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Abstract

We prove novel presentations for the full-domain partition monoid P and its singular ideal
PI\S,,. The monoid P4 consists of all partition diagrams with full domain. It is a right restriction
submonoid of the partition monoid P, having factorisation P = T, F,, where T,, is (an isomorphic
copy of) the full-transformation monoid on n = {1,2,...,n} and F, is (an isomorphic copy of) &q,,,
the semilattice of equivalences on n. This paper obtains presentations for P,fld through the use of
existing presentations for the symmetric group S,, 7,\Sn, and F,,. These are proven both directly
and via generalised techniques recently developed for restriction monoids.

1 Introduction

Diagram monoids are fundamental algebraic structures with origins and applications in many dif-
ferent mathematical and scientific disciplines, such as knot theory and theoretical physics. The
recent paper [5] uncovered a so-called Ehresmann structure on the partition monoid P, opening
up a new categorical way to understand diagram monoids. Such structures involve an underlying
semilattice (monoid of commuting idempotents). The semilattice in this case is F,,, the set of all
quotient identities of n = {1,2,...,n}. This is isomorphic to the join semilattice €q,, of equivalence
relations of n which is studied in [6].

A consequence of the Ehresmann structure was the discovery of a new monoid, the full-domain
partition monoid P4 = {p € P,, : dom(p) = n}, which is a right restriction submonoid of P,, [5]. At
a similar time, this monoid was also discovered independently through the study of constellations [9].
The monoid P,, contains (an isomorphic copy of) the full-transformation monoid 7y, the set of
all mappings n — n under composition, and general Ehresmann theory leads to the product
decomposition P4 = T, F,,. In this way, P can be thought of as a categorical dual to the partial
transformation monoid P7,, the set of all mappings A — n for each A C n under composition,
which is a left restriction monoid with respect to the semilattice &, of partial identities, and
decomposes as PT,, = E,Tn.

This paper initiates the study of the monoid P! by obtaining presentations for it and its singular
ideal Pf\S,,, where S,, is (an isomorphic copy of) the symmetric group on n. Two approaches
are taken, both of which rely on using pre-existing presentations for S,, 7,\S., and F,, in the
aforementioned product decomposition.

The first approach proves its presentations directly and is self-contained, providing all necessary
definitions, results and proofs. Our main results, including presentations for P\ S,, (Theorem 2.3)
and P4 (Theorem 2.4), can be found in Section 2 along with all necessary definitions. The proofs
of Theorems 2.3 and 2.4 be found in Sections 3 and 4, respectively.

The second approach, found in Section 5, obtains presentations using the results in [2], which
provides a generalised methodology for constructing presentations for restriction monoids by de-
composing them into products arising from action pairs. The main result of this approach is an
alternative presentation for P4 (Theorem 5.5), as well as an alternative proof for Theorem 2.3.
Whilst we do provide some context, this section is intended to be read in conjunction with [2].

Other than that which is appropriately referenced, all work contained in this paper is my own.
However, I would like to acknowledge the many contributions of my supervisors James East and
Matthias Fresacher, who provided valuable guidance and feedback throughout the project and
inspired many of the ideas and arguments used in this paper.
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2 Preliminaries

A binary operation on a set X is a map X x X — X that is typically denoted by juxtaposition. We
say this operation is associative if (zy)z = z(yz) for all z,y,z € X. A semigroup S is a set with
an associative binary operation. A monoid M is a semigroup that contains an identity element e,
meaning that ae = ea = a for all a € M. A group G is a monoid where, for each a € G, there

~! meaning that aa~! = a~'a = e, where ¢ is the identity element in G. If S is

exists an inverse a
a semigroup (resp., monoid or group) with the binary operation o and T' C S is a semigroup (resp.,
monoid or group) with the binary operation o|r (i.e., the operation of S restricted to T') we say
that T is a subsemigroup (resp., submonoid or subgroup) of S. If X is a subset of a semigroup S,
we will write (X) to denote the subsemigroup generated by X (i.e., the smallest subsemigroup
of S that contains X). In contrast to traditional functional notation, we will write maps on the
right. Given semigroups (resp., monoids or groups) S and T, a semigroup (resp., monoid or group)
homomorphism is a map ¢ : S — T such that (xy)¢p = (x¢)(yo) for all ,y € S (and, for a monoid
homomorphism, e¢ = f, where e and f are the identity elements of S and T respectively). The

image and kernel of ¢ are defined by
im(¢) ={yeT:y=ux¢for some z € S} and ker(¢p)={(z,y) €S xS :z¢=uyop}.

If ¢ is surjective, we say it is a surmorphism. If ¢ is bijective, we say it is an isomorphism. If there
exists an isomorphism ¢ : S — T between two semigroups (resp., monoids or groups) S and T, we
say they are isomorphic.

An equivalence relation € on a set X is a subset of X x X that is reflezive (i.e., (z,z) € € for
all x € X), symmetric (i.e., (x,y) € € implies that (y,z) € ¢ for all z,y € X) and transitive (i.e.,
(x,v), (y,z) € € implies that (z,2) € € for all z,y,z € X). The set of all equivalence relations
on X, denoted €qy, forms a monoid under the join operation. The join € V7 of ¢, € Eqy is
defined as the smallest equivalence relation on X containing € U 7. Using the notation z = y
to indicate (x,y) € e for a given ¢ € €qy, a pair (x,y) is in € V n if and only if there exists
achain o 5 21 5 2g 5 S Zp—1 RN y for some even p € N. The identity element in Eqx is
Ax = {(z,x) : x € X}, the trivial relation on X, and €qx is both commutative (i.e., eVn=nVe
for all e, € €qy), and consists entirely of idempotents (i.e., e Ve = ¢ for all € € €qy ), making it a
semilattice. A partition of X is a set p = {A1, Aa, ..., Ay} such that each block A; is a non-empty
subset of X, the blocks are pairwise disjoint, and the union of the blocks is X. An equivalence
relation € € €qy induces a partition of X, where each block of the partition is an equivalence class
consisting only of elements related to one another in . Conversely, any partition of X induces an
equivalence relation on X. Given a partition p of a set X, we write [z], to indicate the block of p
that contains the element x € X. Analagously, we write [z]. to indicate the equivalence class of =
inec Eqy.

For an integer n > 2 (n < 2 being trivial), define n = {1,2,...,n} and, for A C n, define
A" ={d' : a € A}. The partition monoid of degree n, denoted P,,, is the monoid whose elements
are partitions of the set nUn’, with concatenation as the binary operation, which will be described
shortly. Elements of P,, may be represented as a graph consisting of two rows of n vertices corre-
sponding to the sets n and n’, and whose connected components correspond to the blocks of the

artition. For example, the graph
P P srap 1 2 3 45 6

[ ]

1/ 2/ 3/ 4/ 5/ 6/
represents the partition

p=1{{1,3},{2,2,6},{1",3,4',5}, {4}, {5/, 6"} } € Ps.
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These graphical representations are not necessarily unique, as different sets of edges can form the
same connected components. To concatenate p followed by o where p, o € P,,, let p* be the graph p
modified such that each lower vertex i’ is relabeled i”, and o' be ¢ modified such that each upper
vertex 4 is relabeled i”. Then, by identifying each lower vertex " of p* with the corresponding
upper vertex i of o', these two graphs can be combined to form the product graph II(p,o) on
the vertex set n Un’ Un”. The concatenation po is then defined as the partition that, for all
z,y € nUn’, [z],, = [y],r if and only if there is a path between = and y in II(p, o). For example,

1234 1234
\ 4 \4
p:‘J\—>p¢: 1234
o o 'R} \,\ 12314

1/ 2/ 3/ 4/ 1//2//3//4// U U
II(p,0) = —> po= _ .
1234 172"3"4" (p ) P
b A S L

123 4 1723 4
1 2 n
The identity element of P, is the partition id, = I I I .
1 2 n’

If a block of a partition contains elements from both n and n’, it is called a transversal, while an
upper or lower non-transversal contains only elements from n or n’, respectively. For example, the
partition p given in (2.1) consists of three transversals, namely {1,3'},{2,2’,6} and {1’,3,4',5},
one upper non-transversal {4} (a singleton), and one lower non-transversal {5',6'}. For p € P,
the domain is the subset of n whose elements in the upper row of p are in a transversal of p, whilst
the codomain is similarly defined for the lower row of p. That is,

dom(p) ={x €n:[z],Nn #0} and codom(p)={zr €n:[z'],Nn+#0}.
The kernel and cokernel of p are defined as the equivalence relations
ker(p) = {(z,y) enxn:[z],=[yl,} and coker(p) ={(z,y) €nxn:[a'],=y],}.

Note, however, that this definition of ker(p) is distinct from that used for homomorphisms. The
equivalence classes of ker(p) are the subsets of n whose elements in the upper row of p share a block
in p, whilst the classes in coker(p) are similarly defined for the lower row of p. Continuing with
our example in (2.1), we have dom(p) = {1,2,3,5,6} and codom(p) = {1, 2, 3,4}, whilst ker(p) and

coker(p) have equivalence classes {1},{2,6}, {4}, {3,5}, and {1 4}, {2}, {3}, {5, 6}, respectively.

. . A Ay e e

At times, we will use the block notation p = (Bl 1B, D[ 1D,

with transversals A; U By, Ao U By ..., A, U B}, upper non—transversals Cy,Cy,...,Cy, and lower
non-transversals D, D, ..., D!, where each A;, B;,C;, D; C n.

The submonoid 7,, of P,, is defined by
Tn, = {a € P, : dom(«) = n, coker(a) = A,}.

to represent a partition p € P,

This monoid is isomoporphic to the full-transformation monoid on n, the set of all mappings n — n
under composition. As such, it will be convenient to identify a partition « € 7, with its corre-
sponding map n — n and use the notation xa = y to indicate the unique element y € n for a
given x € n such that [z], = [¢/]. For example, for a € 75 with graphical representation

12345
o= ,
[ o o
1723 45
we have la = 2a = 4a = 5 and 3a = ba = 2. For a € T, we will use the simplified block notation
a = [’21 ’22 '2”}, indicating that a has transversals A, U {b}}, A2 U {by},..., A, U {b,}, where
1 2| | 9p
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A1, Ag, ..., Ay Cnand by,bs,...,b, € n are singletons. Any omitted vertices are assumed to be
elements of a lower non-transversal singleton, as each « € T, has full domain (i.e., each z € n is
part of a transversal in «).

We will also be considering two complementary subsemigroups of 7,, with definitions:

Sp={aeT, ker(a) =A,} and T,\S, ={a €T, :ker(a) # Ap}.

The first, S,,, is the group of units (i.e., invertible elements) in P,, and is isomorphic to the symmetric
group, the set of all bijective maps n — n under composition. The graphical representation of the
inverse o~ ! of any a € S,, can be obtained from that of « via vertical reflection. For example,

DRt

The second is T, \Sy, is the semigroup of all singular (i.e., non-invertible) partitions in 7,. This
semigroup is an ideal of T, (i.e., af, fa € T,\S, for all a € T,, and S € T,\S,).
For an equivalence relation € € €q,, with equivalence classes A1, As, ..., Ay, we will use id. to

represent the partition id. = (jl 32 '2 ) € P,,. The submonoid F,, of P, is defined by
210"

Fn={id. : € € €q,,}.
It is clear from these definitions that y = idyer(y) = ideoker(n) for each p € F,. Furthermore,
Fy is isomporphic to the semilattice €q,, as id.id, = id.y, for all ,7 € €q,. For example,
if u,v € F¢ are such that p = id. and v = id,, where €, € €qg have equivalence classes
{1,2},{3,4,5},{6} and {1,2},{3},{4,5,6} respectively, then puv = id.y,, where ¢ V 7 has equiva-
lence classes {1,2},{3,4,5,6}. Pictorially,

E%ﬁ% . ﬁ@ L HPY -

The focus of this paper is the full-domain partition monoid P4, a submonoid of P, and its
singular ideal P\S,,, a subsemigroup of P, with definitions:

Pld—{peP,:dom(p) =n} and PINS, ={pec Pl ker(p) # An}.

s . . . Aq|---|A .
A partition p € bed has simplified block notation p = ( ! P , where p < n in the
Bi|--|BplCi] - ]Cy,

case that p € PI\S,,. Asall a € T, and u € F,, have full domain it follows that T, F,, C P.
Indeed, an important property of P4 and P!\S, we will make use of are the following product
decompositions, first alluded to in [5, page 344]:

P =T, F, and PNS, = (T,\Sn)Fn. (2.2)

The forward inclusion for these decompositions is demonstrated in the proof of Proposition 3.1,
whilst the reverse inclusion becomes apparent by observing that the product of two partitions with
full domain must itself have full domain.

Fix some semigroup S. Roughly speaking, a semigroup presentation for S reduces S to a
set of generators which can be used to construct any element of S, and a set of relations which
can be used to describe any equivalence amongst elements of S. Formally, a congruence ~ is
an equivalence relation on S such that, for all a,b,¢,d € S, if a ~ ¢ and b ~ d, then ab ~ cd.
The set of all ~—classes then form the quotient semigroup S/~ under the induced operation (i.e.,
[a]~ - [b]~ = [ab]~ for all a,b € S). The Fundamental Homomorphism Theorem states that if
¢ : S — T is a semigroup homomorphism, then ker(¢) is a congruence on S, and S/ ker(¢) is

O, YAMS|
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isomorphic to im(¢). The free semigroup on an alphabet (i.e., set of symbols) X, denoted X7,
is the set of all possible non-empty strings consisting of letters (i.e., symbols) in X under the
juxtaposition operation. Elements of X are called words, and the length of a word w, denoted
by |w], is the number of letters it contains. Similarly, we denote the free monoid as X* = X+t U {1},
where ¢, the empty word, is the identity element in X*, having length 0. Let X be an alphabet, and
RC Xt xXT (resp., R C X*x X*) be aset of relations on the free semigroup (resp., monoid) on X.
We denote by R* the congruence on X+ (resp., X*) generated by R; i.e., the smallest congruence
on X1 (resp., X*) containing R. We then say a semigroup (resp., monoid) S has semigroup (resp.,
monoid) presentation (X : R) if S = Xt/R¥ (resp., S = X*/R*), or, equivalently, if there is a
surmorphism X T — S (resp., X* — S) with kernel R?. If ¢ is such a surmorphism, we say S has
presentation (X : R) via ¢. Whether a presentation is a semigroup or monoid presentation will be
explicitly stated. For convenience, a relation (wq,ws) € R is depicted as the equation w; = ws.
For 4,7 € n where i # j, define the following partitions in Pf\S,,:

1 i J n
IHERTT e L
crr0 0 8- =N ®--- 0
8 = | _ and tij:I II 11 I

J 7 n e ® - -- 0 Ce
T e

Note that a-j = Z\jl for all 7,7 € n. Consider the corresponding alphabets E = {e;; : ¢,j € n, i # j}

—_
~

*r—o —

and T = {t;; =tj; :4,j € n, i # j}. Define a semigroup homomorphism
¢: (EUT)t — PI\S,

by e;; — €;; and t;; — tAU Consider the relations

€5 = eij = €jieij (T1) t2 = tij , (F1)
€ijCkl = €kIEij 5 (T2) tijtel = tritij, (F2)

ik€ik = €ik , (T3) tiitin = tiktei, (F3)

€ijCik = €ikCij = €jkCij , (T4) tijen = eij s (PS1)
€riCij€jk = €ikCk;jCjiCik , (T5) tineis = eiftin (PS2)
€kiCij€jkChl = CikCLICLICi{Cjl 5 (T6) T——— (PS3)
eijti; = tij (PS4)

where %, j, k,1 € n are all distinct, except for (F2) which only requires ¢ # j and k # [. Define
Rps = (T1-T6) U (F1-F3) U (PS1-PS4).

With these definitions, we can now state our first main result, the proof of which is found in
Section 3 (with an alternative proof using action pairs located in Section 5.1).

Theorem 2.3. The semigroup PIN\S,, has semigroup presentation (EUT : Rpg) via ¢.

For 1 < i < n, define the following partitions in Pf:

1 n 1 n 1 % n

A P ERE - b SR S D S B

Consider the corresponding alphabet S U {e,t} where S = {s; : 1 < i < n}. Define a monoid

homomorphism

d:(SU{et}) — P

by e — €, t — t, and s; — 5;. Consider the relations

O, YAMS|



2 SUMMERRESEARCH
2 SCHOLARSHIPS 2024-25

s?2 =y, (S1) €89€S9 = Sx€89€, (P5)

5i8j = 5j8; if i —4l>1, (S2) eker = Keke , (P6)
sis;8; = 888, if li—jl=1, (83) sit =1ts; ifi>2, (PT7)

e te, (P1) tsotse = Sotsat, (P8)

f o et = syt = ts; | (P2) tktk = Ktkt, (P9)
s;e = es; ifi>2, (P3) esatsy = satsze, (P10)

€51 526 = 515951 . (P4) ektk = Ktke, (P11)

where 1 < i, < n and kK = s2835182. Define Rp = (S1-S3) U (P11-P11). These allow us to state
our second main result, the proof of which is found in Section 4.

Theorem 2.4. The monoid P4 has monoid presentation (S U {e,t} : Rp) via ®.

Given the product decompositions of P4 and P\, stated in (2.2), we will also make use of
existing presentations for isomorphic copies of T,\S,, F, and S,,.

Theorem 2.5 ([3, Theorem 3|). The semigroup T,\S, has semigroup presentation (E : (T1-T6))

via | g+
Theorem 2.6 ([6, Theorem 2|). The monoid F,, has monoid presentation (T : (F1-F3)) via ¢|p~.
Theorem 2.7 ([8, Theorem A|). The group S, has monoid presentation (S : (S1-S3))

3 Presentation for P4\,

In this section, we provide the proof of Theorem 2.3. Let ~ be the congruence on (E UT)™T
generated by Rpg. To prove Theorem 2.3, we require ¢ to be a surmorphism such that ker(¢) = ~.
It is clear from the definition of ¢ that it is a homomorphism, so it remains to be shown that ¢
is surjective (i.e., that (E UT)¢ generates P9\S,,), which is proven in Proposition 3.1, and that
ker(¢) = ~, which the remainder of this section is dedicated to. Throughout this section, it will be
convenient to extend ~ and ¢ to (F'UT)* in such a way that ¢ ~ ¢ and t¢ = id,, despite the fact
that « ¢ (FUT)" and idy, ¢ 7,,\S,. However, contradictions will be avoided as ¢ and id,, will only
appear in products that are not equal to ¢ or id,. For w € (EUT)*, we will write W = we.

Proposition 3.1. The map ¢ is surjective.

Al---|A
Proof. Any element p = ( ! ? € PI\S,, can be expressed as a product p = apu, where
Bil--|By[Ci] -] Cy, n
_ TA1|As|-|Ay . : _ (Bi]--|By|Cu]--
o= [bl byl bp} € T2 \Sn, for some b; € B; for each 1 <i < p, and u = (B1 . IB,|cul- C’q) € Fn.

Given T,\S, is generated by E¢ and F,, is generated by T'¢, according to Theorems 2.5 and 2.6,
we have o = ug for some v € ET and p = v¢ for some v € T*, and thus uwv € (EUT)" such
that (uv)¢ = p. O

Note that the decomposition for p € PI\S,, in the previous proof is not necessarily unique. We
will explore this in further detail in Corollary 3.10, Lemma 3.12 and throughout Section 5.

Proposition 3.2. We have the inclusion ~ C ker(¢).

Proof. Tt must be shown that wy ~ wy implies that @; = @, for all wy,wy € (EUT)". That is,
that each relation in Rpg holds for its image under ¢. This is easily checked diagramatically. For
the ¢ < j case of (PS1),

O, YAMS|
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1 i J n _
ce . [ I e 1 7/ J n
7 L . e e & --- I
®---0 ©
Further examples can be found in Appendix 8.1. We leave the rest to the reader. O

Our goal now is to use the existing presentations for 7,\S,, and F,, in Theorems 2.5 and 2.6
to show that ker(¢) C ~. First, we will show that any word w € (EFUT)" can be sorted into a
product of two subwords u € E+ and v € T* using the relations in Rpg. This is done by moving
each letter e;; € E to the left of each letter t;; € T'. Relations (PS1-PS3) describe this for three of
the four distinct arrangements of i, j, k, I € n. For the fourth case, we require the following relation
which is a consequence of relations in Rpg.

Lemma 3.3. For distinct ¢, 3,k € n, we have

likeij ~ eijlig . (PS2')
Proof. Using (T1) and (PS2), we have t;pe;; ~ tivejiei; ~ €jitjneij ~ €j;€ijtik ~ etk . O
Lemma 3.4. Ifv e Tt and u € E, then vu ~ wv' for some v’ € T*.

Proof. Use strong induction on |v|. Relations (PS1-PS3) and (PS2’) show this is true for all cases
where |v| = 1. If |v| > 1, we have v = vyvy for some vi,vy € TF where |vi], |va] < |v]. Then,
VU = V1V2u ~ V1Uv) ~ uvjvh, for some vi,v5 € T*, using the inductive hypothesis. O

Lemma 3.5. Ifw € (EUT)", then w ~ uv for some u € E* and v € T*.

Proof. Use strong induction on |w|. If jw| = 1, then either w =v € Tandu =1 € E*,;orw=u € E
and v = ¢ € T*. Suppose instead that |w| > 1. Then, w = wywy for some wy,ws € (EUT)" such
that |we| = 1. By the inductive hypothesis, wywy ~ uvws for some v € E* and v € T*. If we € T
then vws € T* and we are done. If, however, wy € E, then vws ~ wav’ for some v’ € T*, by
Lemma 3.4, and thus w ~ uwov with uws € E* and v € T™. O

Corollary 3.6. Ifw e (FEUT)™", then w ~ uv for some uw € ET and v € T*.

Proof. By Lemma 3.5, w ~ uv, for some v € E* and v € T*. The result is trivial if u # ¢, so
suppose u = ¢, implying that v # ¢. It follows that v = t;;0’ for some v € T* and ¢,j € n where
i # j. Using (PS4), we have v = t;;0" ~ ¢;;t;;v" as required. O

Once we have sorted two words wy,wy € (EUT)™, we require equality between the 7,\S,, and F,
elements of the resulting product decompositions of w; and @, before we can use the presentations
for T,\S, and F,. As will be demonstrated by Corollary 3.8, equality between the F,, elements is
guaranteed, whilst the 7,\S,, elements can be replaced by equal elements using our relations.

Lemma 3.7. If p,o € P, are such that coker(p) = Ay, then coker(po) = coker(o).

Proof. Tt suffices to show the forward inclusion, as coker(c) C coker(po) for all p,o € P,. Let
(x,y) € coker(po), and let E, and E, be the sets of edges in the product graph II(p, o) originating
in the graphs for p and o, respectively. By definition, (z,y) € coker(po) implies there exists a path p
from 2’ to y' in I(p,o). Observing that no edges in II(p, o) can be incident with vertices from
both n and n’, any subpath q of p whose internal vertices are a subset of n and whose endpoints
are not in n must have the form " — t; — t — --- — t,, — s” where each r,s,t; € n. As a
consequence of coker(p) = A, an edge is in E, if and only if it is incident with a vertex in n. It
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follows that each edge in q must also be in in £,. We then have r = s, as r # s would contradict
coker(p) = Ap,. This means p can be modified by removing each edge from ¢ in p to produce a
new path p’. Repeating this process for any remaining subpaths with the form of q in p’, a path p
from z’ to ' that does not intersect n can be obtained. The edges in p must then be a subset of E,
and thus (z,y) € coker(o). O

Corollary 3.8. If a,8 € T, and p,v € F,, are such that ap = P, then u = v.

Proof. Here, ap = Bv implies coker(apu) = coker(Sr). Then, recalling that all elements of 7, have
trivial cokernel, we have coker(p) = coker(r) by Lemma 3.7, and thus p = v. O

To assist with the remainder of this section, we will extend the notation used for the letters in
our alphabets E and T. For A = {a1,a2,...,ap} € n such that |A] > 2 and a1 < a2 < -+ < ap,
define e4 = €q,0,€a1a; - - - €ara,- If |A] <1, instead define ey = ¢. In the case that A = {i,j}, ea
is just the letter e;; or e;;, depending on whether ¢ < j or ¢ > j. For ¢ € €&q,, with equivalence

classes Ay, As, ..., Ay such that min(A4;) < min(A4;) < --- < min(4,), define e. = eq,€4,...€4,.
. ~ Ay Az Ap o
Define t 4 and t. in an analagous way. Observe that e, = Lnin(Al) min(As) |- min(A,,)} and t. = id..

The following lemma and its corollary will allow us to conjure words in ET from words in T,
via relation (PS4). These conjured words can then be used to induce equality between the T,\S,
elements of the images under ¢ of two equivalent words in (FUT)™, as will be shown in Lemma 3.12.

Lemma 3.9. For all A C n, we have t4 ~ eata.

Proof. Use induction on |A|. In the trivial case that |A| < 1, we have t4 = ¢ = eats. Suppose
A={a1,a2,...,a,}, where a1 < as < --- < a, and p > 1. Then, by definition

ta = taia,}laa,
~ (eA\{aP}tA\{ap}) taya, by inductive hypothesis
~ A} (taraytar(a,)) by (F2)

~  ea\(a,} (Caraytara,) La\(a,} by (PS4)
~ea\{ay)€ara, (tA\{ap}tara,) by (F2)
= eatyg. 0

Corollary 3.10. For all € € €q,,, we have t. ~ ecte.

Proof. Let A, As,..., A, C n for some p > 1 be such that min(A;) < min(As) < --- < min(4,)
and A; N A; = for all 4 # j. Note that the equivalence classes of any ¢ € €q,, will satisfy the
above criteria, so it suffices to show that, for all p > 1,

tata, . .ta, ~eaea,...eatata,...ta,.

Use induction on p. When p = 1, we have t4, ~ ea,ts, by Lemma 3.9. Suppose p > 2. Then

tata, ... ta, ~ (eaea,...ea, tata,...ta, \)ta, by inductive hypothesis
~ €A1€A2-~-6Ap,1(tAptA1tA2---tA,,,l) by (FQ)
~ eaea,..-ea,  (eata)tata, .. ta, by Lemma 3.9
~ 6A16A2...eAp(tAltAZ...tAp) by (FQ) O

Lemma 3.11. For all € € €q,,, we have e. ~ t.e..

Proof. The proof of this is analagous to those used for Lemma 3.9 and Corollary 3.10, however the
roles of the words in E* and T™* are reversed, and relations (T4) and (PS1) are used in place of
(F2) and (PS4), respectively. O

O, YAMS|



2 SUMMERRESEARCH

< SCHOLARSHIPS 2024-25

Lemma 3.12. If o, 3 € T, and p € F,, are such that ap = fu, then ay = By, where ¥ = €er(y)-

Proof. Let ¢ = ker(u) hence yu = id. = . and 4 = é.. Then py = t.6. = é. = ~ by Lemma 3.11
and Proposition 3.2, which gives us ay = apy = Suy = 57 as required. O

The final two pieces required are a direct consequence of Theorems 2.5 and 2.6.
Lemma 3.13. If uy,us € ET, then Uy = Uy = uy ~ us.
Lemma 3.14. If vi,vo € T*, then U1 = Uy = v1 ~ Ua.

All that remains to prove Theorem 2.3 is to show ker(¢) C ~ and thus ker(¢) = ~.

Proposition 3.15. We have the inclusion ker(¢) C ~.

Proof. Tt must be shown that w; = @ws implies that wy ~ w; for all wy,wy € (EUT)T. First, recall
that wy ~ wy implies that w; = W, for all wy,ws € (FUT)T by Proposition 3.2, as this will be used
throughout the proof. Let wy,ws € (EUT)T be such that @; = w,. By Corollary 3.6, wy ~ ujv;
and wa ~ ugvy for some uj,uy € E1 and v1,ve € T*, hence U0, = W; = Wa = Usa. It follows
from Corollary 3.8 that ¥; = 3 and thus v; ~ v9 by Lemma 3.14. Let ¢ = ker(9;) so that ¥; = 1.
and vy ~ vy ~ t. ~ e.t. by Lemma 3.14 and Corollary 3.10. We now have wy ~ ujv; ~ uje-t. and
similarly wy ~ use.t.. Since U1t. = U101 = UsDs = Usl,, it must also be the case that G1e. = Usex
according to Lemma 3.12. This gives uje, ~ use, by Lemma 3.13 because uje., use, € ET. Putting
it all together we have wy ~ uje-t. ~ uge.t. ~ wo. O

4 Presentation for P

In this section we prove Theorem 2.4. To do this, we adapt the method used to prove [4, Theo-
rem 2.2|. The central idea is to use the transpositions in S, (i.e., the §; partitions) to construct
the generators required for the presentation of P4\S,, from just e and ¢, with S,, generated from
the transpositions alone.

Let = be the congruence on (S U {e,t})* generated by Rp. We require ® to be a surmorphism
such that ker(®) = ~. It is clear from the definition of ® that it is a homomorphism, so it remains
to be shown that ® is surjective and ker(®) = =. Surjectivity and the inclusion ~ C ker(®) are
proven in Propositions 4.2 and 4.3, while the remainder of this section is dedicated to proving that

ker(®) C .
We will write w = w® for w € (S U {e,t})*. For w = s;,8;,...5,, € 5% we will write
w™ = 8,8, ...8;,, giving the relation ww™ ~ w™lw ~ ¢, by (S1). For i,j € n where i # j,

define the words
Cij = (s283...5j-1)(s182...8;—1) for i < j,

-1 ap s .

C.ec; ifi <j _1 ..

€j = wo DN and  7; =75 = ¢;; tei; for @ < g
¢ esicg iti > g,

Observe that ¢12 = ¢, €12 = e and 71 o = t. Conjugating e by the word ¢;; (i.e., ci_jlecij) transforms
its image under ® into €;; where i < j. Pictorially,

1 7 J n

Conjugating ¢ by ¢;; has an analagous effect. However, to transform the image of € into €;; where
1 > 7 we must combine e with s; to transpose € before conjugation.
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Proposition 4.2. The map @ is surjective.

Proof. As in (4.1), one may check diagramatically that €;; = €; and #;; = 7;;. By Proposition 3.1,
these elements generate PI\S,,, hence PI\S, C im(®). We also know from Theorem 2.7 that
the set of transpositions S® = {5, : 1 <i < n} generates S,,. Together, these show that P is
generated by (S U {e,t})®. O

Proposition 4.3. We have the inclusion ~ C ker(®).

Proof. It must be shown that w; &~ ws implies that w; = ws for all wy,wy € (SU{e, t})*. That is,
that the relations in Rp hold for their image under ®. This is checked diagramatically. For (P2)

1 n 1 n 1 n
t et s1t tsy
Further examples can be found in Appendex 8.2, and we leave the rest to the reader. O

The following lemma is a direct consequence of Theorem 2.7.
Lemma 4.4. If wy,we € S*, then W = We —> w1 = Ws.

Define a semigroup homomorphism ¢ : (EUT)" — (S U {e,t})*, by e;; — €;; and t;; — 745
Then, @ = wy (i.e., wp = wyd) for all w € (EUT)*, so that (EUT)Typd = PI\S,. To
prove ker(®) C ~, we aim to show that the image of the relations in Rpg under % hold for words
in (F UT)% Y using the relations in Rp. This will allow us to incorporate the presentation in
Theorem 2.3 here. We will often need to consider how a letter s; € S interacts with another
word. To understand the possible cases, it is best to think in terms of the partitions to which they
correspond. Recall that a transposition 5, € S® corresponds to the map k — k+ 1, k+ 1 — k,
and = +— « for all z € n\{k,k + 1}. As such, when combining s, with some word ¢;;, €;; or 75,
we need to consider all ways that the sets {k,k + 1} and {7,j} can intersect. In each instance,
Cases 1-4 will describe partial intersections, Case 5 complete intersections, and Cases > 6 empty
intersections. We will need the following relations that describe how each letter s; combines with
each word ¢;;. For 1 <¢ < j <nand 1<k <n, we have

iy ifk=i#j—1  (CI) sici;  if {kk+1} ={i,j} (C5)

Ci—1,j ifk=i-1 (02) Sk+2Cij ifk<i—1 (06)
CijSk ~ . ) Cij Sk =~ o .

Cij+1 itk = ] (Cv?)) Sk+1Cij ifi<k< ] — 1 (C?)

Cij—1 ifk= 7—1 7é i, (C4) SkCij lf] < k. (C8)

Each relation (C1-C8) consists only of words in S*. Hence, due to Lemma 4.4, they can be proven
diagramatically. Furthermore, because w; ~ w, implies that wi by Wy ! for all wy,wy € S* the
inverse of each relation (C1-C8) also holds and will be referred to in the same manner. We will
need two more relations:
e~ e? ~se, (P1")
t =2 (P2')
These are both consequences of the relations (P1) and (P2). For (P1’), we have e ~ te ~ ete ~ 2
and e ~ te ~ site ~ sye. For (P2'), we have t ~ et ~ tet ~ t.

The next step is to show that the subscripts of €;; or 7;; conjugated by a word w € S* are trans-
formed in accordance with the permutation w, thus allowing us to use a specific set of subscripts
to prove a relation in general. For the remainder of this section, recall that, if w € 7, and 7 € n,
we write 9w to indicate the element of n that i is mapped to via w.

10
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Lemma 4.5. Ifi,j € n wherei# j and 1 <k < n, then sp€;;Sk = €55, i3, -

Proof. It must be shown that

€y1,; Hk=i#j—1 (Case 1)
€-1,; fk=i—-1+#j (Case 2)
€41 Hfk=j#i-1 (Case 3)
RSN L k=14 (Case 4)
€i if {k,k+1} = {i,j} (Case b)
€j otherwise. (Case 6)

Cases 1-4 follow quickly from (C1-C4). Case 5 can be shown using (C7), (P1’) and, in the subcase
where ¢ > j, (S1). Case 6 has six subcases (one for each ordering of i, j and k). The subcase where
j < k <i—11is shown here; the others are treated similarly;

SK€EijSE = sk(c;ileslcji)sk

(c;isnr1)esi(suy1c5) by (C7)

C;il(6515k+1)8k+16j1' by (P3) and (S2),as k >j >1

cjl-leslcji by (S1)

€ij - 0

Q

Q

Q

Lemma 4.6. Ifi,j € n wherei # j and 1 < k <n, then s;7T;;Sk = Tis, j5,-

Proof. 1t is clear that the proof for Lemma 4.5 can be adapted for this result, where €;; is replaced
with 7;;, e with ¢, (P1") with (P2), and (P3) with (P7). O

Corollary 4.7. Ifi,j € n where i # j and w € S*, then w le;jw = € jw and W Tj;w = Tig, jw-
Proof. Using induction on |w], this follows quickly from Lemmas 4.5 and 4.6. O

We can now incorporate the presentation for P!\ S,, from Theorem 2.3.

Lemma 4.8. Ifu,v € (EUT)", then u ~ v = wp ~ vi).

Proof. Recall that 1 maps each word (E UT)" to their counterparts in (S U {e,¢})*. It must be
shown that each relation in Rpg holds for its image under ) in (S U {e, t})* via the relations in Rp.
For (T3), choose w € S* such that 1w = ¢, 2w = k, and 3w = j. Then

EikEjl R (wleg sw)(w ez qw) by Corollary 4.7
w ! (e)(crzes1ca3)w by (S1)

w te(s182)es(s281)w

w t(es18281)s15251w by (P4)

%

Q

Q

~ wlew by (S1)
~ w716172w
€ by Corollary 4.7.

For each of the remaining relations in Rpg, Corollary 4.7 can be applied in the same way to
transform the subscripts to a fixed set of values so that the relations from Rp can be used to prove
the congruence in general. See Appendix 8.3 for further examples. O

The next two lemmas show that the combination of any word w € im(¢)) and a letter s, € S
must also be congruent to some w’ € im(y)). Lemma 4.11 extends this by showing that any
w € (SU{e, t})* containing a letter u ¢ S must also be congruent to some w’ € im(y). As a

11
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consequence, every word w € (S U {e,t})* is either strictly in S*, so that w € S,, and can be
explained using the presentation in Theorem 2.7, or it is congruent to some w’ € im(¢) so that
w’ € PI\S,, and can be explained using the presentation in Theorem 2.3.

Lemma 4.9. Ifi,j € n where i # j and 1 < k < n, then €5, = w1 and Spe;; =~ wa for some
w1, W € 1m(1/))

Proof. For ¢€;;sy, it can be shown using the relations (S1-S3), (P1’), (P3) and (P4) that

€i5€,i+1€i41,i€ij ifk=i#£j—-1 (Case 1)
€5€ji—1€i—1,i€ij ifk=i—1#j (Case 2)
s d CidhIH1 iftk=j#i—-1 (Case 3)
Gk €i5€5,5—1 if k= j -1 75 ) (Case 4)
€ji it {k,k+1}={i,j} (Case 5)
€€j k+1€k+1,k€j,  Ootherwise. (Case 6)

As in Lemma 4.8, Corollary 4.7 is used to transform the subscripts for each case. Case 3 is shown
here using the transformation (i, j) = (1,2):

Q

€S9

e(s151)s2(s181) by (S1)
es1(s28152)s1 by (S3)
(es182€)8251 by (P3)
e(cal3)e(ca;3)

€1,2€2.3 -

€1,252

Q

Q

Q

Q

Q

Further examples can be found in Appendix 8.4. By Lemma 4.5 and (S1),
Sk€ij = SK€ijSkSk = €i5,55, Sk »

hence sy€;; is also considered above. O

Lemma 4.10. Ifi,j € n wherei # j and 1 < k < n, then 75, = w1 and spTy; = wa for some
wy, wy € im(v)).

Proof. According to (PS4), t;; ~ ej;t;; which implies s,7;; ~ sp€;;7;; by Lemma 4.8. Using
Lemma 4.9, spe;;7i; ~ wr;; for some w € im(¢), hence wr;; € im(v). Furthermore, we have
TijSk ~ SkSKTijSk = SkTis,,js,, 50 €ach 7;;s) case has also been considered. O

Lemmas 4.9 and 4.10 allow us to adapt the key result [4, Lemma 4.7] to this setting.

Lemma 4.11. Ifw € (SU {e,t})*\S*, then w is ~-equivalent to an element of im(1)).

Proof. Let ¥ = (EUT)Y = {e;; 14, €n,i # j} U{m; :4,j € n,i # j}, noting that im(¢)) = (¥).
Since e = €12 € ¥ and t = t12 € %, it suffices to show that every element of (3 U S)\S* is
~—equivalent to an element of (3). With this is in mind, let w € (XUS)\S*, and write w = z1 ...z,
where x1,...,x, € XU S. Denote by [ the number of factors x; that belong to S. We proceed by
induction on I. If [ = 0, then we already have w € (¥), so suppose [ > 1. Since w ¢ S*, there
exists 1 <4 < k — 1 such that either (i) z; € S and 2,41 € X, or (ii) x; € ¥ and x;4; € S. In
either case, Lemmas 4.9 and 4.10 tell us that x;x,11 ~ u for some u € imy = (X). But then
w R (r1...¢i—1)u(Tit2...2x), and we are done, after applying the inductive hypothesis (noting
that (1 ...xi—1)u(x;q2...x) has [ — 1 factors from ). O

We can now show ker(®) C =, and thus ker(®) = =, completing the proof of Theorem 2.4.

12
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Proposition 4.12. We have the inclusion ker(®) C ~

Proof. Let wy,we € (S U {e,t})* be such that wy = wy. If wy,wy € S, then wy,ws € S*
and w; ~ ws, by Lemma 4.4. If, however, wi,ws ¢ S,, then wi,wy € (S U {e, t})*\S*, and
thus w1 ~ w19 and we & wugtp for some uj,us € (EUT)T using Lemma 4.11. In this case,
Uy, Uz € PIH\S,, hence 1) = u1t) = Wy = Wy = ugy) = Uy implies that u; ~ uy by Proposition 3.15.
Finally, we have u11 ~ us by Lemma 4.8, showing w; =~ ws. O

5 Alternative presentations using action pairs

In Section 3, our presentation for P{\S,, was proven directly using existing presentations for its
product decomposition. In [2], however, many of these arguments have been generalised to handle
any semigroup that factorises into so-called action pairs, including right restriction semigroups such
as P both of which we will define shortly. This section applies the techniques of [2] to P\S,,
and P, Through this approach we provide an alternative proof for the presentation of P!9\S,, in
Theorem 2.3 (see Section 5.1) and obtain an alternative presentation for P4 in Theorem 5.5 (see
Section 5.2). Whilst we include some context for these results, this section is intended to be read
in conjunction with [2] which provides a more comprehensive description of concepts involved. We
will be using a left-right dual of the notation, definitions, and concepts found in [2], as they are
specific to left rather than right restricion semigroups such as P:4.
Given a semigroup 9, we write S' to denote the monoid completion of S. That is, S' = S if S
is already a monoid, otherwise S = S U {e}, where e ¢ S and e acts as an identity element in S*.
If S is a subsemigroup of a monoid M, we will assume the identity element in S! is the same as that
in M. A right action of a semigroup S on a set M is a map M x S — M : (x,s) — x*® such that
(x°)t = 2% for all x € M and s,t € S. If M is a monoid with identity element e and S has a right
action on M such that (zy)® = 2°y® and e® = e for all s € S and z,y € M, we say the action is by
monoid morphisms. A strong right action pair in a monoid M is a pair (U, S) of subsemigroups of
M satistying:
S has a right action on U 1 by monoid morphisms such that

SA1
us = su® for all s € S and u € U?, ( )

su = tv implies that u = v for all u,v € U! and s,t € S. (SA2)

A right restriction semigroup S is a semigroup that, in addition to its binary operation, is equipped
with a unary operation x — R(x) such that, for all z,y € S,

z = zR(z), (R1) R(z)R(y) = R(zR(y)), (R3)
R(z)R(y) = R(y)R(z), (R2) R(z)y = yR(zy). (R4)
We refer to R(z) as the range of . A right restriction monoid M also contains the submonoids
P(M)={R(z):x € M} and T(M)={xeM:R(z)=e},

where e is the identity element in M. The monoid (indeed, semilattice) P(M) is called the set of
projections in M. The monoid M acts on P(M) by the right action p* = R(pz) for all z € M
and p € P(M). Given a right restriction monoid M, the pair (Q, S) is a strong action pair for any
Q < P(M) and S < T(M) such that Q! is closed under the action of S [2, Proposition 4.44 (ii)].
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Proposition 5.1. The pairs (Fn, Tn) and (Fp, To\Sn) are strong action pairs with the right action

/’La = idcoker(,u,oz) .

Proof. According to [5, Proposition 4.23], P! is a right restriction monoid with range operation
R(p) = idcoker(p), hence P(PI) = F, and T(PId) = T,. We also have that 7,\S, < T;, and F,, is
closed under the action of 7,. By [2, Proposition 4.44 (ii)], (Fun, Tn\Sn) and (F,, Tn) are strong
action pairs with the right action u® = R(pa) = idcoker(ua)- O

For each p € F,,, consider the left congruences
O0p = {(, B) € To X T app = B},
w= (e, 8) € (Ta\Sn)' x (To\Sn)" : ap = B}
Note that («,3) € 0, or (o, 5) € ©,, if and only if for each z € n we have

(@lop = 2l <= [wal, = [26), < (2a,28) € ker(n).

When applying the techniques in [2] to our setting, we need to find subsets of 6, and ©,, for each
W € Fy, that generate 6, and ©,, as left congruences. These generating sets can be simplified as a
result of the following lemma.

Lemma 5.2. For all u,v € F,, we have
(i) 6y =0,V 0, and (ii)) O, =0,V0O,.

Proof. Let p,v € F,, and €, € €q, be such that y = id. and v = id,,. As discussed in the proof
for [2, Lemma 4.71 (ii)], it suffices to show the forward inclusions due to the commutativity of F,.

(i) Let (o, ) € 0,,. This implies (za,z8) € ¢ V7 for all € n and thus, for each x € n,
there exists a chain za = Ya,1 1 Ya,2 5.5 Yz, ma—1 4 z of some even length m, € N. By
the reflexive property, any such chain can be extended to an arbitrary even length by appending
some number of z8 < z8 - z8 to the chain. Let m = max{m, : ¢ € n} and choose a chain
ra — xf in € Un of length m for each x € n. In addition, if z1a = z2c and 18 = x2 for some
21, %2 € n, choose the same chain 1o — x18 in € Un for both z; and x5 so that y;, = ys, » for
all1 <k < m. Deﬁne'ykG’T by zvi =Ygk for 1 <k < m. We then have (o, 5) € 6,V 8, by the
chama—wh —>72 —>---—>'ym71 —>,B.

(ii) This proof is similar to (i), except extra steps may be necessary to ensure each v; ¢ S,,\{idn }.
Let (o, f) € ©,,. If @ = 5 =idy, then trivially (o, 8) € ©,V ©,, so we will assume 5 € 7,\S,, and
thus there exist distinct elements x1, 2 € n such that 18 = z58. There are two cases to consider.

Case 1: Suppose z1a0 = xa, and define v, as in (i). Then, z1y, = zoy, and thus v ¢ S, for
1 < k < m, showing (o, f) € ©, V O, as per the proof for (i).

Case 2: Suppose instead that xia # zoa. If a # idy, choose distinct 21,292 € n such that
ziaw = zoa. Then, it could be that either 1 or xq is in {21, 22}, but 1 # za« implies it cannot
be both, so we will assume without loss of generality that x1 ¢ {z1,22}. By the symmetric and
transitive properties, 218 = x20 and (x1,218), (x2c, z2f) € € V 1 imply (210, 2000) € £ V 1, SO
there is a chain z;a = y; M yo > S Yp—1 2 zoa of some even length p € N. For all z € n
and 1 < k < p, define the maps A\, and o’ by

frx=ux roar if x € {xq,x
TAp = Yk .1 and zo = 2 { 12}
ra  otherwise ra  otherwise.

If a # id,, we have 21 \;p = 20); for all 1 < k < p. If o = idy, either z1 Ay = x1 so that
A = idp, or 1, = 2’ = 2’ A for some 2’ € n\{z1}. In either case, each \; ¢ S,\{idn}. Hence,
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® ) S
(a,a') € ©,V O, by the chain & — X\ O, Ay =5 - =5 Apq Ovy o Furthermore, we have
(o/,B) € ©,, by transitivity, z1a' = z2a’ and 215 = x2, therefore (¢/, ) € ©, V O, by Case 1.
It follows that (a, ) € ©, V ©, by another appeal to transitivity. O

The following example is intended to help illustrate part (ii) of Lemma 5.2.

Example 5.3. Let i, v € F4 be such that p = (E ;{ g ﬁ }H g g{ }ﬁ let ., B € T4\S4
be such that o = [{i} {223} {4}] dg= [{1} {244} {3}} and let € = ker(p) and n = ker(v). Suppose,

knowing that (a, 5) € ©,,,, we want to show that (o, ) € ©, VvV 0©,. Here m = 4 and the most
direct chains of relations xa — xf in € Un of length four for each z € 4 are

() la=1525%[2]52%2=15, (i) 3a=2515[1]5151=38,

(i) 2a=2522%[3] 545 4=28, (iv) da=454504]5404=145.
However, defining 7, using these chains would not show that (a,3) € ©,V ©,, as v3 € S;\{id4}
(see each a3 in boxes above). Rather, this example fits Case 2, where z; = 4,29 = 21 = 2 and

29 = 3. First, let o/ = [{1} {2’3’4}]. Then, use the chain 4o = 4 5 3 5 2 = 40/ to define ); in

S)
order to use the chain oo — )\ vy & to show that (o, a') € ©,V 0O,. Pictorially,
1 2 3 4 1 2 3 4 1 2 3 4

[RYAES AR S

In addition, notice how it was necessary to choose z1 ¢ {z1, 22} to ensure that A\; ¢ Ss\{id4}.

Hence o’ and 8 satisfy the conditions for Case 1, as 4o’ = 2a/ and 43 = 20, so both 4o’
and 2o/ can use chain (ii). When 4 is defined using chains (i), (ii) and (iii), each v ¢ Ss\{id4}
as 2y, = 4v for all 1 < k < 4. As a result, we can use the chain o’ % Y O, Y2 % ¥3 v, B8
to show that (o/,8) € ©, V O, and thus (o, f) € ©, V O,. Pictorially,

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

5.1 Presentation for P\S, using the action pair (F,, 7,\S,)

What follows is an alternative proof for Theorem 2.3 via the action pair approach. For letters
u € F and v € T, we will write v* = t., where ¢ = ker(3%).

Proof. We will use [2, Theorem 6.44 (ii)] to show that P{\S,, has the presentation in Theorem 2.3
using the action pair (F,,, 7,\Sn) and their presentations from Theorems 2.6 and 2.5. First, Propo-
sition 5.1 and Lemma 5.2 show that (F,, 7,\S,) satisfies the conditions of [2, Theorem 6.44 (ii)].
For u € F,,, let Q,, be a subset of (7,\Sn)" x (7,\S,)" that generates ©,, as a left congruence and
define

Ry ={(vu,uv"):u € E, veT} and Rp={(uviv,ugv):v €T, (41,us) € Q}.
By [2, Theorem 6.44 (ii)], P{\S,, has semigroup presentation
(EUT : (T1-T6) U (F1-F3) U R, U Ry) via ¢.
For Ry, recall that t;; = t;; and observe that, for 4, j, k,l € n where 4 # j and k # [,
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v it i, 5} ={k, 1} (Case 1)
i _ ty fk=jandl#1 (Case 2)
MO b if kL1 {4, 5} (Case 3)
tr ifk=4diand!l#j. (Case 4)

Cases 1-3 correspond to relations (PS1-PS3) and Case 4 corresponds to (PS2'). However, as
demonstrated in Lemma 3.3, (PS2) is a consequence of (T2) and (PS1), so it can be omitted.
Therefore R; = (PS1-PS3).

For Ry, let = tAij € T¢ for some 7, j € n where i # j and let — be the left congruence generated
by (€i;,idn). One may check diagrammatically that a-ja-j = tAZ-j, showing that (e;;,idn) € ©,, and
hence - C ©,. For the reverse inclusion, suppose (a,3) € ©, so that at;; = fBt;;. It can also
be shown diagrammatically that €;; = tAij’e\ij, giving us ae;; = oztAij’e\ij = ﬁtAijE = (€;;. But then
a +— oe;; = fe;; +— B, showing that ©, C . Hence, for each p = tAZ-j € T¢, we have that
Q, = {(€i;,1dn)} generates O, as left congruence and thus Ry = (PS4). O

5.2 Presentation for P4 using the action pair (F,,7,)

In this section, we obtain an alternative presentation for P4 using the action pair (F,,7,). Given
w € (SU{e})* and v € T, we will write v = t., where ¢ = ker(v™). In addition, for 4,5 € n
where ¢ # j we have N(€;;) = €;;. That is, each partition €;; has the normal form €;; in (SU{e})*.
Consider the relations

tl,ge =€, (Al) tijsifl = Sifltifl’j for j 75 t—1 > 1, (A6>

t17j€ = t27j€ = €t17j for j > 2, (A?) tijsk = Sktij for k g {’L 1, i,j 1,j}, (A?)

tije - etij for b= 2’ (A3) Eijtij = tij for distinct ’L',j7 (Bl)
ti’iJ’»lSi = Siti,i+1 for i < n, (A4) )

— = "

tijSi = siti—i-l,j forj£i+1<n, (A5> e =e=se, (Pl )

where i,7 € n and 1 < k < n. Define
Ry = (S1-S3) U (P1”) U (P3-P6),
Rr = (F1-F3), Ra=(A1-AT), Rp= (Bl),
Ur=0¢|r-, and V7 = @|(su(e})-

The following presentation for 7, is shown by restricting the arguments in Section 4 to the presen-
tation for 7,\S, in Theorem 2.5 alone. It is analagous to that which is found in [7, Theorem 9.

Theorem 5.4. The monoid T, has monoid presentation (SU{e} : Ry) via Up.

Define a monoid surmorphism

Wy ifxeT

v )" fd .
(S} VT)" = P xH{xWT if x € SU{e}.

We can now prove this alternative presentation for P9,

Theorem 5.5. The monoid P has monoid presentation (SU {e} UT : R+ U Rr U Ry U Rp)
via W.

Proof. We will use [2, Theorem 6.5] to show that P has the above presentation using the action
pair (Fp,Ty) and their presentations in Theorems 2.6 and 5.4. By Proposition 5.1, (F,, T,) is a
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strong action pair and hence it satisfies the conditions of [2, Theorem 6.5]. For 1 € F,,, let Q,, be
a subset of 7, x T, that generates 6, as a left congruence and define

Ry = {(vw,wv") :w € SU{e}, veT} and Rq={(vN(wy),oN(wz)):veT, (wi,ws) € Ng}.
By [2, Theorem 6.5] and Lemma 5.2, P has monoid presentation

(SU{e}lUT: RrURzUR; URyg),

via U.
For Ry, recall that t;; = t;; and observe that, for 4, j € n where ¢ # j and 1 < k < n,

L if {i,7} =1{1,2} (Case 1)

. ti; ifi=2<y (Case 2.1)

TN, fimtandj>2 (Case 2.2)

tij ifi,j> 2, (Case 3)

tiv1,; fk=i#j—1 (Case 4)

por _ tic1y; fk=i—-1%#j (Case 5)

“ tij if {k,k+1}={i,j} (Case 6)

tij for k¢ {i—1,4,5—1,5}. (Case 7)

Cases 1-7 correspond to (A1-AT), showing Ry = R4.

For Rq, let u = tAij € TV for some 4, j € n where ¢ # j and recall that e;; = €;. It can be
shown that Q,, = {(€;;,idn)} generates 6, using a proof analgous to that found Section 5.1, except
each €;; is replaced by €;; and each ©, replaced by 6,,. It follows that R = Rp as required. O

The presentation for P4 in Theorem 5.5 can simplified to obtain one similar to that found
in Theorem 2.4 by replacing the alphabet T with {¢} as in Section 4 and reducing the relations
accordingly. We omit the details for reasons of space.

6 Discussion and Conclusion

The ease with which Theorem 2.3 was proven in Section 5.1 compared to Section 3 demonstrates
the effectiveness of the techniques in [2] for semigroups satisfying the assumptions in [2, Theo-
rem 6.44 (ii)]. On the other hand, the presentation for P! in Theorem 2.4 is significantly simpler
than that found in Theorem 5.5 via [2, Theorem 6.5]. Using a different presentation for 7, (such
as that which is found in [1]) in combination with [2, Theorem 6.5] could produce a more desirable
presentation for P4,

But there may be a better alternative. The method from [4] of using the group of units in a
monoid to extend a presentation of its singular ideal was applied without difficulty, which suggests
it could be generalised. This could then be used to extend the techniques in [2] to better handle
monoids like P, As such, further research in this direction would be of significant interest.

In addition to the action pairs (Fy, T,\Sn) and (F,, T,) discussed in this paper, [2] discusses
the existence of other action pairs that can be found within P4, including (F,\{idn}, 7). This
produces the semigroup P\ 7,,, which is analogous to the semigroup of strictly partial transforma-
tions PT,\7,. Finding a presentation for P4\ 7, may provide important insights into semigroups
such as these, which are typically more challenging to work with.

Finally, another intriguing monoid for further research is P = {p € P, : coker(p) = Ap}.
Similar to P4 and PT,, this monoid has product decomposition P! = 7,&,, where &, is the
semilattice of partial identities. It is not a restriction monoid, however, so a new approach would
be required to obtain a presentation.
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8 Appendices

These Appendices include further examples of the diagramatic and algebraic calculations involved
in proving many of the results in this paper. Not all calculations omitted from the body of this
paper are included here, however, due to their extent and similarity to one another.

To simplify the diagrams in our diagramatic proofs, we will typically omit vertices and edges that
are inconsequential to the calculation. All vertices are assumed to be in n and in sequential order
from left to right. All omitted vertices in an upper row are assumed to be adjacent only to their
counterpart (also omitted) in the lower row and vice versa. For example, instead of representing €;;

as
1 1 J n
we will represent it as
i J ok

N
8.1 Further examples for Proposition 3.2

Example 8.1. Diagramatic proof of relation (PS2) in the case i < j < k:

~ ~

Ljkeij €ijlik

Example 8.2. Diagramatic proof of relation (PS3) in the case i < j < k <

i J k1

sza'j /e\ij?kl
Example 8.3. Diagramatic proof of relation (PS4) in the case i < j:

i J
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8.2 Further examples for Proposition 4.3

Example 8.4. Diagramatic proof of relation (P4):

1 n 1 n

1 n

ol
=
(S
=l
=
S
=
ol
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8.3 Further examples for Lemma 4.8
Recall that Corollary 4.7 allows us to transform the subscripts of the words ¢;; and 7;;.

Example 8.6. To show relation (PS2) holds for its image under ¢, we will use the transformation
(i,5.k) = (1,2,3):
T2,3€12 = (Cg_,étc2,3)(€)
(s182)t(s2s1)e
s18atsa(e) by (P1’)
s1(esatss) by (P10)
(e)satsa by (P1’)
e(er3)t(cr)
€1,271,3 -

Q

Q

Q

Example 8.7. To show relation (F2) holds for its image under v, we will use the transformation
(4,5, k, 1) = (1,2,3,4):

T1,273,4 = (t)(c;itc;gA)
t(82818382)t(52835152)
ts2(8351)82t825351 82 by (S2)

Q

X 598351591525351 8ot by (P9)
~  $9(8183)S2ts28351 80t by (S2)
= (czy)t(csalt

= T34T12-

Example 8.8. To show relation (T5) holds for its image under ¢, we will use the transformation
(1,4, k) = (1,2,3):

€3,1€12€23 = (C£§68101,3)(6)(02_,;%602,3)
= (s2)esi(s2)e(s152)e(s281)
A $9e8182(81€)s182(81€)8251(8282) by (P1’) and (S1)
/2 soe(s28152)es15281€(815251)82 by (S3)
R S9e828182€518281(€5152€)82 by (P4)

(crh)e(crs)(cab)esi(cas)esi(crs)e(ers)
€1,3€3,2€2,1€1,3 -
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8.4 Further examples for Lemma 4.9
Recall that Corollary 4.7 allows us to transform the subscripts of the words ¢;; and 7;;.

Example 8.9. To show ¢, ;115; ~ €;; (Case 1) we will use the transformation i = 1:

€1251 = €81

€21 -

Example 8.10. To show €;;5,_1 = €;;€;i—1€,—1€;; if j # i — 1 (Case 2) we will use the transfor-
mation (i,7) = (2,3):

e23€31€12623 = (Cyzecas)(cizesicrs)(e)(cyzecas)
= (s182)e(s281)(s2)es1(s2)e(s182)e(s281)
A 5182€(815251)(e815251)5152€8251 by (S3) and (P4)
A~  5189€8152(€)s1€828] by (P1’) and (S1)
~  $182(es15251)81€8251 by (P4)
X 8§159€8159€59S1 by (Sl)
~  5182(e$15251)8251 by (P4)
~  51526(525152)8251 by (S3)
X 5189€898181 by (S1)
= (cz8)e(cas)s1
= €2351.
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