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1 Problem Description and Research Aims

Definition 1 (Multi-Index Notation). A multi-index is an n-tuple « = (aq,...,a,) € N of nonnegative

integers. Its length is defined as
n
la| == Z Q.
i=1

A multi-index is commonly used to quickly express derivatives. For a function u : R™ — R, the multi-index

derivative is written as

dlely
Dou= — = (... 9% ).
U 6]}(1}1 "'6$%" ( 1 Tn )u
It is also used occasionally as a map from a vector & = (&1,...,&,) € R™ to R. We define

é-a: fl._.ggn'

For example,

(1,2,3) 123 = 11.22.3% = 108,

Definition 2 (Linear Second Order Differential Operators). A second-order linear differential operator L in

R™ is an operator of the form

L:ur Z aq(x) DY,

<2
where the sum is over multi-indices a € N, and acts on functions v : R — R where at least two partial
derivatives in each direction exist. The coefficients a., are functions R™ — R. We say L is elliptic if, for all

nonzero £ € R™,

Z aq ()€ > 0.

lov|=2

Further, L is uniformly elliptic if there exists A > 0 such that
3 aa@)e® = Nel, Ve R,
|a]=2
Remark. FEllipticity is a similar property to positive-definiteness.
The following problem is known as an elliptic boundary value problem (BVP) of Dirichlet kind, and is the
subject of this report. Suppose U is an open and bounded subset of R™ let f: U — R, and fy : 0U — R, and

let L be an elliptic differential operator. Then what conditions are sufficient to guarantee that there exists a

unique solution u : U — R to the following system?

Lu=f, vz e U,
U:fo, Vo € oU.

Elliptic BVP are are eminent problems in dynamics because of their versatility in describing the long-term

behaviour of physical systems. A notable example is Poisson’s equation, where L is taken to be the Laplace
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operator A = ;—; + 88722’ which describes the equilibrium temperature at every point in a region U if temperature

is fixed to equal fy on OU, and heat is added at each point at a rate of f(z).

Ay = f, VeelU

u = fo, Vz € oU

The theory of elliptic PDE is well-described by Evans [1], which focuses on the study of elliptic BVPs where
the boundary QU is sufficiently well-behaved. However, there is significantly less investigation into cases where
OU may include cusps, slits, or removed points (punctures). The aim of this project was to understand why

these domains may not admit solutions.

Definition 3 (Smooth-Boundary (C') Domains). The boundary OU of a connected open subset (domain)
U C R" is classified as C' if it can be locally written as the graph of a smooth function. That is, for each

p € OU, there exists a small ¢ > 0, an index j € {1,...,n}, and a smooth function v : R"™1 — R such that

UNB(p,e)={x; >v(x1,..j-1,Zj41,....2n)} N B(p,e) or {x; <y(x1,....,25-1,Zj41,...,zn) } N B(p,€).

Definition 4 (Lipschitz Function). A function f : R™ — R is Lipschitz if there exists a constant K such that

for each distinct x,y € R",
[f(z) — f()l
[z -yl
Definition 5 (Lipschitz Domain). The boundary OU of a domain U C R™ is Lipschitz if, for every p € U, there

< K.

exists a hyperplane I1 of dimension n — 1 through p with a unit normal v, and a Lipschitz function g : 11 — R

over the hyperplane, and a small € > 0 such that
UNB(p,e) ={z+tv |z € B(p,e) N1t > g(z)} N B(p,¢)
Remark. Lipschitz is a weaker condition than smooth, and allows for some disruptions such as corners.

Remark. The definition of C' boundaries uses only v = e;, as this is sufficient to capture all possible smooth
boundaries. However, in the case where p € U is sitting at an acute-angled corner, it is possible that 0UNDB(p, €)
cannot be expressed as the graph of a function x; = G(X1, .o, Ti—1, Tit1, ..., Tn), in other words, we need the ability

to rotate the boundary to an arbitrary orientation, rather than just 90° rotations around coordinate azes.

2 Counter-Example

The punctured unit disc U = {z € R? : || € (0,1)} has a boundary U = {|z| = 1} U{0}. There is no solution

to the following boundary value problem problem.

Au =0, Ve e U
u =0, Vo € {|z| =1}
u(0) =1
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After changing to polar coordinates, the problem reduces by radial symmetry,

8%u  10u

Gzt =0 ¢ u0)=1 ul)=0,

and in this form, the solution takes the form:
u(r) = Cy + Cyln(r).

This form admits no valid solutions to the boundary conditions since Cy In(r) — oo unless Cy = 0, but if Co = 0
then w(r) = C; is constant and cannot satisfy the boundary conditions. However, if the domain is taken to be

an annulus rather than a pierced disk, such that the boundary conditions can be expressed as

u(r) =C1+ Coln(r), wu(e)=1, wu(l)=0,

then there is a solution, u(r) = EEQ

Interestingly, if the operator is instead taken to be the fourth-order bi-Laplacian A? = ;—; + 2%2?/2 + 8‘%
instead of the Laplacian A = 6‘9—; + ;—;2, then there is a family of solutions to the same problem.

In polar coordinates, the bi-Laplacian reduces under radial symmetry to

o 200 1o 1o
ort  rort r20r2  r390r

10 (L0 (10 (o)) _,
ror "ar \ror \"or e

This equation possesses a general solution;

:O7

which is equivalent to

u(r) = C1r?Inr 4 C1r? + C3Inr + Cy such that
In the case where u(0) = 1, it is necessary that C3 = 0 since In(0) is not defined. However, 22Inz — 0 as
x — 0, hence C'; may be nonzero. Then, the general solution to the BVP is

u(r) = Cyr*lnr +1— 12,

3 The Lax-Milgram Theorem

Definition 6 (Real Hilbert Space). A real Hilbert space H is a vector space equipped with an inner product
(-,) : H x H — R which has the following properties:

o (u,u) >0 YueH,
o (u,u) =0<=u=0,

i <OéU+'U,B’U)+£L’> :OZ6<U,UJ> +C¥<’LL,CE> +B<U,U}> + <va> Vu,v,w,x € Ha vaaﬂ GR;

O, YAMS|



2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

o (u,v) = (v,u) Yu,v€H,
o H is complete with respect to the norm induced by the inner product, ||x| := \/{z, ).

Definition 7 (Bilinear Form). A bilinear form on a vector space V over R is a map B : V x V — R which is

linear in both components. That is to say, for all a, 8 € R and w,x,y,z € H, it is true that
Blaw + a, By + 2) = aBB(w,y) + aB(w, 2) + BB(x,y) + Bz, ).
Remark. An inner product is a specific case of a bilinear form.

If a boundary value problem is able to be re-stated in terms of bilinear forms on a Hilbert space, then the
Lax-Milgram theorem provides clarity about when there is only one candidate for a solution. We prove this

result first to justify later sections which will detail how the formulation may be done.

Definition 8 (Orthogonal Compliment). Let V' be a subset of a Hilbert space H. Its orthogonal compliment
VL is the set of all x € H such that (x,v) =0 Yv € V.

Theorem 1 (Orthogonal Decomposition Theorem). Let M be a closed subspace of a real Hilbert space H, then
H=Mo M, that is,
VeeH, AyeMze Mt iz =y+2.

Remark. This theorem extends the motion of vector projection to infinite-dimensional Hilbert spaces.

Proof. First select an arbitrary « € H. It will be shown that min{||x —m|| : m € M} exists and is achieved by a
unique v € M. Let § = inf{||xz —m| : m € M} and choose a sequence {u,} in M such that ||z —u,|| converges
to d. Such a sequence must exist since 6 = inf{|[[x —m| :me M} = Ve>0,Ime M : |z —m| <d+e.
Recalling that %(un + um) € M, it follows from the parallelogram law that for any n, m,

1 2
2 — =(tp +um)|| <20 = um|? + ||z — un]|?) — 462

2

[um = unll? = 2(|lz = wm|* + llo — un®) — 4

Then, since ||z =, |2 = 6%, limy, n—yoo [|Um —uy||? < 462 —46% = 0. Therefore, the sequence {u,, } is Cauchy and
the Hilbert space H is complete, so the sequence is convergent in 4. But M is closed, the sequence converges
to a element u € M.

A similar argument shows u is unique. Suppose u,v € M both satisfy ||z — u|| = ||z — v|| = inf{||lx — m| :

m € M. Then by the parallelogram law,

2
lu —v||* = 2|ju — 2||* + 2|jv — z|* - —z|| <20%+26%—46% =0,

u+v
2

- U =".

To show H = M @ M=, choose an arbitrary = € H and use the argument above to generate the minimising

u € M. Since M is a vector subspace,
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2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

ut+ameM VYaeR meM

=z = (u+am)|| = |z — ull

= (z—u,x—u) <{(z—u—am,x—u—am)
= (am,am) — 2(x —u,am) >0

= ?|m|? - 2alx —u,m) >0

= glei]%{OLQ”m”Q —2a{x —u,m)} >0

N (x —u,m) _g

Thus,  —u € M*, and x = u+ (z —u) is a decomposition of . To show uniqueness, suppose x = v+ (x —v)
such that v € M and (z —v) € M*. Then u + (x —u) = v+ (z —v) so u —v = (z —v) — (z — u). However,

u —v € M because M is a vector space, while (z — v) — (z — u) € M+ because
((x—v)—(x—u),m)={(x —v),m) —{((x —u,m) =0—-0=0.
Hence u —v € M N M+ and so (u — v,u — v) = 0 which implies u = v. O

Theorem 2 (Riesz Representation Theorem). Let H be a real Hilbert space with inner product (-,-), and suppose
¢ : H — R is a bounded linear functional. Then there exists a unique f, € H, known as the Riesz representation

of , such that
o(x) =z, fo) Yz eH.

Remark. Note that in finite dimensional cases, for example if H is R™ with the conventional dot product, the
Riesz representation theorem is equivalent to the statement that every bounded linear function ¢ : R™ — R can
be expressed as u — u-v, which is trivially true. The value of this theorem is its validity in infinite-dimensional

cases, where linear functionals take on more forms than performing sum-products on a vector’s components.

Proof. Let K =ker(p) :={v € H : ¢(v) = 0}, which is a closed subspace of H because ¢ is linear and bounded,
so it is continuous so the preimage of a closed set is closed. First, consider if K = H (so, ¢ is the zero map).
Then (z, f,) =0 Vz € H. This is achieved if f, = 0 due to linearity of the inner product, and is unique since
fo #0 = (f,, f,) # 0 which produces a contradiction.

Next, suppose K # H. Since K is linear,

(Vo,y e H) 0=o(@)p(y) — eW)e(r) = ¢(p(x)y) + o(—p(y)r) = olp(z)y — p(y)z]. (1)
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From the orthogonal decomposition theorem, H = K @ K+ and since K # H, K= is nontrivial. Thus, let
y € K+ :y #0 then

(Ve e H) o(x)y — p(y)z € K,

= (p(@)y — ¢(y)z,y) =0,

— (@) {y,y) — e(y)(z,y) =0,
(z,y) o(y)
= »x) =y T, Y-
(r) = )<y,y> < (v, ) >
Hence, f, = @(";))y is the Riesz representation of ¢. To show it is unique, suppose 3f,,g9, € H : (Vz €
'H), (p(:L‘) = <$7f<p> = <xag<p>~ Then <f<p7x> - <g¢,x) = <ft,0 - g¢,$> = 0, which implies <ft,0 — Yo, ftp - g<p> =0
and hence, by positive-definiteness, f, — g, =0 or f, = g,. O

Theorem 3 (Lax-Milgram Theorem). Let H be a Hilbert space over R and let B : H x H — R be a bilinear
form on H. Assume also that B is coercive and bounded, which is to say that Im, M € R such that Vz,y € H,

e B(z,y) < M|z[l[ly],
o m|jz|?* < B(z,z).

Then for any bounded linear functional ¢, there exists a unique element b, € H such that B(by,,v) =

p(v) Yv e H. In other words, ¢ has a representative element, b, € H, which transforms B into .

Proof. Begin by fixing w € H. Then v — B(u,v) is a bounded linear functional. Hence by the Riesz represen-
tation theorem, there exists a unique w € H such that B(u,v) = (w,v) Vv € H. It is possible to uniquely find
such an element for any v € H, so define a function S : H — H which sends u to the Riesz representation of
the functional B(u,- ).

Separately, the Riesz representation theorem guarantees that for any bounded linear functional ¢, there is a
unique f, € H : p(u) = (u, f,) Vu € H. Combining these ideas, if S is bijective then it would have an inverse
S~ which, after applying to f,, would give the element in H with the needed property that B(S™*(f,),v) =
(fo,v) =p(v) YveH.

O, YAMS|
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Linearity. Take an arbitrary a1,as € R and uq,us € H. Then for any v € H,

(S(anug + agus),v) = Blaqug + agug, v]
= a1 Bluy,v] + azBlus, v]
= a1 (Su1,v) + as(Suz,v)
= (o1 S(u1) + a2S(uz),v)

= (S(aqu1 + aguz),v) — (a1.8(u1) + a2 S(uz),v) =0,
= (S(a1ur + azus) — (1 S(u1) + @28 (u2)), S(aruy + asuz) — (a1S(ur) + a2S(uz))) = 0,
= S(aqu; + agus) — a1 S(u1) — aeS(uz) =0,
= S(aqu; + agus) = a1.5(u1) + @2S(uz).
Thus S is linear.
Injectivity. The fact that B is elliptic implies S is injective. To see this, consider that, from the Cauchy-

Schwartz inequality,

mllull* < Blu,u] = (Su,u) < [[Sul|][u].

We will use this to show that uy; # us = S(u1) # S(u2).

uy # ug,

= [Jur —uzf| >0,

= ||S(u1 — u2)|| = m|lur —uzf| >0,
= S(uy —ug) #0,

= S(u1) — S(uz) #0,

= S(u1) # S(ug).

Surjectivity.
Let R:= {S(v) : v € H} be the range of S and consider an element of its orthogonal compliment p € R*.

YveH Blv,p]=(S(v),p) =0,
= 0= B[p,p] = m|pl?,
—t p:o’

— R+ ={0}.
By the orthogonal decomposition theorem, if R is a closed subspace of H, which {0} trivially is, then

H=R®R*=R® {0} =R

O, YAMS|
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Uniqueness. Suppose that Jw,, u, € H such that B(w,,v) = B(ug,v) = ¢(v) Vv € H. Then
B(wy,v) — B(uy,v) = B(wy — ug,v) =0,
— 0= B(wy — up,wy — tp) = mllwy — ugll,

but since m > 0, this implies that ||w, — u,|| = 0 and wy, = u,,. O

4 Weak Formulation
Definition 9 (Test Functions, C°(U)). For an open set U C R™, a test function ¢ : U — R is a function
which is infinitely differentiable and whose support is a a compact subset of U.
Remark. Since U is open, an immediate consequence of this is that ¢ = 0 near OU.
Remark. The set of test functions on U is notated as C°(U).
An example of a test function with support B(0,1) is
1
¢(z) = .
0 |z| > 1.

Suppose, for a particular second-order linear elliptic operator L on a bounded and open U C R"™, that the

function u € C?(U) has the following properties:
Lu = f, Vr e U,
u =0, Vr € oU.

Then it would also be true that for any test function ¢ € C°(U),

| ru@otws = [ f@ows

Let B(u,¢) := fU Lu(z)p(z)dz. It is apparent that up to a renaming of coeflicients, it is possible to rewrite L

as

Lu = Z Z (— s (a5 (x 8%“)_'_2( 6$Ju>+c( Yu.

n o n n
|| <2 i=1 j=1 j=1

At which point, B may be rewritten with integration by parts,

B(u, 6) = /U Lu(z)é(x)dx
] @

:zn:' (/U_awi(a( i.4)(2)0z,;u) 9 "’zn:(/UbJ )(Oz;u) dﬂ?) z)u ¢ dor =
Z":z”: (/Ua(i,j)(x)axju O, (x)dx — /aU H(@)0z;u () + Z": ( . bj(x)(0y;u) ¢ da:) /Uc(x)u ¢ dx
/ <§§; ( ”) ax]u O, 0(z ) Zi; ( 8%“ ) c(a:)ud)) dx

where v; : OU — R denotes the ith component of the outward-facing unit normal vector at each point « € OU.
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Remark. The application of Green’s theorem, or integration by parts, assumes the existence of an outward-
facing unit normal vector to OU which would require OU to be smooth. This does not matter, though, since

spt(@) is compactly contained in U, there exists a set W : spt(¢p) C W C U such that W has smooth boundary.

Definition 10 (Weak Formulation). The equation,
0= [ f@ois voe ) 2)
1s known as the weak form of the equation
Lu=f Vrel.

Observe that B is a bilinear form because it is constructed with derivatives, which are linear maps; and
L?(U) inner products (u,v) = fU uv dx, which are bilinear. Also note that, arranged in this way, B may act on
functions which only have one derivative, as opposed to at least two. The weak formulation is inspired by the
fact that, within a Hilbert space H, (u,¢) = (v,¢) V¢ € X : X dense in H = wu = v. If a suitable Hilbert
space of once-differentiable functions on U can be found, and it could be shown that the Lax-Milgram Theorem

applies to B within this Hilbert space, then there would be exactly one element satisfying (2).

5 The Sobolev Space H(U)

The Sobolev space H!(U) is a Hilbert space whose elements are, in a weak sense, once differentiable. To begin,

suppose u € C*(U)NL*(U) and also 0,,u € L*(U), Vi € {1,...,n}. Let us define the Sobolev norm || | g1 (¢ as

lallarn o = -/Uu2—|—2(8ziu)2 dz = | Jula ) + 3 100, ul2
i=1 i=1

L2

Then it follows from Pythagoras’ theorem that ||u|z2y < [[ull g1y and ||0z,ull L2y < ||lull g2 ). Therefore,

lullr @y = 4 | llullZ: UﬁZII%U

i=1

220y < +00 = (Op,u) € LX(U) and u € L2(V).

This construction also allows for || - || g1 () to be generated from an inner product. Define
(u, ) g (vy = / u(z)v(z) + Z(E)Iiu)(&;iv) dr = (u,v) 2y + Z(@xiu,aﬁvhzw).
4 i=1 i=1
This is so far insufficient to create a Hilbert space, since C*(U) N L?(U) is not complete with respect to
| - Iz (). To resolve this, it is necessary to weaken the definition of differentiability in a similar way that the

weak formulation was constructed.

Definition 11 (Weak Derivative). If f € L?(U), it is said to be weakly a-differentiable if there exists g € L*(U)
such that

/ o()(x)de = (—1)\ / f@)D(x)de Vo € C2(U).
U U

In which case, g is called the weak a-derivative of f, g = D*f.
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Remark. The notation D® signifies a conventional (strong) derivative when it is applied to a test function, but

otherwise refers to a weak derivative.

Remark. Weak derivatives satisfy the expected nice properties, in that they are unique if they exist, and agree

with strong derivatives. If u € C*(U) N L*(U), then

/U(E)miu)z,zbdx = /aU upvidr — /Uu (02, 9)dx = —/Uu (O, ¢)dx.

A full explanation of these properties can be found in Evans (p.247) [1].

6 Trace

Since U is open, u € H'(U) cannot be directly evaluated on OU. However, the structure imposed by the H!

norm is sufficient for there to exist a natural extension to the boundary, known as the trace operator.

Definition 12. For a bounded open subset U of R", C(U) denotes the set of functions f : U — R which are

continuous on U.

Remark. There is a natural equivalence between uniformly continuous functions on U to continuous functions
on U. The closure U of U is a closed and bounded subset of R™ by assumption, therefore it is compact by the
Heine-Borel theorem, therefore any function which is continuous on the domain U is uniformly continuous by
the Heine-Cantor theorem. Further, consider u : U — R uniformly continuous, any x € OU, and any sequence
{zp} €U :ap —x. ThenVe >0, 30 >0:Va,y e U, |z —y| <d = |u(z) —u(y)| <e. Let n,m be sufficiently
large so that |z — |, | — 2| < §. Then |z, — x| < & so Ju(zy) — u(zm)| < e. This shows that {u(z,)} C R
1s Cauchy so converges to a unique limit because R is complete. Hence, there is a unique continuous function

u:U — R such that u(z) = u(x) Vo € U.

Theorem 4 (Continuous Extension). Let X be dense in'Y as metric spaces and let T : X — Z be a continuous

map. Then if Z is complete, there is a unique continuous map T : Y — Z such that Tx = Tx Vr € X.

Proof. Consider a sequence {z,} € X : x,, — y € Y. If T is continuous, then it must be true that Tz,, — Ty as
%, — . Since it is stipulated that T, = Tx,, Tz, — Ty as n — co. However, limits of sequences are unique

in metric spaces, so there is a unique choice for Ty that satisfies the stipulations. O
Theorem 5 (C(U) N CY(U) is dense in H*(U)). Proof.

Remark. An incomplete proof is provided, showing convergence in the L? norm. A proof of density with respect
to the H* norm can be found in Evans (p.252) [1].
Extend u € L?(U) to L*(R™) by defining u(z) = 0 Vaz € R™\ U. In this way, |lullr2@) = |ullp2@n). It is
well established that C.(R™) is dense in L?(R™), and so for any € > 0, choose a v € Ce(R") : [|v — ul| p2(rn) < €.
The cost of extending to R™ is that v is not necessarily continuous (namely on dU). To resolve this, we
introduce the mollifier;

A )
Ne(z) == Wa

10
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where ¢(z) is the example test function,

1
o) = .
0 |z| > 1.

It will be shown that v, := v * 1. — v in the L? norm as € — 0. Firstly,

ve — v]| 2 = \/ / (o — )dy_v(ﬂi))zd:c
N \//n Rn [v(@ —y) - U(x)]na(y)dy>2 dz.

Let f(z,y) = [v(z —y) — v(x)]n:(y), then it is true that

\// Rnf z,2) ) ( - f(m,y)dy) dz,

where y has been renamed to z in the first integral. This means we can apply linearity of the integral, treating

the f(x,z) as constant factor under y and vice versa.

_ \//n (/Rn ( 5 f(x,z)dz) f(m,y)dy) dz = \// (/R ( [ fwafEy dz) dy) dz.

Interchanging order of integration,

_ \// (/Rn ( RRCBHEN dm) dy> dz.

Cauchy-Shwartz may be applied to the innermost integral.

< \J/Rn (/n\/ - f(z,2)? dx\/ - f(z,y)? dx dy) dz.

Observing that the first factor does not depend on y,

J/ /Rnf(;z:,z)de /Rn,//wf(x,y)ﬁdx. dy d>

Then observing that the second factor does not depend on z,

:JUW dz) </RW dy).

Then the two factors are equal,

\J</ 1/ acyZd:cdy> /1/ f(z,y)? dx dy.
n RTI n R’ﬂ
vl —y) —v(z

We return to the original problem by substituting f(x

- Ey

fo-= ol < [ ([ oo =) - vl dx) L

11
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Next, since 7. (y) doesn’t depend on z, it is brought out of the innermost integral:

foe =l < [ ([ o= ) - oo n0?) - [ ([ pte=9) - vloyas) ¥ ) .

Now let us show that translation is continuous with respect to the LP norm for functions in C.(R™). Let
Ty : C.(R™) — C.(R™) be the translation operator by h, given by (Tju)(z) := u(x — h). Then Ve >0, 36 > 0:
|| <6 = ||Thu — ul pr®n)

First consider that the support of Thpu — u is compact since it is the union of two compact sets, and its
measure is finite—bounded by twice the measure of U, which we shall name p(U). Additionally, since C.(U)
continuous and compactly supported, it is uniformly continuous on R™. Therefore, Ve >0, 3§ > 0: |h| < § =
|u(z — h) —u(z)| < e. Hence, ¥V >0, 30 > 0:

()17

&‘p

/ lu(z — B) — u(z)|Pde = / lulz — ) — u(z)Pdz < / do < &b,
n spt(u)Uspt(Thu) spt(u)Uspt(Thu) 2M(U)

- (/ fue —h) - u(m)|pdx> e

Therefore, we may apply this this estimate to the previous working, then

o = ol < [ ([ fota=1)- v(w)}?dx)l/z n)dy < [ enla)ds =<,

[ue = vellL2®n) = </R /n u(z — y)ne(y)dy — / v(z — y)n-(y)dy dx) 1/2-

Using the same working from before, an upper bound is found,

= [u(z —y) —v(z —y)n-(y)dy | dz u(z —y) —v(z—y)n:(y) ) do dy
L I RIRUAC y
- \/ [ (1= 9) = oo~ ) do (o) dy.

and since the inner most integral is translation-independent, it will simply evaluate to the L? norm.

Last, consider

[te = Vell2(rn) < / [u—vllr2n) ne(y) dy = [lu = v L2®n) < €.
RTZ
Therefore, it follows from the triangle inequality that
|lu — u5||L2(U) < |lu-— Ua”L?(R") < lu— ’UHLz(]Rn) + v — v5||L2(Rn) + |lve — u6||L2(R7L) < 3e,

and so C1(U) is dense in L*(U).

Theorem 6 (Trace Theorem). Assume U is a bounded Lipschitz domain. Then there is a bounded linear
operator T : H'(U) — L?*(0U), known as the trace, such that Tu = u|oy if u € HY(U)NC(U) and |Tu|| 200y <

CHu”Hl(U)'
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Remark. Since C(U) is dense in H'(U), it follows from Theorem j that this operator is unique and there is

only one natural choice for the trace of u € H'(U).

Proof. Firstly assume u € C(U). By assumption, for each p € U, there exists a hyperplane II through p with

a unit normal v, and a Lipschitz function g : II — R over the hyperplane, and a small € > 0 such that
UNB(p,e)={m+tv|me Bpe)NIt>g(r)} NB(p,e).

Define 2’ = (x1,...,2,_1) € R~ and, without loss of generality, suppose this plane is {(2’,x,) € R" : 2,, = 0}.
Define a change of coordinates ® according to the following rule @ : (2, z,,) — (2/, z,, — g(z’)). Its Jacobian is
1 since %g(m’) =0.

Now, within a small ball B(p,e’), for example with ¢’ = ¢/K where K is the Lipschitz constant of g, the
boundary of the transformed set d(®U) coincides with {(z1,...,2,) : , = 0}. Take yet another smaller ball
inside this one, for example B(p,e’/2) and define the a cutoff function function x which is exactly equal to 1

in B(p,e’/2), exactly equal to 0 outside of B(p,e’), and smooth with range [0, 1]. Finally, for convenience write

y = ®x. Then,
/ )Py’ < [ duty)Pdy = - Oy, (xlu(w)?)dy.
B(p.e’/2)N{yn=0} B(p,e’)N{yn=0} B(p,e")N{yn >0}
The third step was achieved by applying the fundamental theorem of calculus: f(0) — = — fo t)dt in

the y,, direction. Then after a direct application of product rule,

< \ / @y uly)? + 2u<y>x<aynu<y>>dy].
p,e’ ) {yn>0}

Since 0y, x is smooth with compact support it is bounded.

</
B(p,e")N{yn>0}

< / Cu? + (Jux|® + 10y, u?*) dy < C u? + Z(ayiu)Qdy.
B(p,e’)n{yn>0} B(p,e")N{yn>0} i—1

(8y, X)u” | + |2ux(8y, u)|dy

2

< Hu|UmB(p,5’) ’Hl(UﬁB(p &)

HulaUﬂB(”’al) L2(0UNB(p,e’)

Since QU is a closed and bounded subset of R™ it is compact, meaning after taking a finite subcover of these
balls {B(pk,r)}_, we can sum the inequalities to have

n n

lulovllzzory < Y tlBr,ennovllz2 Berennon) < D 1ulBereonvlla Beeennv) < lulla o)
k=1 k=1

Therefore we have shown [|T'u||z290) < Cllul| g1 (vy. If we stipulate that T is linear, which is a sensible thing

to do since it is a restriction operator, this implies T is continuous. ]
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7 Standard Existence Theorem

Definition 13. The set H}(U) is the space of functions u € HY(U) such that Tu = 0, where T is the trace

operator from Theorem 6.

Theorem 7 (Standard Existence Theorem (Evans)). Let U C R™ be a Lipschitz, bounded and open domain
and let L be a uniformly elliptic differential operator of the form

LU—ZZ( Oy, (a; j(x 8x]u)+2( 8x7u>—|—c( ).

=1 j=1

Last, suppose f € L2(U). Then there exists a unique solution u € H}(U) to the weak-form problem:

/(ZZ(M 2)0s,u Oz, b >)+i(bj<x><a u) 6) + cla >u¢) dxf/f Dz Ve e Cx (D).

1=1 j=1 Jj=1
8 Unanswered Questions

1. Let U = {(z,y) € R? : y > 22/3 A 22 +9? < 1}, and f € L?(U), fo € L?(QU). Lastly, assume fy is

continuous at (0,0). Then does there exist a solution u in H!(U) to the problem?

Au = f, Ve e U

u = fo, vV € oU

2. Higher order elliptic boundary value problems often have boundary conditions that specify trace as well
as normal derivatives, and these problems have been shown to be well-posed. Is it possible to also prove

a well-posed formulation of boundary value problems which use punctures, as seen in Counter-Example?

3. Can the theory of slit domains and punctured domains be unified, in the same way that the theory of C!

domains and Lipschitz domains has been unified?
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