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Abstract

Fuel prices in Australian capital cities exhibit cyclical patterns, where short-term pricing strategies often

deviate from broader global trends. Although macroeconomic variables such as crude oil prices and

exchange rates strongly influence overall price levels, the short-term fluctuations recorded in retail fuel

markets are largely shaped by competitive interactions between local retailers. This research applies a

combination of residual analyses and spatial econometric approaches to examine how pricing decisions

ripple across neighbouring markets. The findings indicate that the pricing behaviour of fuel retailers

aligns with the Maskin-Tirole dynamic oligopoly model, characterised by Edgeworth cycles of incremental

undercutting and sudden resets. Furthermore, spatial analysis reveals meaningful price interdependence

among nearby stations. By distinguishing localised competitive dynamics from overarching economic

forces, this study illuminates the tempo-spatial nature of fuel price setting and discusses its implications

for market behaviour.

1 Introduction

Fuel prices in Australian capital cities follow a cyclical pattern, featuring regular price fluctuations that often

occur independently of long-term macroeconomic trends [Com25]. While broader trends in fuel prices are

generally influenced by global crude oil prices, exchange rates, and inflation, the short-term oscillations observed

in retail pricing are frequently driven by strategic interactions among competing retailers. Previous research

indicates that these price cycles exhibit asymmetry, with prices rising sharply but declining more gradually, a

feature consistent with the Edgeworth cycles postulated in the Maskin-Tirole dynamic oligopoly model [MT88].

Statement of Authorship

All code development, data analysis, and model implementations presented in this report were conducted by

the author. Guidance regarding the research trajectory, as well as the interpretation of results, was provided

by my supervisor, Dr. Dietmar Oelz. Moreover, while most algorithms were written from scratch, I used the

find peaks cwt function from the SciPy library [Sci] to perform the continuous wavelet transform (CWT)

peak detection, rather than implementing a custom version of the CWT algorithm.

1.1 Motivation

Understanding these cyclical pricing behaviours is critical for both economic theory and regulatory oversight.

Some studies [Val10; Wan08] suggest that asymmetric price adjustments may point to market inefficiencies

or tacit coordination among fuel retailers. Additionally, spatial factors play a major role in determining fuel

prices, given that no service station operates in isolation; rather, its pricing decisions are influenced by nearby

competitors. Research by [BCI20] finds considerable spatial interdependence in fuel prices, reinforcing the
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importance of local competition.

The aim of this study is to devise a modelling framework that explicitly incorporates spatial dependencies

in retail fuel pricing. Specifically, the objectives are to:

• Investigate the tempo-spatial characteristics of fuel price cycles.

• Test for spatial dependence using Moran’s I statistic [Mor50].

• Evaluate how pricing behaviour aligns with the Maskin-Tirole dynamic oligopoly model.

Through rigorous empirical models, this research provides insights into retailer pricing strategies and assists

policymakers in identifying potential collusive practices within fuel markets.

1.2 Previous Works

Research on fuel pricing dynamics has historically centred on two main dimensions: (1) the temporal element,

examining how prices evolve over time and whether cycles follow discernible patterns, and (2) the spatial

element, exploring how one location’s prices influence prices at neighbouring sites. The following subsections

review representative studies in these areas.1

1.2.1 Temporal Pricing Dynamics and Asymmetry

One of the earliest investigations of Australian retail fuel price cycles was carried out by Valadkhani [Val10],

who analysed both long- and short-term determinants in capital cities. Valadkhani showed that macroeconomic

factors such as crude oil prices and exchange rates predominantly drive long-run price trajectories. However, he

also found evidence of asymmetric price adjustments, whereby prices rise quickly but take longer to fall,

suggesting the possibility of non-competitive behaviour.

Building on this, Wang [Wan08] examined whether these cycles could be explained by collusive communica-

tion among Australian fuel retailers. Using data from an Australian Competition and Consumer Commission

(ACCC) investigation into price fixing in Ballarat, Wang demonstrated that the retail price cycles observed are

broadly consistent with the Maskin-Tirole (MT) model of dynamic oligopoly. This finding supports the

idea that price cycles are driven, at least in part, by coordinated behaviour among retailers.

1.2.2 Spatial Dependence in Fuel Pricing

While much of the early work emphasised temporal aspects of pricing cycles, attention has increasingly turned

to the spatial correlation among retailers. In one key study, Bergantino, Capozza, and Intini [BCI20] used

spatial econometric techniques to explore how geographic proximity influences retail fuel prices in Rome, Italy,

finding clear evidence that service stations closely monitor and react to each other’s prices.

Focusing on South East Queensland, Hogg et al. [Hog+12] investigated the impact of vertical restraints

and branding on retail fuel prices. Their results showed that branded fuel stations typically charge higher

1A detailed summary of past works, including key findings in tabular form, is provided in Appendix 6.3.
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prices, while the presence of independent retailers in a locality exerts downward pressure on prices, thereby

enhancing competition. These outcomes highlight the role of both market structure and the local competitive

environment.

2 Maskin-Tirole (MT) Model

Originally proposed by Maskin and Tirole [MT88], the Maskin-Tirole (MT) model offers a theoretical framework

for dynamic price competition in oligopolistic markets (often duopolies). At its core, the model assumes that

firms useMarkov Perfect Equilibria, implying that each firm’s current price choice depends only on the “state” of

the system—commonly captured by the most recent prices set by each firm. By modelling this state-dependent

decision process, the MT model demonstrates how firms can engage in cyclical price-setting behaviour, known

as Edgeworth cycles.

2.1 Key Features of the MT Model

• High-price (reset) phase: Firms temporarily coordinate on higher prices to earn larger margins.

• Undercutting phase: A firm lowers its price marginally below its rival’s to capture additional market

share.

• Price-war phase: Continuing undercuts drive prices down, eroding profit margins for all.

• Return to high-price phase: Once prices become unprofitable, a reset event occurs, with at least one

firm attempting to jump back to a higher price.

2.2 Two-Player Game

In a two-firm scenario, the MT model typically exhibits clearer cycles, as depicted in Figure 1. The strategic

logic is relatively straightforward:

1. High-price phase: Both firms stick to a higher price to enjoy larger margins.

2. Undercutting phase: One firm drops its price slightly to gain a larger share of sales.

3. Price war: The other firm responds with a further reduction, triggering a downward price race.

4. Reset: Eventually, one firm finds it profitable to spike its price back to a higher level, hoping the other

firm will follow.

Because only two firms are involved, each firm’s best response is relatively direct—match or undercut

the rival’s price. This dynamic often leads to the repeating “peak-to-trough” cycles illustrated in Figure 1.

Wang2009 further shows that observed fuel pricing cycles, even under government restrictions in Perth, align

well with these theoretical Edgeworth cycles.
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Figure 1: Edgeworth cycle in a two-player MT model.

2.3 Three-Player Game

When extended to three or more firms, the MT model retains the same general structure but becomes more

challenging to sustain due to coordination issues. Figure 2 shows a typical three-firm cycle attempt. The main

complications are:

• Spike Attempt: A single firm may jump to a higher price, but the others have an immediate incentive

to remain low and capture market share.

• Coordination Problem: Without explicit or tacit agreement, there is no guarantee that all firms will

“spike” at the same time.

• Outcome: Many attempts to reset prices fail, resulting in a continuation of the price war unless firms

can reliably coordinate the high-price phase.

Overall, the MT model predicts that cyclical pricing can persist in an oligopolistic market if firms repeatedly

reset prices and then undercut each other’s high prices. While such cycles emerge more consistently with two

firms, they can also occur with three or more firms provided that some mechanism—explicit or otherwise—helps

resolve the coordination problem of resetting to higher prices. This insight has proved particularly relevant in

the study of retail fuel markets, where evidence of Edgeworth cycles abounds.

3 Dataset

This section outlines the sources of our fuel price data, provides an overview of its structure and magnitude,

and then discusses how we remove global price trends to isolate cyclical pricing (residual) components. We

also present the continuous wavelet transform (CWT) methodology used to detect local minima and derive a

baseline.
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Figure 2: Attempted Edgeworth cycle in a three-player MT model.

3.1 Sources of the Data

Retail fuel prices were collected from three Australian state-level reporting schemes:

• FuelWatch (WA) [Gov25], which mandates daily price notification;

• FuelCheck (NSW) [NSW25], requiring real-time reporting of price changes;

• Fuel Price Reporting Scheme (QLD) [Tre], obliging outlets to lodge new prices whenever they adjust

them.

These legislative initiatives arose to boost consumer transparency and discourage collusive behaviour. While

South Australia also enforces mandatory reporting, historical data were not freely accessible in a convenient

form.

3.2 Data Description

Our combined dataset spans 7,859 unique service stations across Queensland, New South Wales, and

Western Australia, with 3,971,954 individual records of price changes. Figure 3 shows an example of the

raw, unprocessed price series for a single site (Site 10103).

Since this is an event-driven dataset (a new entry is recorded only when a price changes), timestamps for one

site do not necessarily align with others. To simplify indexing and modelling, we create a uniform minute-level

grid:

t = 0 ←→ 2018-01-12 00:00,

incrementing t by 1 for each minute up to 2024-12-28 12:00. If a site does not change its price in a given minute,

we either carry its previous value forward or omit that minute if focusing on change events alone.
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Figure 3: Raw unprocessed price data for a sample site (Site 10103). Multiple changes may occur in one day

or none at all.

3.3 Global Trends and Motivation for Detrending

Fuel prices reflect both macro (global) and micro (local cyclical) components. Large-scale changes—attributed

to inflation, exchange-rate shifts, or global supply factors—can obscure the local “price war” dynamics we seek

to model [kpodar2016; Com25]. Figure 4 shows an example of raw data overlaid with a polynomial spline

baseline. The cyclical “peaks and troughs” persist despite global price-level fluctuations.

Figure 4: Raw data (blue) for a sample site, with a polynomial spline baseline (red). Extracting the local

(cyclical) component requires detrending the series.

Distinguishing these cyclical price changes from broader trends is crucial for analysing whether the short-run

dynamics align with Maskin-Tirole Edgeworth cycles. In practice, this means defining a residual :

r(t) = p(t)− b(t),

where p(t) is the observed retail price and b(t) is a smoothly varying baseline function capturing macro-level

effects.

3.4 Residual Definition and Baseline Approaches

We explored multiple methods to construct the baseline b(t). Figure 5 shows an example of the residual series

r(t) when using a polynomial spline. The baseline ensures that long-run price swings are separated out, leaving

short-term fluctuations in the residuals.
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Figure 5: Residual series (blue) after subtracting a baseline fit (red) from raw data.

Savitzky-Golay Filter. A Savitzky-Golay filter [savitzky1964smoothing] uses locally fitted polynomials

to smooth the series. It is simple to tune with window size and polynomial order, but it can overfit if the

window is too small or the polynomial order is too high, inadvertently capturing the very price cycles we want

in the residual. Hence, it can flatten out true cyclical activity.

Wavelet-Based Baseline. As a more robust alternative, we adopt a continuous wavelet transform approach

that identifies local minima in the negative of the price series. This yields a piecewise baseline that remains

close to cyclical “valleys” while ignoring small short-lived deviations, thus avoiding overfitting. The resulting

residual has an interpretable lower bound of 0, meaning r(t) ≥ 0 indicates how far the price sits above the local

trough.

3.5 Wavelet-Based Peak-Finding Method

Motivation. The continuous wavelet transform (CWT) approach is well suited to time series that may be het-

eroskedastic, non-stationary, or irregularly sampled—properties that characterise our event-driven data [DKL06;

Bat93; Sci]. By examining how the wavelet coefficients vary across scales, we can robustly identify local maxima

or minima even when the amplitude and spacing of price cycles change over time.

3.5.1 Continuous Wavelet Transform (CWT) Overview

For a function f(t) and chosen wavelet ψ, the CWT is defined by:

W (a, b) =

∫ ∞

−∞
f(t)ψ

( t− b
a

)
dt,
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where a > 0 is the scale parameter and b is the translation parameter [Bat93]. Large wavelet coefficients at

certain (a, b) indicate salient features (peaks/troughs) in f(t).

3.5.2 Algorithm for Identifying Ridges

While we discuss the general idea of ridge-finding here, the detailed pseudocode is given in Appendix 6.3.

Briefly, local maxima are identified at the coarsest wavelet scale and then tracked across decreasing scales,

forming continuous ridge lines. By applying this to the −p(t) series, we find local minima in the actual price

data.

3.6 Comparison and Conclusion on Baseline Approaches

Figure 6 shows a polynomial spline baseline (red) along with the original raw data (blue). Overfitting can cause

the spline to “wiggle” too closely to short-run price dips, inadvertently cancelling out legitimate cycle depths

in the residual. In contrast, wavelet-based detection (Figure 7) maintains a smoother baseline, preserving the

amplitude of cyclical price changes in the residual series.

Figure 6: Raw data (blue) with a polynomial spline baseline (red). Overly flexible baselines can remove true

cyclical patterns.

Essentially, while the Savitzky-Golay filter is a well-known smoothing technique, its susceptibility to over-

fitting makes it less suitable for consistently isolating local fuel price cycles. The wavelet-based approach offers

clearer interpretability (with r(t) ≥ 0 marking how far the price sits above the local trough) and better consis-

tency across thousands of stations. Consequently, we adopt the wavelet (peak-finding) algorithm to compute

baselines and residuals, which then form the foundation of our subsequent modelling.

4 Statistical Tests

4.1 Testing for Spatial Dependence (Moran’s I)

In line with Bergantino, Capozza, and Intini [BCI20], we investigate whether the residual pricing series across

different service stations displays spatial dependence. Specifically, we use Moran’s I statistic [Mor50], a widely

employed measure in spatial econometrics that quantifies the degree of similarity among nearby observations.
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Figure 7: Residuals after subtracting the spline baseline from raw data. Overfitting risks flattening the short-

run cycles we aim to capture.

Definition and Interpretation. Let yi denote the residual price for station i, and let ȳ be the mean residual

across all N stations. Suppose wij represents a spatial weight capturing the proximity of station j to station i.

Moran’s I is given by

I =
N

∑N
i=1

∑N
j=1 wij (yi − ȳ)(yj − ȳ)(∑N

i=1

∑N
j=1 wij

) ∑N
i=1(yi − ȳ)2

.

Its theoretical range is [−1, 1], with:

• I = −1 indicating perfect negative spatial correlation,

• I = 0 indicating no spatial correlation,

• I = +1 indicating perfect positive spatial correlation.

A discussion of the specific Haversine distance formula used to define wij can be found in Appendix 6.3.

Result and Discussion. With our dataset of N stations, we obtain a Moran’s I of 0.889, implying strong

positive spatial correlation in fuel price residuals. In practical terms, this suggests that nearby stations tend to

exhibit highly similar short-run price deviations from their baselines. Such a result is unsurprising, given the

known clustering of competitor prices in local areas. Figure 8 provides a qualitative illustration for five closely

located sites over a five-month period. Notice how their prices move in near lockstep, forming a repeated “peak

and trough” structure reminiscent of the Edgeworth cycles described in §2.
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Figure 8: Prices at five neighbouring sites across a five-month period. The high degree of spatial correlation is

evident.

4.2 Brief Note on Stationarity

Prior literature strongly suggests that fuel price cycles are stationary in their residual form [DF79]. Our own

checks using the Augmented Dickey-Fuller test (full details in Appendix 6.3) confirm that for all sites, the

p-values are sufficiently small to reject the null of a unit root. This indicates that the cyclical series is stationary,

reinforcing the reliability of subsequent analyses.

5 Approximate Modelling Methods

In order to capture the short-run dynamics of local price competition, we tested two approximate models on the

residual series: a purely spatial model and a game-based model loosely inspired by the MT framework. Both

rely on the strong spatial dependence identified in §??, yet they differ in how they handle control or “reset”

behaviour.

5.1 Spatial Model

Our spatial model uses a simple nearest-neighbour averaging rule. Specifically, let pi(t) be the residual price at

site i and discrete time t. Then,

pi(t+ 1) =
1

n

∑
j∈Ni

pj(t),

where Ni is the set of the n nearest sites to station i (excluding i itself), and n = 10. Since Moran’s I

indicates strong spatial correlation among neighbouring stations, we expect this model to be a reasonable first

approximation. However, it lacks any mechanism for “resetting” or “undercutting,” so it might fail to capture

the cyclical extremes characteristic of Edgeworth cycles.
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5.2 Game-Based Model

We also developed a game-based model more closely aligned with the Maskin-Tirole perspective. Let x = pi(t)

be station i’s residual price at time t. We look at the 10 closest stations locals = {pj(t)} and define:

f(x) =



I
(
max(locals)− x > 30

) [
max(locals)− ε

]
+ I

(
max(locals)− x < 30

)
min

(
x, locals− ε

)
, if 0 < x < 2,

min
(
x, locals− ε

)
, if x ≥ 2,

0, if x < 0,

where

ε = |ξ|, ξ ∼ N (0, 1),

and locals is the (local) average of neighbouring stations’ prices. In essence, this function attempts large

upward “jumps” if rivals’ maxima greatly exceed x, but drives x down to the local average (minus a small

random offset) if prices are already near or above the top of local competition. Unlike the purely spatial

model, this scheme includes an explicit notion of “reset” and “undercutting,” reflecting the cyclical dynamics

of Edgeworth competition.

5.3 Forward Simulation and Results

Figure 9 shows a short sample (the first 30% of the dataset) where both models are forward-simulated against

the true residual series (blue) and an unseen portion of data used for testing (grey). Although the entire timeline

is more comprehensive, the full plot can be hard to interpret visually, so we provide the complete simulation in

Appendix 6.3 (Figure 10) for reference.

Figure 9: Sample of forward simulations (first 30% of data). Blue = observed data, grey = held-out test, orange

dashed = spatial model, purple dashed = game-based model.
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5.4 Performance Metrics

We evaluate both models’ predictions using mean absolute error (MAE) and root mean squared error (RMSE).

Table 1 summarises the distribution of errors across all sites, including minimum, maximum, average, median,

and quartiles.

Statistic Spatial Model Game-Based Model

MAE (units in cents, to three decimals)

Min 1.959 0.052

Max 64.880 58.465

Mean 14.412 9.633

LQ 11.880 5.786

UQ 16.301 12.185

Median 14.181 9.106

RMSE (units in cents, to three decimals)

Min 2.644 0.001

Max 2893.271 1713.006

Mean 173.586 119.918

LQ 110.410 67.940

UQ 204.465 145.181

Median 158.202 101.819

Table 1: Summary of predictive errors for the Spatial Model and the Game-Based Model. MAE = mean

absolute error, RMSE = root mean squared error.

5.5 Discussion

Although both methods leverage spatial information from nearby stations, the simpler averaging model does

not attempt to mimic large resets or strong undercutting. As a result, it tends to underestimate the steep price

peaks and troughs—hence the higher average errors and extreme maxima (RMSE up to 2893). By contrast,

the game-based model incorporates explicit jumps, yielding a better fit to cyclical extremes, although it remains

imperfect.

Overall, these preliminary results confirm that spatial information is essential, but adding an Edgeworth-

style reset mechanism improves predictive accuracy. Future refinements might include refining the threshold

values (e.g. “30 cents above local maxima”), adjusting the randomness ε, or combining a more sophisticated

spatial weighting with cyclical logic.
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6 Conclusion and Future Extensions

6.1 Summary of Findings

This research set out to examine short-term retail fuel pricing cycles within an Australian context, using residual-

based methods to isolate local price war dynamics from broader economic trends. After confirming the strong

spatial dependency (via Moran’s I) and cyclical behaviour (Maskin–Tirole model), we tested two approximate

predictive models:

• Spatial Model: A nearest-neighbour averaging rule that updates each site’s price based on the 10

geographically closest stations.

• Game-Based Model: A simplified Edgeworth-like scheme that allows for higher price “resets” and

subsequent undercutting, referencing local maxima and averages.

Our results (Table 1) suggest that while purely spatial averaging already leverages the observed correlation

among neighbouring sites, introducing game-like reset mechanics yields better predictive accuracy overall (e.g.

lower mean absolute error). This underscores the importance of explicitly modelling cyclical price jumps and

drops.

6.2 Potential Directions for Expansion

Although the proposed methods offer insight into local station interactions, several avenues remain open for

further development.

6.2.1 Road-Network Adjacency and Graph Neural Networks

One immediate refinement is to leverage a road-based adjacency matrix (potentially derived from a service such

as Google Maps or OpenStreetMap). Rather than simply taking the n closest sites by geodesic distance, one

could define adjacency via actual driving distance or connectivity on major roads. This more realistic spatial

graph could be used with advanced tools—e.g., a Spatial Graph Neural Network (SGNN)—to propagate pricing

signals along mapped routes. Such an approach might capture competition patterns more accurately, especially

in urban areas with dense road networks.

6.2.2 A Dirichlet–Multinomial Transition Model

Another possible direction is constructing a fully empirical transition scheme, letting the data itself dictate the

probability of moving from a given price (and local average) to another. In broad terms, one can:

• Discretise each site’s price p and its local mean p̄ into categories, forming a grid of possible states (p, p̄).

• For each “row” (specific (p, p̄) combination), observe the distribution of next-step prices in the dataset.
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• Place a Dirichlet prior on the row’s probability vector, and treat the subsequent occurrences as counts in

a multinomial likelihood.

Because the Dirichlet and multinomial distributions are conjugate, one easily obtains a closed-form posterior

for each row’s transition probabilities. This setup (sometimes called a row-wise Dirichlet–Multinomial model)

accommodates “smoothing” by choosing larger prior counts (add-λ or Lidstone smoothing). Once estimated,

these transition probabilities can be employed in simulation to forecast likely price evolutions at each site, or

even used to infer hidden states in a Markov chain.

6.2.3 PDE Models and Wave Propagation

With sufficiently granular data and adjacency information, an intriguing future project would be to formulate

partial differential equation (PDE) models. In such PDE analogies, local price changes spread “outward”

like waves, capturing the ripple effect of undercutting and resets. Such a continuous-space or continuous-

time framework could theoretically represent how shocks in one region travel through neighbouring stations,

eventually relaxing into cyclical equilibria reminiscent of Edgeworth cycles.

6.3 Concluding Remarks

The present work demonstrates that even relatively simple models—spatial averaging versus game-based re-

sets—already differentiate well between stations’ pricing patterns. By combining advanced spatial techniques

(road-network adjacency, wave-based PDE interpretations) and richer data-driven transition models, future

research can provide deeper insight into the microdynamics of retail fuel markets and help regulators and

policymakers anticipate sudden price surges or identify tacit collusion practices.
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Appendices

Summary of Previous Research

Key Studies in Fuel Price Dynamics

Below is the summary table detailing prior research contributions. Re-labelling it as Table 2 to avoid conflict

with main text:

Author(s) Year Study Focus Key Findings

Valadkhani [Val10] 2010 Long- and short-term effects on

fuel prices in capital cities

Macroeconomic variables drive long-

run price patterns; evidence of asym-

metric price adjustments points to mar-

ket inefficiencies.

Wang [Wan08] 2008 Collusive communication and

price coordination in gasoline

markets

Retail fuel price cycles mirror the

Maskin-Tirole dynamic oligopoly

model; strong evidence of coordinated

pricing.

Bergantino et al.

[BCI20]

2020 Spatial interaction and competi-

tion in retail fuel pricing

Marked spatial dependence in fuel

prices; local competition plays a signif-

icant role in price formation.

Hogg et al. [Hog+12] 2012 The effect of branding on retail

fuel prices

Branded stations often charge higher

prices; independents foster greater com-

petition and lower local prices.

Table 2: (Appendix) Summary of Previous Studies on Fuel Price Dynamics

16



Algorithm for Identifying Ridges

Algorithm 1 Wavelet-based Ridge Identification for Peak Detection (Full Pseudocode)

Require: CWT coefficient matrix C of size N ×M , . . .

1: Initialise: Identify local maxima in row n = N . . .

2: for each scale n = N − 1 down to 1 do

3: for each existing ridge line r do

4: Search for the nearest maximum . . .

5: if found one then

6: Append the point to r . . .

7: else

8: gap(r) = gap(r) + 1.

9: end if

10: end for

11: Remove ridge lines whose gap > threshold.

12: Create new ridge lines for any maxima . . .

13: end for

14: Output: A collection of ridge lines across scales.

17



Haversine Distance Details

Here we provide the precise formula for the Haversine distance, used to define the spatial weights wij in Moran’s

I:

dij = 2R arcsin
(√

sin2
(ϕj − ϕi

2

)
+ cos(ϕi) cos(ϕj) sin

2
(λj − λi

2

))
,

where R is Earth’s radius, ϕ is latitude, and λ is longitude. For our application, we convert dij into a weight

wij by a specified function (e.g. inverse distance or a fixed neighbourhood cutoff). More sophisticated spatial

weighting methods could be employed, but Haversine suffices for this study.

Stationarity Checks (ADF)

To confirm stationarity of the residual series, we perform the Augmented Dickey-Fuller (ADF) test [DF79],

checking whether the unit-root hypothesis can be rejected. For a series rt,

∆rt = α+ βt+ γ rt−1 +

p∑
i=1

δi ∆rt−i + εt.

Rejecting the null that γ = 0 indicates stationarity. Across all sites, p-values were sufficiently small to confirm

stationarity in the residual pricing series, consistent with the broader literature on cyclical fuel pricing.

Entire Simulation Domain

A full simulation over the entire domain (excluding initial values)

Figure 10: Forward simulation of the two models
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