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1 Problem Description and Research Aims

Definition 1 (Multi-Index Notation). A multi-index is an n-tuple α = (α1, . . . , αn) ∈ Nn of nonnegative

integers. Its length is defined as

|α| :=
n∑

i=1

αi.

A multi-index is commonly used to quickly express derivatives. For a function u : Rn → R, the multi-index

derivative is written as

Dαu =
∂|α|u

∂xα1
1 · · · ∂xαn

n
= (∂α1

x1
· · · ∂αn

xn
)u.

It is also used occasionally as a map from a vector ξ = (ξ1, . . . , ξn) ∈ Rn to R. We define

ξα = ξα1
1 · · · ξαn

n .

For example,

(1, 2, 3)(1,2,3) = 11 · 22 · 33 = 108.

Definition 2 (Linear Second Order Differential Operators). A second-order linear differential operator L in

Rn is an operator of the form

L : u 7→
∑
|α|≤2

aα(x)D
αu,

where the sum is over multi-indices α ∈ Nn, and acts on functions u : Rn → R where at least two partial

derivatives in each direction exist. The coefficients aα are functions Rn → R. We say L is elliptic if, for all

nonzero ξ ∈ Rn, ∑
|α|=2

aα(x)ξ
α > 0.

Further, L is uniformly elliptic if there exists λ > 0 such that∑
|α|=2

aα(x)ξ
α ≥ λ|ξ|2, ∀ξ ∈ Rn.

Remark. Ellipticity is a similar property to positive-definiteness.

The following problem is known as an elliptic boundary value problem (BVP) of Dirichlet kind, and is the

subject of this report. Suppose U is an open and bounded subset of Rn, let f : U → R, and f0 : ∂U → R, and

let L be an elliptic differential operator. Then what conditions are sufficient to guarantee that there exists a

unique solution u : U → R to the following system?

Lu = f, ∀x ∈ U,

u = f0, ∀x ∈ ∂U.

Elliptic BVP are are eminent problems in dynamics because of their versatility in describing the long-term

behaviour of physical systems. A notable example is Poisson’s equation, where L is taken to be the Laplace
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operator ∆ = ∂2

∂x2 +
∂2

∂y2 , which describes the equilibrium temperature at every point in a region U if temperature

is fixed to equal f0 on ∂U , and heat is added at each point at a rate of f(x).

∆u = f, ∀x ∈ U

u = f0, ∀x ∈ ∂U

The theory of elliptic PDE is well-described by Evans [1], which focuses on the study of elliptic BVPs where

the boundary ∂U is sufficiently well-behaved. However, there is significantly less investigation into cases where

∂U may include cusps, slits, or removed points (punctures). The aim of this project was to understand why

these domains may not admit solutions.

Definition 3 (Smooth-Boundary (C1) Domains). The boundary ∂U of a connected open subset (domain)

U ⊆ Rn is classified as C1 if it can be locally written as the graph of a smooth function. That is, for each

p ∈ ∂U , there exists a small ε > 0, an index j ∈ {1, ..., n}, and a smooth function γ : Rn−1 → R such that

U ∩B(p, ε) = {xj > γ(x1, ...xj−1, xj+1, ..., xn)} ∩B(p, ε) or {xj < γ(x1, ..., xj−1, xj+1, ..., xn)} ∩B(p, ε).

Definition 4 (Lipschitz Function). A function f : Rn → R is Lipschitz if there exists a constant K such that

for each distinct x, y ∈ Rn,
|f(x)− f(y)|

|x− y|
≤ K.

Definition 5 (Lipschitz Domain). The boundary ∂U of a domain U ⊆ Rn is Lipschitz if, for every p ∈ ∂U , there

exists a hyperplane Π of dimension n− 1 through p with a unit normal ν, and a Lipschitz function g : Π → R

over the hyperplane, and a small ε > 0 such that

U ∩B(p, ε) = {x+ tν | x ∈ B(p, ε) ∩Π, t > g(x)} ∩B(p, ε)

Remark. Lipschitz is a weaker condition than smooth, and allows for some disruptions such as corners.

Remark. The definition of C1 boundaries uses only ν = ei, as this is sufficient to capture all possible smooth

boundaries. However, in the case where p ∈ ∂U is sitting at an acute-angled corner, it is possible that ∂U∩B(p, ε)

cannot be expressed as the graph of a function xi = ϕ(x1, ..., xi−1, xi+1, ..., xn), in other words, we need the ability

to rotate the boundary to an arbitrary orientation, rather than just 90◦ rotations around coordinate axes.

2 Counter-Example

The punctured unit disc U = {x ∈ R2 : |x| ∈ (0, 1)} has a boundary ∂U = {|x| = 1} ∪ {0}. There is no solution

to the following boundary value problem problem.

∆u = 0, ∀x ∈ U

u = 0, ∀x ∈ {|x| = 1}

u(0) = 1.
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After changing to polar coordinates, the problem reduces by radial symmetry,

∂2u

∂r2
+

1

r

∂u

∂r
= 0 : u(0) = 1, u(1) = 0,

and in this form, the solution takes the form:

u(r) = C1 + C2 ln(r).

This form admits no valid solutions to the boundary conditions since C2 ln(r) → ∞ unless C2 = 0, but if C2 = 0

then u(r) = C1 is constant and cannot satisfy the boundary conditions. However, if the domain is taken to be

an annulus rather than a pierced disk, such that the boundary conditions can be expressed as

u(r) = C1 + C2 ln(r), u(ε) = 1, u(1) = 0,

then there is a solution, u(r) = ln(r)
ln(ε) .

Interestingly, if the operator is instead taken to be the fourth-order bi-Laplacian ∆2 = ∂4

∂x4 + 2 ∂4

∂x2∂y2 + ∂4

∂y4

instead of the Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 , then there is a family of solutions to the same problem.

In polar coordinates, the bi-Laplacian reduces under radial symmetry to

∂4u

∂r4
+

2

r

∂3u

∂r4
− 1

r2
∂u2

∂r2
+

1

r3
∂u

∂r
= 0,

which is equivalent to
1

r

∂

∂r

(
r
∂

∂r

(
1

r

∂

∂r

(
r
∂u

∂r

)))
= 0.

This equation possesses a general solution;

u(r) = C1r
2 ln r + C1r

2 + C3 ln r + C4 such that

u(1) = 0

u(0) = 1

.

In the case where u(0) = 1, it is necessary that C3 = 0 since ln(0) is not defined. However, x2 lnx → 0 as

x → 0, hence C1 may be nonzero. Then, the general solution to the BVP is

u(r) = C1r
2 ln r + 1− r2.

3 The Lax-Milgram Theorem

Definition 6 (Real Hilbert Space). A real Hilbert space H is a vector space equipped with an inner product

⟨·, ·⟩ : H×H → R which has the following properties:

• ⟨u, u⟩ ≥ 0 ∀u ∈ H,

• ⟨u, u⟩ = 0 ⇐⇒ u = 0,

• ⟨αu+ v, βw + x⟩ = αβ⟨u,w⟩+ α⟨u, x⟩+ β⟨v, w⟩+ ⟨v, x⟩ ∀u, v, w, x ∈ H, ∀α, β ∈ R,
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• ⟨u, v⟩ = ⟨v, u⟩ ∀u, v ∈ H,

• H is complete with respect to the norm induced by the inner product, ∥x∥ :=
√

⟨x, x⟩.

Definition 7 (Bilinear Form). A bilinear form on a vector space V over R is a map B : V × V → R which is

linear in both components. That is to say, for all α, β ∈ R and w, x, y, z ∈ H, it is true that

B(αw + x, βy + z) = αβB(w, y) + αB(w, z) + βB(x, y) +B(x, z).

Remark. An inner product is a specific case of a bilinear form.

If a boundary value problem is able to be re-stated in terms of bilinear forms on a Hilbert space, then the

Lax-Milgram theorem provides clarity about when there is only one candidate for a solution. We prove this

result first to justify later sections which will detail how the formulation may be done.

Definition 8 (Orthogonal Compliment). Let V be a subset of a Hilbert space H. Its orthogonal compliment

V ⊥ is the set of all x ∈ H such that ⟨x, v⟩ = 0 ∀v ∈ V .

Theorem 1 (Orthogonal Decomposition Theorem). Let M be a closed subspace of a real Hilbert space H, then

H = M⊕M⊥, that is,

∀x ∈ H, ∃! y ∈ M, z ∈ M⊥ : x = y + z.

Remark. This theorem extends the notion of vector projection to infinite-dimensional Hilbert spaces.

Proof. First select an arbitrary x ∈ H. It will be shown that min{∥x−m∥ : m ∈ M} exists and is achieved by a

unique u ∈ M. Let δ = inf{∥x−m∥ : m ∈ M} and choose a sequence {un} in M such that ∥x−un∥ converges

to δ. Such a sequence must exist since δ = inf{∥x −m∥ : m ∈ M} =⇒ ∀ε > 0,∃m ∈ M : ∥x −m∥ ≤ δ + ε.

Recalling that 1
2 (un + um) ∈ M, it follows from the parallelogram law that for any n,m,

∥um − un∥2 = 2(∥x− um∥2 + ∥x− un∥2)− 4

∥∥∥∥x− 1

2
(un + um)

∥∥∥∥2 ≤ 2(∥x− um∥2 + ∥x− un∥2)− 4δ2.

Then, since ∥x−um∥2 → δ2, limm,n→∞ ∥um−un∥2 ≤ 4δ2−4δ2 = 0. Therefore, the sequence {un} is Cauchy and

the Hilbert space H is complete, so the sequence is convergent in H. But M is closed, the sequence converges

to a element u ∈ M.

A similar argument shows u is unique. Suppose u, v ∈ M both satisfy ∥x − u∥ = ∥x − v∥ = inf{∥x −m∥ :

m ∈ M. Then by the parallelogram law,

∥u− v∥2 = 2∥u− x∥2 + 2∥v − x∥2 − 4

∥∥∥∥u+ v

2
− x

∥∥∥∥2 ≤ 2δ2 + 2δ2 − 4δ2 = 0,

=⇒ u = v.

To show H = M⊕M⊥, choose an arbitrary x ∈ H and use the argument above to generate the minimising

u ∈ M. Since M is a vector subspace,
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u+ αm ∈ M ∀α ∈ R,m ∈ M

=⇒ ∥x− (u+ αm)∥ ≥ ∥x− u∥

=⇒ ⟨x− u, x− u⟩ ≤ ⟨x− u− αm, x− u− αm⟩

=⇒ ⟨αm,αm⟩ − 2⟨x− u, αm⟩ ≥ 0

=⇒ α2∥m∥2 − 2α⟨x− u,m⟩ ≥ 0

=⇒ min
α∈R

{α2∥m∥2 − 2α⟨x− u,m⟩} ≥ 0

=⇒ ⟨x− u,m⟩2

∥m∥2
− 2

⟨x− u,m⟩2

∥m∥2
≥ 0

=⇒ −⟨x− u,m⟩2 ≥ 0

=⇒ ⟨x− u,m⟩ = 0.

Thus, x−u ∈ M⊥, and x = u+(x−u) is a decomposition of x. To show uniqueness, suppose x = v+(x−v)

such that v ∈ M and (x − v) ∈ M⊥. Then u + (x − u) = v + (x − v) so u − v = (x − v) − (x − u). However,

u− v ∈ M because M is a vector space, while (x− v)− (x− u) ∈ M⊥ because

⟨(x− v)− (x− u),m⟩ = ⟨(x− v),m⟩ − ⟨(x− u,m⟩ = 0− 0 = 0.

Hence u− v ∈ M∩M⊥ and so ⟨u− v, u− v⟩ = 0 which implies u = v.

Theorem 2 (Riesz Representation Theorem). Let H be a real Hilbert space with inner product ⟨·, ·⟩, and suppose

φ : H → R is a bounded linear functional. Then there exists a unique fφ ∈ H, known as the Riesz representation

of φ, such that

φ(x) = ⟨x, fφ⟩ ∀x ∈ H.

Remark. Note that in finite dimensional cases, for example if H is Rn with the conventional dot product, the

Riesz representation theorem is equivalent to the statement that every bounded linear function φ : Rn → R can

be expressed as u 7→ u ·v, which is trivially true. The value of this theorem is its validity in infinite-dimensional

cases, where linear functionals take on more forms than performing sum-products on a vector’s components.

Proof. Let K = ker(φ) := {v ∈ H : φ(v) = 0}, which is a closed subspace of H because ϕ is linear and bounded,

so it is continuous so the preimage of a closed set is closed. First, consider if K = H (so, φ is the zero map).

Then ⟨x, fφ⟩ = 0 ∀x ∈ H. This is achieved if fφ = 0 due to linearity of the inner product, and is unique since

fφ ̸= 0 =⇒ ⟨fφ, fφ⟩ ≠ 0 which produces a contradiction.

Next, suppose K ̸= H. Since K is linear,

(∀x, y ∈ H) 0 = φ(x)φ(y)− φ(y)φ(x) = φ(φ(x)y) + φ(−φ(y)x) = φ[φ(x)y − φ(y)x]. (1)
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From the orthogonal decomposition theorem, H = K ⊕K⊥ and since K ̸= H, K⊥ is nontrivial. Thus, let

y ∈ K⊥ : y ̸= 0 then

(∀x ∈ H) φ(x)y − φ(y)x ∈ K,

=⇒ ⟨φ(x)y − φ(y)x, y⟩ = 0,

=⇒ φ(x)⟨y, y⟩ − φ(y)⟨x, y⟩ = 0,

=⇒ φ(x) = φ(y)
⟨x, y⟩
⟨y, y⟩

=
〈
x,

φ(y)

⟨y, y⟩
y
〉
.

Hence, fφ = φ(y)
⟨y,y⟩y is the Riesz representation of φ. To show it is unique, suppose ∃fφ, gφ ∈ H : (∀x ∈

H), φ(x) = ⟨x, fφ⟩ = ⟨x, gφ⟩. Then ⟨fφ, x⟩ − ⟨gφ, x⟩ = ⟨fφ − gφ, x⟩ = 0, which implies ⟨fφ − gφ, fφ − gφ⟩ = 0

and hence, by positive-definiteness, fφ − gφ = 0 or fφ = gφ.

Theorem 3 (Lax-Milgram Theorem). Let H be a Hilbert space over R and let B : H ×H → R be a bilinear

form on H. Assume also that B is coercive and bounded, which is to say that ∃m,M ∈ R such that ∀x, y ∈ H,

• B(x, y) ≤ M∥x∥∥y∥,

• m∥x∥2 ≤ B(x, x).

Then for any bounded linear functional φ, there exists a unique element bφ ∈ H such that B(bφ, v) =

φ(v) ∀v ∈ H. In other words, φ has a representative element, bφ ∈ H, which transforms B into φ.

Proof. Begin by fixing u ∈ H. Then v 7→ B(u, v) is a bounded linear functional. Hence by the Riesz represen-

tation theorem, there exists a unique w ∈ H such that B(u, v) = ⟨w, v⟩ ∀v ∈ H. It is possible to uniquely find

such an element for any u ∈ H, so define a function S : H → H which sends u to the Riesz representation of

the functional B(u, · ).

Separately, the Riesz representation theorem guarantees that for any bounded linear functional φ, there is a

unique fφ ∈ H : φ(u) = ⟨u, fφ⟩ ∀u ∈ H. Combining these ideas, if S is bijective then it would have an inverse

S−1 which, after applying to fφ, would give the element in H with the needed property that B(S−1(fφ), v) =

⟨fφ, v⟩ = φ(v) ∀v ∈ H.
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Linearity. Take an arbitrary α1, α2 ∈ R and u1, u2 ∈ H. Then for any v ∈ H,

⟨S(α1u1 + α2u2), v⟩ = B[α1u1 + α2u2, v]

= α1B[u1, v] + α2B[u2, v]

= α1⟨Su1, v⟩+ α2⟨Su2, v⟩

= ⟨α1S(u1) + α2S(u2), v⟩

=⇒ ⟨S(α1u1 + α2u2), v⟩ − ⟨α1S(u1) + α2S(u2), v⟩ = 0,

=⇒
〈
S(α1u1 + α2u2)− (α1S(u1) + α2S(u2)), S(α1u1 + α2u2)− (α1S(u1) + α2S(u2))

〉
= 0,

=⇒ S(α1u1 + α2u2)− α1S(u1)− α2S(u2) = 0,

=⇒ S(α1u1 + α2u2) = α1S(u1) + α2S(u2).

Thus S is linear.

Injectivity. The fact that B is elliptic implies S is injective. To see this, consider that, from the Cauchy-

Schwartz inequality,

m∥u∥2 ≤ B[u, u] = ⟨Su, u⟩ ≤ ∥Su∥∥u∥.

We will use this to show that u1 ̸= u2 =⇒ S(u1) ̸= S(u2).

u1 ̸= u2,

=⇒ ∥u1 − u2∥ > 0,

=⇒ ∥S(u1 − u2)∥ ≥ m∥u1 − u2∥ ≥ 0,

=⇒ S(u1 − u2) ̸= 0,

=⇒ S(u1)− S(u2) ̸= 0,

=⇒ S(u1) ̸= S(u2).

Surjectivity.

Let R := {S(v) : v ∈ H} be the range of S and consider an element of its orthogonal compliment p ∈ R⊥.

∀v ∈ H B[v, p] = ⟨S(v), p⟩ = 0,

=⇒ 0 = B[p, p] ≥ m∥p∥2,

=⇒ p = 0,

=⇒ R⊥ = {0}.

By the orthogonal decomposition theorem, if R is a closed subspace of H, which {0} trivially is, then

H = R⊕R⊥ = R⊕ {0} = R.

.
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Uniqueness. Suppose that ∃wφ, uφ ∈ H such that B(wφ, v) = B(uφ, v) = φ(v) ∀v ∈ H. Then

B(wφ, v)−B(uφ, v) = B(wφ − uφ, v) = 0,

=⇒ 0 = B(wφ − uφ, wφ − uφ) ≥ m∥wφ − uφ∥,

but since m > 0, this implies that ∥wφ − uφ∥ = 0 and wφ = uφ.

4 Weak Formulation

Definition 9 (Test Functions, C∞
c (U)). For an open set U ⊆ Rn, a test function ϕ : U → R is a function

which is infinitely differentiable and whose support is a a compact subset of U .

Remark. Since U is open, an immediate consequence of this is that ϕ = 0 near ∂U .

Remark. The set of test functions on U is notated as C∞
c (U).

An example of a test function with support B(0, 1) is

ϕ(x) =

exp
(

1
|x|2−1

)
|x| < 1

0 |x| ≥ 1.

Suppose, for a particular second-order linear elliptic operator L on a bounded and open U ⊂ Rn, that the

function u ∈ C2(U) has the following properties:

Lu = f, ∀x ∈ U,

u = 0, ∀x ∈ ∂U.

Then it would also be true that for any test function ϕ ∈ C∞
c (U),∫

U

Lu(x)ϕ(x)dx =

∫
U

f(x)ϕ(x)dx.

Let B(u, ϕ) :=
∫
U
Lu(x)ϕ(x)dx. It is apparent that up to a renaming of coefficients, it is possible to rewrite L

as

Lu =
∑
|α|≤2

aα(x)D
αu =

n∑
i=1

n∑
j=1

(
− ∂xi

(ai,j(x)∂xj
u)
)
+

n∑
j=1

(
bj(x)∂xj

u
)
+ c(x)u.

At which point, B may be rewritten with integration by parts,

B(u, ϕ) =

∫
U

Lu(x)ϕ(x)dx

=

n∑
i=1

n∑
j=1

(∫
U

−∂xi
(a(i,j)(x)∂xj

u)ϕ(x)dx
)
+

n∑
j=1

(∫
U

bj(x)(∂xj
u)ϕ dx

)
+

∫
U

c(x)u ϕ dx =

n∑
i=1

n∑
j=1

(∫
U

a(i,j)(x)∂xju ∂xiϕ(x)dx−
∫
∂U

a(i,j)(x)∂xju ϕ(x) νi(x) dx
)
+

n∑
j=1

(∫
U

bj(x)(∂xju) ϕ dx
)
+

∫
U

c(x)u ϕ dx

=

∫
U

( n∑
i=1

n∑
j=1

(
a(i,j)(x)∂xju ∂xiϕ(x)

)
+

n∑
j=1

(
bj(x)(∂xju) ϕ

)
+ c(x)uϕ

)
dx,

where νi : ∂U → R denotes the ith component of the outward-facing unit normal vector at each point x ∈ ∂U .
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Remark. The application of Green’s theorem, or integration by parts, assumes the existence of an outward-

facing unit normal vector to ∂U which would require ∂U to be smooth. This does not matter, though, since

spt(ϕ) is compactly contained in U , there exists a set W : spt(ϕ) ⊂ W ⊂ U such that W has smooth boundary.

Definition 10 (Weak Formulation). The equation,

B(u, ϕ) =

∫
U

f(x)ϕ(x)dx ∀ϕ ∈ C∞
c (U), (2)

is known as the weak form of the equation

Lu = f ∀x ∈ U.

Observe that B is a bilinear form because it is constructed with derivatives, which are linear maps; and

L2(U) inner products ⟨u, v⟩ =
∫
U
uv dx, which are bilinear. Also note that, arranged in this way, B may act on

functions which only have one derivative, as opposed to at least two. The weak formulation is inspired by the

fact that, within a Hilbert space H, ⟨u, ϕ⟩ = ⟨v, ϕ⟩ ∀ϕ ∈ X : X dense in H =⇒ u = v. If a suitable Hilbert

space of once-differentiable functions on U can be found, and it could be shown that the Lax-Milgram Theorem

applies to B within this Hilbert space, then there would be exactly one element satisfying (2).

5 The Sobolev Space H1(U)

The Sobolev space H1(U) is a Hilbert space whose elements are, in a weak sense, once differentiable. To begin,

suppose u ∈ C1(U)∩L2(U) and also ∂xi
u ∈ L2(U), ∀i ∈ {1, ..., n}. Let us define the Sobolev norm ∥ · ∥H1(U) as

∥u∥H1(U) =

√√√√∫
U

u2 +

n∑
i=1

(∂xi
u)2 dx =

√√√√∥u∥2L2(U) +

n∑
i=1

∥∂xi
u∥2L2(U).

Then it follows from Pythagoras’ theorem that ∥u∥L2(U) ≤ ∥u∥H1(U) and ∥∂xiu∥L2(U) ≤ ∥u∥H1(U). Therefore,

∥u∥H1(U) :=

√√√√∥u∥2L2(U) +

n∑
i=1

∥∂xi
u∥2L2(U) < +∞ =⇒ (∂xi

u) ∈ L2(U) and u ∈ L2(U).

This construction also allows for ∥ · ∥H1(U) to be generated from an inner product. Define

⟨u, v⟩H1(U) :=

∫
U

u(x)v(x) +

n∑
i=1

(∂xi
u)(∂xi

v) dx = ⟨u, v⟩L2(U) +

n∑
i=1

⟨∂xi
u, ∂xi

v⟩L2(U).

This is so far insufficient to create a Hilbert space, since C1(U) ∩ L2(U) is not complete with respect to

∥ · ∥H1(U). To resolve this, it is necessary to weaken the definition of differentiability in a similar way that the

weak formulation was constructed.

Definition 11 (Weak Derivative). If f ∈ L2(U), it is said to be weakly α-differentiable if there exists g ∈ L2(U)

such that ∫
U

g(x)ϕ(x)dx = (−1)|α|
∫
U

f(x)Dαϕ(x)dx ∀ϕ ∈ C∞
c (U).

In which case, g is called the weak α-derivative of f , g = Dαf .
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Remark. The notation Dα signifies a conventional (strong) derivative when it is applied to a test function, but

otherwise refers to a weak derivative.

Remark. Weak derivatives satisfy the expected nice properties, in that they are unique if they exist, and agree

with strong derivatives. If u ∈ C1(U) ∩ L2(U), then∫
U

(∂xi
u)ϕdx =

∫
∂U

uϕνidx−
∫
U

u (∂xi
ϕ)dx = −

∫
U

u (∂xi
ϕ)dx.

A full explanation of these properties can be found in Evans (p.247) [1].

6 Trace

Since U is open, u ∈ H1(U) cannot be directly evaluated on ∂U . However, the structure imposed by the H1

norm is sufficient for there to exist a natural extension to the boundary, known as the trace operator.

Definition 12. For a bounded open subset U of Rn, C(U) denotes the set of functions f : U → R which are

continuous on U .

Remark. There is a natural equivalence between uniformly continuous functions on U to continuous functions

on U . The closure U of U is a closed and bounded subset of Rn by assumption, therefore it is compact by the

Heine-Borel theorem, therefore any function which is continuous on the domain U is uniformly continuous by

the Heine-Cantor theorem. Further, consider u : U → R uniformly continuous, any x ∈ ∂U , and any sequence

{xn} ∈ U : xn → x. Then ∀ε > 0, ∃δ > 0 : ∀x, y ∈ U, |x− y| < δ =⇒ |u(x)−u(y)| < ε. Let n,m be sufficiently

large so that |x− xn|, |x− xm| < δ
2 . Then |xn − xm| < δ so |u(xn)− u(xm)| < ε. This shows that {u(xn)} ⊂ R

is Cauchy so converges to a unique limit because R is complete. Hence, there is a unique continuous function

u : U → R such that u(x) = u(x) ∀x ∈ U .

Theorem 4 (Continuous Extension). Let X be dense in Y as metric spaces and let T : X → Z be a continuous

map. Then if Z is complete, there is a unique continuous map T : Y → Z such that Tx = Tx ∀x ∈ X.

Proof. Consider a sequence {xn} ∈ X : xn → y ∈ Y . If T is continuous, then it must be true that Txn → Ty as

xn → y. Since it is stipulated that Txn = Txn, Txn → Ty as n → ∞. However, limits of sequences are unique

in metric spaces, so there is a unique choice for Ty that satisfies the stipulations.

Theorem 5 (C(U) ∩ C1(U) is dense in H1(U)). Proof.

Remark. An incomplete proof is provided, showing convergence in the L2 norm. A proof of density with respect

to the H1 norm can be found in Evans (p.252) [1].

Extend u ∈ L2(U) to L2(Rn) by defining u(x) = 0 ∀x ∈ Rn \ U . In this way, ∥u∥L2(U) = ∥u∥L2(Rn). It is

well established that Cc(Rn) is dense in L2(Rn), and so for any ε > 0, choose a v ∈ Cc(Rn) : ∥v− u∥L2(Rn) < ε.

The cost of extending to Rn is that v is not necessarily continuous (namely on ∂U). To resolve this, we

introduce the mollifier;

ηε(x) :=
ϕ
(
x
ε

)
εn
∫
Rn ϕ(x)dx

,

10



where ϕ(x) is the example test function,

ϕ(x) =

exp
(

1
|x|2−1

)
|x| < 1

0 |x| ≥ 1.

It will be shown that vε := v ∗ ηε → v in the L2 norm as ε → 0. Firstly,

∥vε − v∥L2 =

√∫
Rn

(∫
Rn

v(y)ηε(x− y)dy − v(x)

)2

dx

=

√∫
Rn

(∫
Rn

[v(x− y)− v(x)]ηε(y)dy

)2

dx.

Let f(x, y) = [v(x− y)− v(x)]ηε(y), then it is true that

=

√∫
Rn

(∫
Rn

f(x, z)dz

)(∫
Rn

f(x, y)dy

)
dx,

where y has been renamed to z in the first integral. This means we can apply linearity of the integral, treating

the f(x, z) as constant factor under y and vice versa.

=

√∫
Rn

(∫
Rn

(∫
Rn

f(x, z)dz

)
f(x, y)dy

)
dx =

√∫
Rn

(∫
Rn

(∫
Rn

f(x, z)f(x, y) dz

)
dy

)
dx.

Interchanging order of integration,

=

√∫
Rn

(∫
Rn

(∫
Rn

f(x, z)f(x, y) dx

)
dy

)
dz.

Cauchy-Shwartz may be applied to the innermost integral.

≤

√√√√∫
Rn

(∫
Rn

√∫
Rn

f(x, z)2 dx

√∫
Rn

f(x, y)2 dx dy

)
dz.

Observing that the first factor does not depend on y,

=

√√√√∫
Rn

√∫
Rn

f(x, z)2 dx

∫
Rn

√∫
Rn

f(x, y)2 dx. dy dz

Then observing that the second factor does not depend on z,

=

√√√√(∫
Rn

√∫
Rn

f(x, z)2 dx dz

)(∫
Rn

√∫
Rn

f(x, y)2 dx dy

)
.

Then the two factors are equal,

=

√√√√(∫
Rn

√∫
Rn

f(x, y)2 dx dy

)2

=

∫
Rn

√∫
Rn

f(x, y)2 dx dy.

We return to the original problem by substituting f(x, y) = [v(x− y)− v(x)]ηε(y):

∥vε − v∥L2 ≤
∫
Rn

(∫
Rn

[v(x− y)− v(x)]2ηε(y)
2 dx

) 1
2

dy.
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Next, since ηε(y) doesn’t depend on x, it is brought out of the innermost integral:

∥vε − v∥L2 ≤
∫
Rn

(∫
Rn

[v(x− y)− v(x)]2dx ηε(y)
2

) 1
2

dy =

∫
Rn

(∫
Rn

[v(x− y)− v(x)]2dx

) 1
2

ηε(y) dy.

Now let us show that translation is continuous with respect to the Lp norm for functions in Cc(Rn). Let

Th : Cc(Rn) → Cc(Rn) be the translation operator by h, given by (Thu)(x) := u(x− h). Then ∀ε > 0, ∃δ > 0 :

|h| < δ =⇒ ∥Thu− u∥Lp(Rn)

First consider that the support of Thu − u is compact since it is the union of two compact sets, and its

measure is finite—bounded by twice the measure of U , which we shall name µ(U). Additionally, since Cc(U)

continuous and compactly supported, it is uniformly continuous on Rn. Therefore, ∀ε > 0, ∃δ > 0 : |h| < δ =⇒

|u(x− h)− u(x)| < ε. Hence, ∀ ε
(2µ(U))1/p

> 0, ∃δ > 0:∫
Rn

|u(x− h)− u(x)|pdx =

∫
spt(u)∪spt(Thu)

|u(x− h)− u(x)|pdx ≤
∫
spt(u)∪spt(Thu)

εp

2µ(U)
dx ≤ εp,

=⇒
(∫

Rn

|u(x− h)− u(x)|pdx
)1/p

≤ ε.

Therefore, we may apply this this estimate to the previous working, then

∥vε − v∥L2(Rn) ≤
∫
Rn

(∫
Rn

[v(x− y)− v(x)]2dx

)1/2

ηε(y)dy ≤
∫
Rn

εηε(x)dx = ε.

Last, consider

∥uε − vε∥L2(Rn) =

(∫
Rn

∫
Rn

u(x− y)ηε(y)dy −
∫
Rn

v(x− y)ηε(y)dy dx

)1/2

.

Using the same working from before, an upper bound is found,

=

(∫
Rn

(∫
Rn

[u(x− y)− v(x− y)]ηε(y)dy

)2

dx

)1/2

≤
∫
Rn

√∫
Rn

(
[u(x− y)− v(x− y)]ηε(y)

)2
dx dy

=

∫
Rn

√∫
Rn

(
[u(x− y)− v(x− y)]

)2
dx ηε(y) dy,

and since the inner most integral is translation-independent, it will simply evaluate to the L2 norm.

∥uε − vε∥L2(Rn) ≤
∫
Rn

∥u− v∥L2(Rn) ηε(y) dy = ∥u− v∥L2(Rn) ≤ ε.

Therefore, it follows from the triangle inequality that

∥u− uε∥L2(U) ≤ ∥u− uε∥L2(Rn) ≤ ∥u− v∥L2(Rn) + ∥v − vε∥L2(Rn) + ∥vε − uε∥L2(Rn) ≤ 3ε,

and so C1(U) is dense in L2(U).

Theorem 6 (Trace Theorem). Assume U is a bounded Lipschitz domain. Then there is a bounded linear

operator T : H1(U) → L2(∂U), known as the trace, such that Tu = u|∂U if u ∈ H1(U)∩C(Ū) and ∥Tu∥L2(∂U) ≤

C∥u∥H1(U).
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Remark. Since C(U) is dense in H1(U), it follows from Theorem 4 that this operator is unique and there is

only one natural choice for the trace of u ∈ H1(U).

Proof. Firstly assume u ∈ C(U). By assumption, for each p ∈ ∂U , there exists a hyperplane Π through p with

a unit normal ν, and a Lipschitz function g : Π → R over the hyperplane, and a small ε > 0 such that

U ∩B(p, ε) = {π + tν | π ∈ B(p, ε) ∩Π, t > g(π)} ∩B(p, ε).

Define x′ = (x1, ..., xn−1) ∈ Rn−1 and, without loss of generality, suppose this plane is {(x′, xn) ∈ Rn : xn = 0}.

Define a change of coordinates Φ according to the following rule Φ : (x′, xn) 7→ (x′, xn − g(x′)). Its Jacobian is

1 since ∂
∂xn

g(x′) = 0.

Now, within a small ball B(p, ε′), for example with ε′ = ε/K where K is the Lipschitz constant of g, the

boundary of the transformed set ∂(ΦU) coincides with {(x1, ..., xn) : xn = 0}. Take yet another smaller ball

inside this one, for example B(p, ε′/2) and define the a cutoff function function χ which is exactly equal to 1

in B(p, ε′/2), exactly equal to 0 outside of B(p, ε′), and smooth with range [0, 1]. Finally, for convenience write

y = Φx. Then,∫
B(p,ε′/2)∩{yn=0}

|u(y)|2dy′ ≤
∫
B(p,ε′)∩{yn=0}

χ|u(y)|2dy′ = −
∫
B(p,ε′)∩{yn≥0}

∂yn
(χ|u(y)|2)dy.

The third step was achieved by applying the fundamental theorem of calculus: f(0) − f(a) = −
∫ a

0
f ′(t)dt in

the yn direction. Then after a direct application of product rule,

≤
∣∣∣∣ ∫

B(p,ε′)∩{yn≥0}
(∂yn

χ)u(y)2 + 2u(y)χ(∂yn
u(y))dy

∣∣∣∣.
Since ∂ynχ is smooth with compact support it is bounded.

≤
∫
B(p,ε′)∩{yn≥0}

∣∣∣∣(∂yn
χ)u2

∣∣∣∣+ ∣∣∣∣2uχ(∂yn
u)

∣∣∣∣dy
≤
∫
B(p,ε′)∩{yn≥0}

Cu2 +
(
|uχ|2 + |∂ynu|2

)
dy ≤ C

∫
B(p,ε′)∩{yn≥0}

u2 +

n∑
i=1

(∂yiu)
2dy.

=⇒
∥∥∥u|∂U∩B(p,ε′)

∥∥∥2
L2(∂U∩B(p,ε′)

≤
∥∥∥u|U∩B(p,ε′)

∥∥∥
H1(U∩B(p,ε′)

Since ∂U is a closed and bounded subset of Rn it is compact, meaning after taking a finite subcover of these

balls {B(pk, εk)}nk=1 we can sum the inequalities to have

∥u|∂U∥L2(∂U) ≤
n∑

k=1

∥u|B(pk,εk)∩∂U∥L2(B(pk,εk)∩∂U) ≤
n∑

k=1

∥u|B(pk,εk)∩U∥H1(B(pk,εk)∩U) ≤ ∥u∥H1(U)

Therefore we have shown ∥Tu∥L2(∂U) ≤ C∥u∥H1(U). If we stipulate that T is linear, which is a sensible thing

to do since it is a restriction operator, this implies T is continuous.
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7 Standard Existence Theorem

Definition 13. The set H1
0 (U) is the space of functions u ∈ H1(U) such that Tu = 0, where T is the trace

operator from Theorem 6.

Theorem 7 (Standard Existence Theorem (Evans)). Let U ⊂ Rn be a Lipschitz, bounded and open domain

and let L be a uniformly elliptic differential operator of the form

Lu =

n∑
i=1

n∑
j=1

(
− ∂xi

(ai,j(x)∂xj
u)
)
+

n∑
j=1

(
bj(x)∂xj

u
)
+ c(x).

Last, suppose f ∈ L2(U). Then there exists a unique solution u ∈ H1
0 (U) to the weak-form problem:∫

U

( n∑
i=1

n∑
j=1

(
a(i,j)(x)∂xj

u ∂xi
ϕ(x)

)
+

n∑
j=1

(
bj(x)(∂xj

u) ϕ
)
+ c(x)uϕ

)
dx =

∫
U

f(x)ϕ(x)dx ∀ϕ ∈ C∞
c (U).

8 Unanswered Questions

1. Let U = {(x, y) ∈ R2 : y > x2/3 ∧ x2 + y2 < 1}, and f ∈ L2(U), f0 ∈ L2(∂U). Lastly, assume f0 is

continuous at (0, 0). Then does there exist a solution u in H1(U) to the problem?

∆u = f, ∀x ∈ U

u = f0, ∀x ∈ ∂U

2. Higher order elliptic boundary value problems often have boundary conditions that specify trace as well

as normal derivatives, and these problems have been shown to be well-posed. Is it possible to also prove

a well-posed formulation of boundary value problems which use punctures, as seen in Counter-Example?

3. Can the theory of slit domains and punctured domains be unified, in the same way that the theory of C1

domains and Lipschitz domains has been unified?
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