modular

arithmetic in these fields, and give an algorithm to construct these primes. Finally, we show that we can

use Garner’s algorithm for Chinese remaindering in quadratic number fields and show that this allows us to

use a well-known rational linear system solver over these fields.
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1 Introduction

Computer algebra is the field of mathematics and computer science dedicated to designing algorithms for exact

and symbolic computation. Unlike other fields of mathematics, in computer algebra we are interested in taking

objects we know how to compute, and studying them with the motivation of finding faster, or more efficient

algorithms to compute them.

However, the trade we make for exact computation is that exact algorithms are often slow and inefficient.

A contributor to this is the problem of expression swell, where the intermediate expressions used during the

execution of an algorithm are far larger than those that appear in the output.

One of the most successful strategies for addressing expression swell is the modular algorithm, which is an

algorithm that computes something by reconstructing it from modular images. Modular algorithms over Z

(and Q) are well-understood, and have led to significant improvements in a variety of applications, including

polynomial factorisation, linear system solving, and sparse multivariate polynomial interpolation.
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Consider a quadratic algebraic number field Q(
√
M), where M is any squarefree integer. Since Q(

√
M) is a

2-dimensional Q-algebra, expression swell in Q(
√
M) is at least as bad as in Q. In this report, we introduce

modular algorithms over Q, before giving results allowing us to generalise modular algorithms to Q(
√
M). We

conclude by giving an example of a modular algorithm in a quadratic number field.

2 Modular Algorithms

In this section, we briefly outline an important tool for modular algorithms over Z (or Q), with the goal of

presenting a fast and effective modular algorithm to solve linear systems.

Example 2.1 ([GCL92, §5.2]). Consider the system of linear equations

22x+ 44y + 74z = 1,

15x+ 14y − 10z = −2,

−25x− 28y + 20z = 34.

(1)

A natural approach to solve this in Q is to write it as a matrix equation and find a solution using Gaussian

elimination on an augmented matrix. With fractions, we generally have two choices for representations: we

can simplify at each step by dividing the numerator and the denominator by their greatest common divisor,

giving smaller integers, or we can allow the numerators and denominators to grow arbitrarily large. Both of

these options introduce an overhead cost to using fractions, so often algorithms in computer algebra will use a

fraction-free method.

Using fraction-free Gaussian elimination, we reduce the system of equation (1) to the system

1257315840x = 7543895040,

−57150720y = 314328960,

162360z = 243540,

(2)

giving the solution {x = 6, y = − 11
2 , z =

3
2}.

Observe that the integers in equation (2) are much larger than the integers in the solution, a clear example

of expression swell. It is not unexpected for the integers to be so large; Cramer’s rule (Theorem 2.2) tells

us that each rational in the solution is a ratio of two determinants. Moreover, the size of the integers used in

fraction-free Gaussian elimination grow linearly as the algorithm runs, so we expect to be performing arithmetic

with large integers for a non-trivial portion of the runtime. ■

2.1 The Chinese Remainder Theorem

The Chinese remainder theorem is one of the most important theorems for modular algorithms, allowing us to

recover an integer result from several modular images.
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Theorem 2.1 (Chinese Remainder Theorem). Let m0, . . . ,mn ∈ Z be pairwise coprime and let u0, . . . , un ∈ Z

be any integers. There exists a u ∈ Z, unique modulo m0 · · ·mn, such that u ≡ ui (mod mi), i = 0, . . . , n.

Proof. Consider the homomorphism

ϕ : Z→ (Z/m0Z)× · · · × (Z/mnZ),

ϕ(u) = (u (mod m0), . . . , u (mod mn)).

Let us begin by showing that kerϕ = ⟨lcm(m0, . . . ,mn)⟩. First, suppose that k ∈ kerϕ. Then k ≡ 0 (mod mi)

for all i = 0, . . . , n; in particular, k is divisible by lcm(m0, . . . ,mn), and hence k ∈ ⟨lcm(m0, . . . ,mn)⟩. On the

other hand, if k ∈ ⟨lcm(m0, . . . ,mn)⟩, then certainly k ≡ 0 (mod mi) for all i = 0, . . . , n, and hence k ∈ kerϕ.

Now, since the mi are coprime, kerϕ = ⟨lcm(m0, . . . ,mn)⟩ = ⟨m0 . . .mn⟩. It follows that there is an injection

ψ : (Z/m0 · · ·mnZ)→ (Z/m0Z)×· · ·×(Z/mnZ). As ψ is an injection between finite sets of the same cardinality,

it is also a surjection. The surjectivity of ψ implies a solution exists, and injectivity uniqueness of the solution

modulo m0 · · ·mn.

Of course, this proof does not give us any hints as to how we might efficiently compute such a u. Garner [Gar59]

gives an algorithm to produce the smallest solution by constructing the coefficients v0, . . . , vn of the mixed-radix

representation

u = v0 + v1(m0) + v2(m0m1) + · · ·+ vn

n−1∏
i=0

mi, (3)

building it one modulus at a time. We present an algorithm to construct the mixed-radix coefficients in a more

general ring in §4, accompanied by a proof of correctness.

2.2 A Modular Linear Solver

So that we can demonstrate that the generalisation of modular algorithms to quadratic number fields gives

the same increases in efficiency that we would expect, we give the example of a modular algorithm that solves

linear systems - here over the rationals, and in §4 over a quadratic number field. The modular linear solver

(Algorithm 2.1) we present was discovered independently by [TI61] and [CL77], and uses Chinese remaindering.

We note that there are faster and more effective algorithms that use other methods (such as [Dix82], which

uses p-adic lifting and rational reconstruction), but for our purposes it is a little easier to look at the earlier

algorithm.

For Algorithm 2.1 and the accompanying proof of correctness (Proposition 2.1), we use the notation Ai|b to

denote the matrix formed from A by replacing the i-th column of A with the vector b.

Proposition 2.1. Algorithm 2.1 is correct.

For this proof, we use a well-known result from linear algebra first due to [Cra50], omitting the proof.
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Algorithm 2.1 Linear Solver [TI61],[CL77]

Input: A a non-singular n× n matrix with integer entries, and b any 1× n column vector with integer entries.

Output: A vector x with rational entries satisfying Ax = b.

1: p1, . . . , pk ← distinct primes with

k∏
i=1

pi > 2max(|detA|, |detA1|b|, |detA2|b|, . . . , |detAn|b|)

2: for i = 1, . . . , n do

3: di ← detA (mod pi)

4: xi ← solve Ax = b (mod pi)

5: end for

6: D ← Chinese remainder theorem on {d1 (mod p1), . . . , dn (mod pn)}

7: y ← pointwise Chinese remainder theorem on {d1 · x1 (mod p1), . . . , dn · xn (mod pn)}

8: return 1D · y

Theorem 2.2 (Cramer’s Rule). Let R be an integral domain with field of fractions F , A ∈ Rn×n non-singular,

and b ∈ Rn any vector. The entries of the solution vector x ∈ Fn to Ax = b are given by

xi =
detAi|b

detA
, i = 1, . . . , n. (4)

Proof (of Proposition 2.1). Let m = p1 · · · pk. The Chinese Remainder theorem (Theorem 2.1) gives us unique

solutions D, y modulo m, and we of course take those solutions in Z for D, y1, y2, . . . , yn with the smallest

absolute value.

Since m > 2|detA| = (0+ |detA|)− (0− | detA|), D is certainly either −|detA| or |detA|; that is, D = detA

is the solution with the correct sign. We can use the same argument to see that, for each i with 1 ≤ i ≤ n,

yi = D · detAi|b. Cramer’s rule (Theorem 2.2) then gives us that xi = yi/D as desired.

Example 2.2. Returning to Example 2.1, we observe that running Algorithm 2.1 gives the same (correct)

solution. However, while fraction-free Gaussian elimination uses integers as large as 32 bits on this example,

the modular solver reconstructs integers that are only 15 bits! ■

3 Quadratic Number Fields, Algebraic Integers, and Primes

Let M be squarefree and consider the quadratic algebraic number field Q(
√
M). This field is the smallest

containing all of Q and
√
M , and can be explicitly constructed as the quotient Q[x]/

〈
x2 −M

〉
of the polynomial

ring with coefficients in Q. Since we are interested in generalising the notion of modular algorithms to these

fields, we need to consider what it means to be prime, and to do modular arithmetic. A precursor to both of

these concepts is the idea of the ring of algebraic integers, which generalises the relationship that the integers

have to the rationals.
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3.1 Quadratic Integers

Definition 3.1 (Algebraic Integers). The algebraic integers of an algebraic extension K of Q are the elements

of K that are the roots of polynomials with coefficients in Z.

For the purposes of this report, we are only interested in the algebraic integers of the quadratic number fields

Q(
√
M), which we call the quadratic integers. We show in Theorem 3.1 that we can write the form of any

quadratic integer explicitly, and an immediate consequence of this is that the quadratic integers form a ring.

Since [Mar77] does not prove the theorem, we will do it here.

Theorem 3.1 ([Mar77, Corollary 2 to Theorem 1]). Let M ∈ Z be squarefree. The quadratic integers (of

Q(
√
M)) are R = Z[γ], where

γ =


√
M M ≡ 2 (mod 4) or M ≡ 3 (mod 4),

1 +
√
M

2
M ≡ 1 (mod 4).

Proof. Suppose that α = r + s
√
M is a quadratic integer. Then it is the root of some monic irreducible

polynomial with coefficients in Z. Indeed, the monic irreducible polynomial over Q having α as a root has

coefficients in Z [Mar77, Theorem 1].

If s = 0, then α is a root of x− r, implying that r ∈ Z. The result follows immediately in this case. Otherwise,

the minimal polynomial of α in Q[x] (and hence Z[x]) is

f := x2 − 2rx+ r2 −Ms2 (5)

Thus α is an algebraic integer if and only if both 2r and r2 −Ms2 are integers. From here, we show that:

(i) Z[
√
M ] ⊆ Z[ 1+

√
M

2 ].

(ii) Every quadratic integer is contained in Z[ 1+
√
M

2 ].

(iii) If α ∈ Z[ 1+
√
M

2 ] \ Z[
√
M ], then M ≡ 1 (mod 4).

For (i), we simply notice that any element a+b
√
M ∈ Z[

√
M ] can be written as (a−b)+2b( 1+

√
M

2 ) ∈ Z[ 1+
√
M

2 ].

We show (ii) and (iii) in two cases, depending on the parity of 2r (the coefficient of x in the minimal polynomial

of α equation (5)).

Case 1. Suppose that 2r is even; that is, r ∈ Z. Then r2 −Ms2 ∈ Z if and only if Ms2 ∈ Z. Write s = p
q ,

where q > 0 and gcd(p, q) = 1. It follows that Ms2 = Mp2

q2 is an integer if and only if q2 | Mp2. Since α is

assumed to be an algebraic integer, we must have q2 | Mp2, so gcd(p, q) = 1 =⇒ gcd(p2, q2) = 1 =⇒ q2 | M

But M is squarefree, so we have q2 = 1 =⇒ q = 1 (since q > 0). Thus s = p
1 ∈ Z. Therefore α ∈ Z[

√
M ], so

both (ii) and (iii) hold.
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Case 2. Suppose that 2r is odd; that is, 2r = 2j + 1 for some j ∈ Z. Then the constant coefficient of the

minimal polynomial equation (5) is

r2 −Ms2 =
4j2 + 4j + 1− 4Ms2

4
= j2 + j +

1− 4Ms2

4
(6)

Let s = p
q , where q > 0 and gcd(p, q) = 1. We see that

r2 −Ms2 ∈ Z ⇐⇒ 1− 4Ms2

4
∈ Z (by equation (6))

⇐⇒ 4Ms2 ≡ 1 (mod 4)

⇐⇒ 4Mp2 ≡ q2 (mod 4)

⇐⇒ q2 ≡ 0 (mod 4)

⇐⇒ q ≡ 0 (mod 2)

So q = 2n for some n ∈ Z, n > 0. As p, q are coprime, this implies that p is odd, so p = 2k + 1 for some k ∈ Z.

Then:

1− 4Ms2

4
∈ Z ⇐⇒

1− 4Mp2

4n2

4
∈ Z

⇐⇒
1− Mp2

n2

4
∈ Z

⇐⇒ Mp2

n2
≡ 1 (mod 4)

Now, as 1 = gcd(p, q) = gcd(p2, q2) = gcd(p2, 2n2), we have n2 | Mp2 =⇒ n2 | M . Since M is squarefree, we

must have n2 = 1, which implies that n = 1 (as n > 0). Thus

1 ≡Mp2 ≡M(2k + 1)2 ≡ 4k2M + 4kM +M ≡M (mod 4)

Hence α ∈ Z[ 1+
√
M

2 ] \ Z[
√
M ] in this case and M ≡ 1 (mod 4) necessarily, so we have (ii) and (iii).

Now we turn to consider the primes of the quadratic integers. We often want to be able to work over a

field when working modulo a prime, so we are especially interested in the prime ideals that are also maximal.

Fortunately, the quadratic integers have Krull dimension 1; that is, all the non-zero prime ideals are maximal

[Mar77, Theorem 14]. Unfortunately, the quadratic integers are not a principle ideal domain. It is generally

accepted that computation is much more expensive when we are working modulo an ideal with more than one

generator, and things as seemingly simple as checking equality become non-trivial.

We therefore restrict our attention to the prime ideals that are generated by a single quadratic integer. Of

course, it is computationally most efficient if that generator is an integer prime. We call any integer prime that

is also prime in a ring of quadratic integers R an inert prime of R. Miraculously, there are infinitely many

inert primes in every ring of quadratic integers. The remainder of this section is dedicated to characterising

and computing inert primes in arbitrary rings of quadratic integers. Many of the results stated or proved are
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restrictions of more general results from algebraic number theory to the case where we are considering the

algebraic extension Q(
√
M)/Q.

For the remainder of the section, we fix M ∈ Z a squarefree integer, and let R be the ring of integers of

Q(
√
M).

Definition 3.2 (Ramification Index and Inertial Degree). Let p ∈ Z be a prime. For each prime ideal Q

dividing pR, define:

(i) The ramification index of Q, denoted e(Q|p), is the largest positive integer e such that Qe | pR.

(ii) The inertial degree of Q, denoted f(Q|p), is the index of Z/pZ in R/Q.

Theorem 3.2 (Special case of [Mar77, Theorem 21]). Let p ∈ Z be prime, and Q1, . . . , Qr be the prime ideals

of R dividing pR. Then
r∑

i=1

e(Qi|p)f(Qi|p) = 2

The splitting of integer primes in Q(
√
M) is described by [Mar77, Theorem 25]. However, we are only interested

in a special case of this theorem, and as the reference does not provide a full proof of the result, we will give

one here.

Theorem 3.3 (Special case of [Mar77, Theorem 25]). Let p ∈ Z be a prime not dividing M . Then p is inert

in R if and only if there is no n ∈ Z with M ≡ n2 (mod p).

Before we can prove the theorem, we consider some necessary results giving us a sufficient condition for a prime

to be inert, and a useful property of the bases for a class of ideals we are interested in, respectively.

Lemma 3.1. Let p ∈ Z be prime, and Q be any prime of R dividing pR. If R/Q and Z/pZ are not isomorphic,

then pR is prime.

Proof. Suppose that R/Q ̸≃ Z/pZ. Since Z/pZ is the unique finite field of order p (up to isomorphism), we see

that the index [R/Q : Z/pZ] ̸= 1. It follows from Theorem 3.2 that 2 = [R/Q : Z/pZ] = f(Q|p), so e(Q|p) = 1

and Q is in fact the only prime of R dividing pR. Thus, pR = Q which is prime.

Lemma 3.2. Suppose that p ∤ M and n2 −M ≡ 0 (mod p) for some M,n ∈ Z, and odd prime p ∈ Z. Then

there exists a k ∈ Z such that k2 −M ≡ 0 (mod p), but k2 −M ̸≡ 0 (mod p2).

Proof. If M − n2 ̸≡ 0 (mod p2), then we are done. Otherwise, we have

(n+ p)2 −M ≡ n2 + 2np+ p2 −M ≡ 2np (mod p2)

Since p is odd, p ∤ 2. We also know that p ∤ n. As p is prime, we have that p ∤ 2n, whence we conclude that

p2 ∤ 2np. Therefore, k = n+ p satisfies the proposition in this case.
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Proof (of Theorem 3.3). Let p ∈ Z be an odd prime not dividing M . First suppose that there is no integer

n ∈ Z with M ≡ n2 (mod p) and consider the polynomial h := x2 −M . As h has a root in Q(
√
M) and has

coefficients in Z ⊂ R, h has a root in R. It follows that h (mod pR) has a root in R/pR. However, h has no

root in Z/pZ by assumption. Therefore Z/pZ and R/pR are not isomorphic, so by appealing to Lemma 3.1 we

see that pR is prime.

Now suppose that there exists an n ∈ Z with M ≡ n2 (mod p). By Lemma 3.2, we may assume without loss

of generality that n2 ̸≡ M (mod p2). Let I =
〈
p, n+

√
M

〉〈
p, n−

√
M

〉
. To show that pR is not prime, we

show that pR = I. Observe that I =
〈
p2, p(n+

√
M), rp(n−

√
M), n2 −M

〉
. By assumption, p | n2 −M , so

we see that each generator of I is divisible by p. Therefore I ⊆ ⟨p⟩. On the other hand, I must contain the

(integer) greatest common divisor gcd(p2, n2−M) = p, whence we have ⟨p⟩ ⊆ I. This completes the proof.

Recall that R/pR is a field if p ∈ Z is an inert prime. Although addition, subtraction, and multiplication in R/pR

work in exactly the way we would expect, there is no immediately obvious algorithm to do (field) division. We

complete our discussion of quadratic integers by characterising arithmetic in R/pR using an explicit isomorphism

into a ring in which we can already perform fast arithmetic automatically. The isomorphism given is completely

trivial to compute, reducing runtime overhead on a real computer. As the proof is a straight-forward application

of the definitions, we omit it.

Proposition 3.1. Let p ∈ Z be an inert prime in R = Z[γ] (where γ is as given in Theorem 3.1). Then

R/pR ≃

(Z/pZ)[x]/
〈
x2 −M

〉
M ≡ 2 or 3 (mod 4)

(Z/pZ)[x]/
〈
x2 − x− M−1

4

〉
M ≡ 1 (mod 4)

with the isomorphism given by ϕ([a+ bγ]) = [a+ bx] in each case.

3.2 The Inert Prime Algorithm

For modular algorithms, we often want to work modulo several different primes. If there are only finitely many

inert primes, modular algorithms may fail when the integers of the result are too large. Incredibly, there are

infinitely many inert primes in every quadratic field! By Theorem 3.3, this is equivalent to showing that there

are infinitely many primes p so that M is not a square modulo p. We present an algorithm (Algorithm 3.1)

that computes inert primes. The existence of infinitely many primes is a corollary to the correctness of the

algorithm, which we will prove after covering some necessary prerequisites from number theory.

Before we can prove the correctness of Algorithm 3.1, it is necessary to briefly introduce the theory of quadratic

residues.

Definition 3.3. Let p ∈ Z be prime. We say that an integer n ∈ N is a quadratic residue modulo p if there

exists a k ∈ Z with n ≡ k2 (mod p). If no such n exists, we say that n is a quadratic non-residue modulo p.
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Algorithm 3.1 Inert primes

Input:

• Squarefree M ∈ Z with (distinct) prime factorisation 2eq1q2 · · · qn, (e is 0 or 1).

• A finite set {ℓ1, ℓ2, . . . , ℓk} of odd primes, not containing any of the qi.

• If M ̸= 2, an integer s which is a quadratic non-residue mod qn

Output: A non-empty set S of primes, not containing any ℓi, for each of which M is a quadratic non-residue.

1: if M = 2 then

2: r ←
∏

1≤i≤k
ℓi ̸=3

ℓi.

3: b← 8r + 3

4: else

5: b← Chinese remainder theorem on

x ≡ 1 (mod 8)

x ≡ 1 (mod ℓi), i = 1, . . . , k

x ≡ 1 (mod qi), i = 1, . . . , n− 1

x ≡ s (mod qn)

6: end if

7: P ← set of prime factors of b

8: return {p ∈ P |M (p−1)/2 ≡ −1 (mod p)}

Due to a result from Euler, we can easily test if an element k ∈ Z/pZ (where p is prime) is a quadratic residue

modulo p.

Theorem 3.4 (Euler’s Criterion). Let p be an odd prime and let a ∈ Z be coprime to p. Then

a(p−1)/2 ≡

1 (mod p) a is a quadratic residue mod p

−1 (mod p) otherwise

Proof. This is a very well-known result. For example, [IR13, Proposition 5.1.2] gives a proof.

Of course, we need to ensure that an input s to Algorithm 3.1 always exists. Once we have shown this, we can

simply use Euler’s Criterion (Theorem 3.4) to compute such an s.

Lemma 3.3. Let p > 2 be prime. There exists an s ∈ Z that is a quadratic non-residue modulo p.

Proof. Consider the endomorphism ϕ : Z/pZ→ Z/pZ defined ϕ(x) = x2. As p > 2, we have that 1 ̸= −1. But

ϕ(1) = ϕ(−1) = 1, so ϕ is not injective. Now, ϕ is a mapping between finite sets of the same cardinality, so ϕ

not injective implies that ϕ is not surjective. Therefore, we can take s ∈ Z/pZ− imϕ to prove the lemma.
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Using Euler’s Criterion (Theorem 3.4), we obtain a nice algebraic definition of the Legendre and Jacobi symbols,

and one can see that they are indeed homomorphisms.

Definition 3.4. Let p ∈ Z be an odd prime. The Legendre symbol is the homomorphism
(

·
p

)
: (Z/pZ)∗ → {±1}

computing (
a

p

)
= a(p−1)/2

Definition 3.5. Let b ∈ Z be an odd, positive integer. Write b = p1 · · · pm, where the pi are (not necessarily

distinct) odd primes. The Jacobi symbol is the homomorphism
( ·
b

)
: (Z/bZ)∗ → {±1} computing(a

b

)
=

(
a

p1

)
· · ·

(
a

pm

)

We call both the Legendre and the Jacobi symbols quadratic residue symbols, and may freely use the same

notation for each, as their definitions coincide whenever the odd positive integer b in the Jacobi symbol is

prime.

We now follow the argument of [IR13, Chapter 5, §2] to assert the correctness of Algorithm 3.1. First, we refer

the reader to a necessary lemma outlining the properties of the quadratic residue symbol. A proof is given in

the reference.

Proposition 3.2 ([IR13, Proposition 5.2.2]). Let b be an odd, positive integer.

(a)
(−1

b

)
= (−1)(b−1)/2

(b)
(
2
b

)
= (−1)(b2−1)/8

(c) If a is odd and positive, then (a
b

)
·
(
b

a

)
= (−1)

a−1
2 · b−1

2

Proposition 3.3. Algorithm 3.1 is correct.

Proof. Need to proofreed this. It’s long and I’m not sure how coherent it is. We adapt the proof of [IR13,

Theorem 5.2.3]. First, consider the case where n ≥ 1; that is, M ̸= 2 is divisible by an odd prime. Since the

sets {ℓ1, . . . , ℓk} and {q1, . . . , qn} are disjoint sets of odd primes, the integers 2, ℓ1, . . . , ℓk, q1, . . . , qn are pairwise

coprime. Therefore, by the Chinese Remainder Theorem (Theorem 2.1), the integer b exists. Since b ≡ 1

(mod 8), we know that b is odd, and write b = p1 · · · pm, where the pj are (not necessarily distinct) odd primes.

To proceed, it is necessary to show that (i)
(
2
b

)
= 1, and (ii)

(
qi
b

)
=

(
b
qi

)
for each i = 1, . . . , n− 1.

(i) By Proposition 3.2 (c), (
2

b

)
= (−1)

b2−1
8 = (−1)

(b+1)(b−1)
8

As 8 | b− 1, the numerator is a multiple of b+ 1, which is even. Hence
(
2
b

)
= 1 as desired.
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(ii) Consider some arbitrary qi. We have that(qi
b

)
=

(
b

qi

)
⇐⇒

(qi
b

)
·
(
b

qi

)
= 1 (

( ·
·
)
is a map into {±1}) (7)

⇐⇒ (−1)((qi−1)/2)((b−1)/2) = 1 (Proposisiton 3.2 (c)) (8)

⇐⇒ qi − 1

2
· b− 1

2
is even (9)

As 8 | b− 1, we have 4 | b−1
2 , so equation (9). Hence,

(
qi
b

)
=

(
b
qi

)
as desired.

From this, we see: (
M

b

)
=

(
2

b

)e (q1
b

)
· · ·

(qn−1

b

)(qn
b

)
(as

( ·
b

)
is a homomorphism) (10)

=
(q1
b

)
· · ·

(qn−1

b

)(qn
b

)
(by (i)) (11)

=

(
b

q1

)
· · ·

(
b

qn−1

)(
b

qn

)
(by (ii)) (12)

We again recall that
(

·
qi

)
is a homomorphism with domain Z/qiZ. Therefore, for each i = 1, . . . , n − 1,

we have
(

b
qi

)
=

(
qi
b

)
= 1, where this last equality follows as b ≡ 1 ≡ 12 (mod qi). We also obtain that(

b
qn

)
=

(
s
qn

)
= −1 since s is a non-residue modulo qn by assumption. Continuing from equation (12), we

conclude that
(
M
b

)
= −1. Applying the definition of the Jacobi symbol, we finally arrive at the equation

−1 =

(
M

b

)
=

(
M

p1

)
· · ·

(
M

pm

)
(13)

Therefore, we necessarily have
(

M
pj

)
= −1 for at least one j (1 ≤ j ≤ m). Moreover, by inspection of the

congruences giving the construction of b, no pj for whichM is a quadratic non-residue is contained in {ℓ1, . . . , ℓk}.

By Euler’s Criterion (Theorem 3.4), the desired primes pj are exactly those for whichM (p−1)/2 ≡ −1 (mod pj).

Hence, the algorithm is correct in this case.

It remains to show that the algorithm is correct when M = 2. To proceed, we show that (iii) no ℓ ∈ {ℓ1, . . . , lk}

divides b, and (iv)
(
M
b

)
= −1.

(iii) Recall that r is the product of all the elements {ℓ1, . . . , ℓk} (which are odd primes) that are greater than

3. If ℓ = 3, we see immediately that 3 ∤ r, and hence 3 ∤ 8r + 3 = b. Otherwise, ℓ > 3, implying that ℓ | r,

so

ℓ | b =⇒ ℓ | 8r + 3 =⇒ ℓ | 3,

which is absurd. Hence, in either case, ℓ ∤ b as desired.

(iv) Since M = 2, Proposition 3.2 gives(
2

b

)
= −1 ⇐⇒ (−1)(b

2−1)/8 = −1 ⇐⇒ b2 − 1

8
is odd ⇐⇒ 16 ∤ b2 − 1

Of course,

b2 − 1 ≡ (8r + 3)2 ≡ 82r2 + 2 · 8r · 3 + 33 ≡ 9 (mod 16)

11



as desired.

Write b = p1 · · · pm, where the pj are (not necessarily distinct) odd primes. As before, we necessarily have(
M
pj

)
= −1 for at least one j. Moreover, (ii) shows that none of the primes dividing p are contained in

{ℓ1, . . . , ℓk}, so the result follows.

Corollary 3.1. There are infinitely many inert primes in the ring of integers of any quadratic number field

Q(
√
M).

Proof. Suppose not; that is, the finitely many inert primes are {ℓ1, . . . , ℓk}. Let S be the output of Algorithm

3.1 on the inputM , {ℓ1, . . . , ℓk}, and any quadratic non-residue s modulo the largest prime dividingM (which is

guaranteed to exist by Lemma 3.3). But we know that S contains at least one inert prime, a contradiction.

4 Modular Algorithms in the Quadratic Integers

Having given an algorithm to compute the (infinitely many) inert primes of an arbitrary ring of quadratic

integers, we now show that Garner’s Chinese remainder theorem algorithm generalises to the quadratic integers.

An immediate result of having Chinese remaindering over the quadratic integers is that the modular linear solver

presented in §2.2 is also valid over the quadratic integers.

Recall from §2.1 that Garner’s algorithm constructs the coefficients v0, v1, . . . , vn of the mixed-radix represen-

tation equation (3). We present a recursive algorithm (Algorithm 4.1) to compute these coefficients in a more

general setting, assuming that we have an algorithm to compute the required inverses.

Algorithm 4.1 Garner’s Mixed Radix Coefficients

Input: For an integral domain R with characteristic 0, u0, u1, . . . , un ∈ R, and m0,m1, . . . ,mn ∈ Z ⊆ R

generating comaximal ideals of R.

Output: v0, v1, . . . , vn ∈ R with ui − (v0 + v1(m0) + · · ·+ vn(
∏n−1

i=0 mi)) ∈ ⟨mi⟩, i = 1, . . . , n.

1:

2: if n = 0 then

3: v0 ← u0

4: else

5: v0, v1, . . . , vn−1 ← recursive call on u0, u1, . . . , un−1 and m0,m1, . . . ,mn−1

6: vn ←
(
un −

∑n−1
i=0 vi

∏i−1
j=0mi

)(∏n−1
j=0 mj

)−1

mod ⟨mn⟩

7: end if

8: return v0, v1, . . . , vn

Proposition 4.1. Algorithm 4.1 is correct.

12



Proof. Since Algorithm 4.1 is recursive and does not mutate any of its variables, we may prove correctness using

induction. Formally, we prove that for all n ∈ N, the output v0, v1, . . . , vn of the algorithm satisfies

P (n) ⇐⇒ uk ≡ v0 + v1(m0) + v2(m0m1) + · · ·+ vn

n−1∏
j=0

mj mod ⟨mk⟩ ∀k = 0, 1, . . . , n. (14)

The base case is n = 0. Here, we have P (0) ⇐⇒ u0 ≡ v0 mod ⟨mi⟩. On input n = 0, algorithm computes

v0 = u0, and P (0) follows immediately. Now let n > 0 be arbitrary and suppose P (n − 1). Therefore, the

mixed-radix coefficients v0, v1, . . . , vn−1 produced by the recursive call on line 5 satisfy

uk ≡ v0 + v1(m0) + v2(m0m1) + · · ·+ vn−1

n−2∏
j=0

mj mod ⟨mk⟩ ∀k = 0, 1, . . . , n− 1. (15)

Take vn as computed by line 6. Given equation (15), to show that the congruences of equation (14) are satisfied

for each k = 0, 1, . . . , n− 1, it is sufficient to show that

vn

n−1∏
j=0

mj ≡ 0 mod ⟨mk⟩ . (16)

Since k < n, we see that mk divides the product in equation (16), giving the result immediately. Finally, for

k = n (noting that all inverses are taken modulo ⟨mn⟩):

v0 + v1(m0) + v2(m0m1) + · · ·+ vn

n−1∏
j=0

mj

≡
n−1∑
i=1

vi

i−1∏
j=0

mj +

un − n−1∑
i=1

vi

i−1∏
j=0

mj

i−1∏
j=0

mj

−1 i−1∏
j=0

mj

 mod ⟨mn⟩

≡
n−1∑
i=1

vi

i−1∏
j=0

mj +

un − n−1∑
i=1

vi

i−1∏
j=0

mj

 mod ⟨mn⟩

≡ un mod ⟨mn⟩ ,

Therefore P (n), so Algorithm 4.1 is correct by induction.

Corollary 4.1. Algorithm 4.1 correctly computes the Garner mixed-radix coefficients when R is a ring of

quadratic integers.

Proof. Since Z ⊂ Z[γ] = R, we know that R has characteristic 0. [Mar77, Theorem 14] gives us that R is an

integral domain and that the (non-zero) prime ideals are maximal. Since inert primes are integers that generate

prime ideals in R, we conclude distinct inert primes indeed generate comaximal ideals of R.

Finally, we need to give an algorithm to compute inverses modulo inert primes ⟨m⟩. Of course, Proposition 3.1

tells us that there is an isomorphism ϕ : R → (Z/pZ)[x]/ ⟨f⟩ (a map for which we can easily compute images

and inverse) for some irreducible polynomial f . We summarise our algorithm in a diagram:
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R/ ⟨m⟩∗ R/ ⟨m⟩∗

(Z/pZ)[x]/ ⟨f⟩∗ (Z/pZ)[x]/ ⟨f⟩∗

(·)−1

ϕ

ρ

ϕ−1

The map ρ computes inverses, and is given by ρ(h+ ⟨f⟩) = s+ ⟨f⟩, where hs+ ft = 1 ∈ (Z/pZ)[x] (noting that

s, t ∈ (Z/pZ)[x] exist and are computed by the extended Euclidean algorithm).

On inspection, we see that the modular linear solver that we presented over Q (Algorithm 2.1) only depends on

having some way to produce arbitrarily many distinct primes, the ability to do arithmetic modulo those primes,

and a Chinese remainder algorithm. We have shown that we have exactly these tools in Q(
√
M), as long as we

restrict ourselves to the inert primes. Up to adjusting the bound on the product of the primes in Algorithm 2.1,

there is no need to give an additional proof that the algorithm is correct for Q(
√
M). We use this (somewhat

incredible) result to conclude this section with an example of using a modular algorithm to solve a linear system

over Q(
√
122), using small machine (inert) primes.

Example 4.1. Let

A =


81− 19

√
122 78− 89

√
122 −81− 80

√
122

22− 53
√
122 −8 + 66

√
122 −43− 19

√
122

50− 30
√
122 −90 + 154

√
122 −2− 124

√
122

 , b =


26851− 2700

√
122

−41098 + 883
√
122

−67029 + 1076
√
122.


Running Algorithm 2.1 solves the system Ax = b using seven 16-bit inert primes, and reconstructs D = detA

and a scaled-up solution vector y into 57-bit integers (which fit into machine words)! The solution vector x is

then given by

x = y/D =


5
√
122
2

33
2 − 3

√
122

15


Notably, the modular solver uses only machine integers, and all operations can be performed within machine

integers. Solving the same system using fraction-free Gaussian elimination requires 105-bit integers. ■

5 Conclusion

In this report, we introduced the concept of modular algorithms over Z (and Q), including an example of a

modular linear solver. We gave a method to generalise these algorithms to rings of quadratic integers using inert

primes; giving an algorithm to construct inert primes, a Chinese remaindering algorithm for working modulo

inert primes, and a result characterising arithmetic modulo these inert primes. Finally, we showed that we can

use the same modular linear solver presented for Q to solve systems in Q(
√
M).
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The linear solver presented is much slower (over Q) than other known methods, such as one using p-adic

lifting and rational reconstruction [Dix82]. There may be potential for these methods to be generalised to the

quadratic integers; particularly rational reconstruction, which could be used to lift results from (Z/pkZ)[γ] into

Q[γ] = Q(
√
M) (where γ is as in Theorem 3.1).
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