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Abstract

We prove novel presentations for the full-domain partition monoid P fd
n and its singular ideal

P fd
n \Sn. The monoid P fd

n consists of all partition diagrams with full domain. It is a right restriction
submonoid of the partition monoid Pn, having factorisation P fd

n = TnFn where Tn is (an isomorphic
copy of) the full-transformation monoid on n = {1, 2, . . . , n} and Fn is (an isomorphic copy of) Eqn,
the semilattice of equivalences on n. This paper obtains presentations for P fd

n through the use of
existing presentations for the symmetric group Sn, Tn\Sn, and Fn. These are proven both directly
and via generalised techniques recently developed for restriction monoids.

1 Introduction

Diagram monoids are fundamental algebraic structures with origins and applications in many dif-
ferent mathematical and scientific disciplines, such as knot theory and theoretical physics. The
recent paper [5] uncovered a so-called Ehresmann structure on the partition monoid Pn, opening
up a new categorical way to understand diagram monoids. Such structures involve an underlying
semilattice (monoid of commuting idempotents). The semilattice in this case is Fn, the set of all
quotient identities of n = {1, 2, . . . , n}. This is isomorphic to the join semilattice Eqn of equivalence
relations of n which is studied in [6].

A consequence of the Ehresmann structure was the discovery of a new monoid, the full-domain
partition monoid P fd

n = {ρ ∈ Pn : dom(ρ) = n}, which is a right restriction submonoid of Pn [5]. At
a similar time, this monoid was also discovered independently through the study of constellations [9].
The monoid Pn contains (an isomorphic copy of) the full-transformation monoid Tn, the set of
all mappings n → n under composition, and general Ehresmann theory leads to the product
decomposition P fd

n = TnFn. In this way, P fd
n can be thought of as a categorical dual to the partial

transformation monoid PTn, the set of all mappings A → n for each A ⊆ n under composition,
which is a left restriction monoid with respect to the semilattice En of partial identities, and
decomposes as PTn = EnTn.

This paper initiates the study of the monoid P fd
n by obtaining presentations for it and its singular

ideal P fd
n \Sn, where Sn is (an isomorphic copy of) the symmetric group on n. Two approaches

are taken, both of which rely on using pre-existing presentations for Sn, Tn\Sn, and Fn in the
aforementioned product decomposition.

The first approach proves its presentations directly and is self-contained, providing all necessary
definitions, results and proofs. Our main results, including presentations for P fd

n \Sn (Theorem 2.3)
and P fd

n (Theorem 2.4), can be found in Section 2 along with all necessary definitions. The proofs
of Theorems 2.3 and 2.4 be found in Sections 3 and 4, respectively.

The second approach, found in Section 5, obtains presentations using the results in [2], which
provides a generalised methodology for constructing presentations for restriction monoids by de-
composing them into products arising from action pairs. The main result of this approach is an
alternative presentation for P fd

n (Theorem 5.5), as well as an alternative proof for Theorem 2.3.
Whilst we do provide some context, this section is intended to be read in conjunction with [2].

Other than that which is appropriately referenced, all work contained in this paper is my own.
However, I would like to acknowledge the many contributions of my supervisors James East and
Matthias Fresacher, who provided valuable guidance and feedback throughout the project and
inspired many of the ideas and arguments used in this paper.
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2 Preliminaries

A binary operation on a set X is a map X×X → X that is typically denoted by juxtaposition. We
say this operation is associative if (xy)z = x(yz) for all x, y, x ∈ X. A semigroup S is a set with
an associative binary operation. A monoid M is a semigroup that contains an identity element e,
meaning that ae = ea = a for all a ∈ M . A group G is a monoid where, for each a ∈ G, there
exists an inverse a−1, meaning that aa−1 = a−1a = e, where e is the identity element in G. If S is
a semigroup (resp., monoid or group) with the binary operation ◦ and T ⊆ S is a semigroup (resp.,
monoid or group) with the binary operation ◦|T (i.e., the operation of S restricted to T ) we say
that T is a subsemigroup (resp., submonoid or subgroup) of S. If X is a subset of a semigroup S,
we will write ⟨X⟩ to denote the subsemigroup generated by X (i.e., the smallest subsemigroup
of S that contains X). In contrast to traditional functional notation, we will write maps on the
right. Given semigroups (resp., monoids or groups) S and T , a semigroup (resp., monoid or group)
homomorphism is a map ϕ : S → T such that (xy)ϕ = (xϕ)(yϕ) for all x, y ∈ S (and, for a monoid
homomorphism, eϕ = f , where e and f are the identity elements of S and T respectively). The
image and kernel of ϕ are defined by

im(ϕ) = {y ∈ T : y = xϕ for some x ∈ S} and ker(ϕ) = {(x, y) ∈ S × S : xϕ = yϕ}.

If ϕ is surjective, we say it is a surmorphism. If ϕ is bijective, we say it is an isomorphism. If there
exists an isomorphism ϕ : S → T between two semigroups (resp., monoids or groups) S and T , we
say they are isomorphic.

An equivalence relation ε on a set X is a subset of X ×X that is reflexive (i.e., (x, x) ∈ ε for
all x ∈ X), symmetric (i.e., (x, y) ∈ ε implies that (y, x) ∈ ε for all x, y ∈ X) and transitive (i.e.,
(x, y), (y, z) ∈ ε implies that (x, z) ∈ ε for all x, y, z ∈ X). The set of all equivalence relations
on X, denoted EqX , forms a monoid under the join operation. The join ε ∨ η of ε, η ∈ EqX is
defined as the smallest equivalence relation on X containing ε ∪ η. Using the notation x

ε−→ y

to indicate (x, y) ∈ ε for a given ε ∈ EqX , a pair (x, y) is in ε ∨ η if and only if there exists
a chain x

ε−→ z1
η−→ z2

ε−→ · · · ε−→ zp−1
η−→ y for some even p ∈ N. The identity element in EqX is

∆X = {(x, x) : x ∈ X}, the trivial relation on X, and EqX is both commutative (i.e., ε ∨ η = η ∨ ε
for all ε, η ∈ EqX), and consists entirely of idempotents (i.e., ε∨ ε = ε for all ε ∈ EqX), making it a
semilattice. A partition of X is a set ρ = {A1, A2, . . . , Ap} such that each block Ai is a non-empty
subset of X, the blocks are pairwise disjoint, and the union of the blocks is X. An equivalence
relation ε ∈ EqX induces a partition of X, where each block of the partition is an equivalence class
consisting only of elements related to one another in ε. Conversely, any partition of X induces an
equivalence relation on X. Given a partition ρ of a set X, we write [x]ρ to indicate the block of ρ
that contains the element x ∈ X. Analagously, we write [x]ε to indicate the equivalence class of x
in ε ∈ EqX .

For an integer n ≥ 2 (n < 2 being trivial), define n = {1, 2, . . . , n} and, for A ⊆ n, define
A′ = {a′ : a ∈ A}. The partition monoid of degree n, denoted Pn, is the monoid whose elements
are partitions of the set n∪n′, with concatenation as the binary operation, which will be described
shortly. Elements of Pn may be represented as a graph consisting of two rows of n vertices corre-
sponding to the sets n and n′, and whose connected components correspond to the blocks of the
partition. For example, the graph

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

, (2.1)

represents the partition

ρ =
{
{1, 3′}, {2, 2′, 6}, {1′, 3, 4′, 5}, {4}, {5′, 6′}

}
∈ P6 .
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These graphical representations are not necessarily unique, as different sets of edges can form the
same connected components. To concatenate ρ followed by σ where ρ, σ ∈ Pn, let ρ↓ be the graph ρ
modified such that each lower vertex i′ is relabeled i′′, and σ↑ be σ modified such that each upper
vertex i is relabeled i′′. Then, by identifying each lower vertex i′′ of ρ↓ with the corresponding
upper vertex i′′ of σ↑, these two graphs can be combined to form the product graph Π(ρ, σ) on
the vertex set n ∪ n′ ∪ n′′. The concatenation ρσ is then defined as the partition that, for all
x, y ∈ n ∪ n′, [x]ρσ = [y]ρσ if and only if there is a path between x and y in Π(ρ, σ). For example,

ρ =

1 2 3 4

1′ 2′ 3′ 4′

→ ρ↓ =

1 2 3 4

1′′2′′3′′4′′

→

σ =

1 2 3 4

1′ 2′ 3′ 4′

→ σ↑ =

1′′2′′3′′4′′

1′ 2′ 3′ 4′

→

Π(ρ, σ) =

1 2 3 4

1′ 2′ 3′ 4′

→ ρσ =

1 2 3 4

1′ 2′ 3′ 4′

.

The identity element of Pn is the partition idn =

1 2

1′ 2′

. . .

. . .

n

n′
.

If a block of a partition contains elements from both n and n′, it is called a transversal, while an
upper or lower non-transversal contains only elements from n or n′, respectively. For example, the
partition ρ given in (2.1) consists of three transversals, namely {1, 3′}, {2, 2′, 6} and {1′, 3, 4′, 5},
one upper non-transversal {4} (a singleton), and one lower non-transversal {5′, 6′}. For ρ ∈ Pn,
the domain is the subset of n whose elements in the upper row of ρ are in a transversal of ρ, whilst
the codomain is similarly defined for the lower row of ρ. That is,

dom(ρ) = {x ∈ n : [x]ρ ∩ n′ ̸= ∅} and codom(ρ) = {x ∈ n : [x′]ρ ∩ n ̸= ∅}.

The kernel and cokernel of ρ are defined as the equivalence relations

ker(ρ) = {(x, y) ∈ n× n : [x]ρ = [y]ρ} and coker(ρ) = {(x, y) ∈ n× n : [x′]ρ = [y′]ρ}.

Note, however, that this definition of ker(ρ) is distinct from that used for homomorphisms. The
equivalence classes of ker(ρ) are the subsets of n whose elements in the upper row of ρ share a block
in ρ, whilst the classes in coker(ρ) are similarly defined for the lower row of ρ. Continuing with
our example in (2.1), we have dom(ρ) = {1, 2, 3, 5, 6} and codom(ρ) = {1, 2, 3, 4}, whilst ker(ρ) and
coker(ρ) have equivalence classes {1}, {2, 6}, {4}, {3, 5}, and {1, 4}, {2}, {3}, {5, 6}, respectively.

At times, we will use the block notation ρ =
(
A1 · · · Ap C1 · · · Cq

B1 · · · Bp D1 · · · Dr

)
to represent a partition ρ ∈ Pn

with transversals A1 ∪ B′
1, A2 ∪ B′

2 . . . , Ap ∪ B′
p, upper non-transversals C1, C2, . . . , Cq, and lower

non-transversals D′
1, D

′
2, . . . , D

′
r, where each Ai, Bi, Ci, Di ⊆ n.

The submonoid Tn of Pn is defined by

Tn = {α ∈ Pn : dom(α) = n, coker(α) = ∆n}.

This monoid is isomoporphic to the full-transformation monoid on n, the set of all mappings n → n

under composition. As such, it will be convenient to identify a partition α ∈ Tn with its corre-
sponding map n → n and use the notation xα = y to indicate the unique element y ∈ n for a
given x ∈ n such that [x]α = [y′]α. For example, for α ∈ T5 with graphical representation

α =

1 2 3 4 5

1′ 2′ 3′ 4′ 5′

,

we have 1α = 2α = 4α = 5 and 3α = 5α = 2. For α ∈ Tn, we will use the simplified block notation

α =
[
A1 A2 · · · Ap

b1 b2 · · · bp

]
, indicating that α has transversals A1 ∪ {b′1}, A2 ∪ {b′2}, . . . , Ap ∪ {b′p}, where
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A1, A2, . . . , Ap ⊆ n and b1, b2, . . . , bp ∈ n are singletons. Any omitted vertices are assumed to be
elements of a lower non-transversal singleton, as each α ∈ Tn has full domain (i.e., each x ∈ n is
part of a transversal in α).

We will also be considering two complementary subsemigroups of Tn with definitions:

Sn = {α ∈ Tn : ker(α) = ∆n} and Tn\Sn = {α ∈ Tn : ker(α) ̸= ∆n}.

The first, Sn, is the group of units (i.e., invertible elements) in Pn and is isomorphic to the symmetric
group, the set of all bijective maps n → n under composition. The graphical representation of the
inverse α−1 of any α ∈ Sn can be obtained from that of α via vertical reflection. For example,

α =

α−1 =
−→ −→ = id5 .

The second is Tn\Sn, is the semigroup of all singular (i.e., non-invertible) partitions in Tn. This
semigroup is an ideal of Tn (i.e., αβ, βα ∈ Tn\Sn for all α ∈ Tn and β ∈ Tn\Sn).

For an equivalence relation ε ∈ Eqn with equivalence classes A1, A2, . . . , Ap, we will use idε to

represent the partition idε =
(
A1 A2 · · · Ap

A1 A2 · · · Ap

)
∈ Pn. The submonoid Fn of Pn is defined by

Fn = {idε : ε ∈ Eqn}.

It is clear from these definitions that µ = idker(µ) = idcoker(µ) for each µ ∈ Fn. Furthermore,
Fn is isomporphic to the semilattice Eqn as idεidη = idε∨η for all ε, η ∈ Eqn. For example,
if µ, ν ∈ F6 are such that µ = idε and ν = idη, where ε, η ∈ Eq6 have equivalence classes
{1, 2}, {3, 4, 5}, {6} and {1, 2}, {3}, {4, 5, 6} respectively, then µν = idε∨η, where ε ∨ η has equiva-
lence classes {1, 2}, {3, 4, 5, 6}. Pictorially,

µ =

ν =
−→ −→ = µν .

The focus of this paper is the full-domain partition monoid P fd
n , a submonoid of Pn, and its

singular ideal P fd
n \Sn, a subsemigroup of P fd

n , with definitions:

P fd
n = {ρ ∈ Pn : dom(ρ) = n} and P fd

n \Sn = {ρ ∈ P fd
n : ker(ρ) ̸= ∆n}.

A partition ρ ∈ P fd
n has simplified block notation ρ =

(
A1 · · · Ap

B1 · · · Bp C1 · · · Cq

)
, where p < n in the

case that ρ ∈ P fd
n \Sn. As all α ∈ Tn and µ ∈ Fn have full domain it follows that Tn,Fn ⊆ P fd

n .
Indeed, an important property of P fd

n and P fd
n \Sn we will make use of are the following product

decompositions, first alluded to in [5, page 344]:

P fd
n = TnFn and P fd

n \Sn = (Tn\Sn)Fn . (2.2)

The forward inclusion for these decompositions is demonstrated in the proof of Proposition 3.1,
whilst the reverse inclusion becomes apparent by observing that the product of two partitions with
full domain must itself have full domain.

Fix some semigroup S. Roughly speaking, a semigroup presentation for S reduces S to a
set of generators which can be used to construct any element of S, and a set of relations which
can be used to describe any equivalence amongst elements of S. Formally, a congruence ∼ is
an equivalence relation on S such that, for all a, b, c, d ∈ S, if a ∼ c and b ∼ d, then ab ∼ cd.
The set of all ∼–classes then form the quotient semigroup S/∼ under the induced operation (i.e.,
[a]∼ · [b]∼ = [ab]∼ for all a, b ∈ S). The Fundamental Homomorphism Theorem states that if
ϕ : S → T is a semigroup homomorphism, then ker(ϕ) is a congruence on S, and S/ ker(ϕ) is
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isomorphic to im(ϕ). The free semigroup on an alphabet (i.e., set of symbols) X, denoted X+,
is the set of all possible non-empty strings consisting of letters (i.e., symbols) in X under the
juxtaposition operation. Elements of X+ are called words, and the length of a word w, denoted
by |w|, is the number of letters it contains. Similarly, we denote the free monoid as X∗ = X+∪{ι},
where ι, the empty word, is the identity element in X∗, having length 0. Let X be an alphabet, and
R ⊆ X+×X+ (resp., R ⊆ X∗×X∗) be a set of relations on the free semigroup (resp., monoid) onX.
We denote by R♯ the congruence on X+ (resp., X∗) generated by R; i.e., the smallest congruence
on X+ (resp., X∗) containing R. We then say a semigroup (resp., monoid) S has semigroup (resp.,
monoid) presentation ⟨X : R⟩ if S ∼= X+/R♯ (resp., S ∼= X∗/R♯), or, equivalently, if there is a
surmorphism X+ → S (resp., X∗ → S) with kernel R♯. If ϕ is such a surmorphism, we say S has
presentation ⟨X : R⟩ via ϕ. Whether a presentation is a semigroup or monoid presentation will be
explicitly stated. For convenience, a relation (w1, w2) ∈ R is depicted as the equation w1 = w2.

For i, j ∈ n where i ̸= j, define the following partitions in P fd
n \Sn:

êij =



1
. . .

. . .

i
. . .

. . .

j
. . .

. . .

n

if i < j

1
. . .

. . .

j
. . .

. . .

i
. . .

. . .

n

if i > j

and t̂ij =

1
. . .

. . .

i
. . .

. . .

j
. . .

. . .

n

.

Note that t̂ij = t̂ji for all i, j ∈ n. Consider the corresponding alphabets E = {eij : i, j ∈ n, i ̸= j}
and T = {tij = tji : i, j ∈ n, i ̸= j}. Define a semigroup homomorphism

ϕ : (E ∪ T )+ −→ P fd
n \Sn

by eij 7→ êij and tij 7→ t̂ij . Consider the relations

e2ij = eij = ejieij , (T1)

eijekl = ekleij , (T2)

eikejk = eik , (T3)

eijeik = eikeij = ejkeij , (T4)

ekieijejk = eikekjejieik , (T5)

ekieijejkekl = eikeklelieijejl , (T6)

t2ij = tij , (F1)

tijtkl = tkltij , (F2)

tijtjk = tjktki , (F3)

tijeij = eij , (PS1)

tjkeij = eijtik , (PS2)

tkleij = eijtkl , (PS3)

eijtij = tij , (PS4)

where i, j, k, l ∈ n are all distinct, except for (F2) which only requires i ̸= j and k ̸= l. Define

RPS = (T1–T6) ∪ (F1–F3) ∪ (PS1–PS4).

With these definitions, we can now state our first main result, the proof of which is found in
Section 3 (with an alternative proof using action pairs located in Section 5.1).

Theorem 2.3. The semigroup P fd
n \Sn has semigroup presentation ⟨E ∪ T : RPS⟩ via ϕ .

For 1 ≤ i < n, define the following partitions in P fd
n :

e = ê1,2 =

1
. . .

. . .

n

, t = t̂1,2 =

1
. . .

. . .

n

, and si =

1
. . .

. . .

i
. . .

. . .

n

.

Consider the corresponding alphabet S ∪ {e, t} where S = {si : 1 ≤ i < n}. Define a monoid
homomorphism

Φ : (S ∪ {e, t})∗ −→ P fd
n

by e 7→ e, t 7→ t, and si 7→ si. Consider the relations
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s2i = ι , (S1)

sisj = sjsi if |i− j| > 1 , (S2)

sisjsi = sjsisj if |i− j| = 1 , (S3)

e = te , (P1)

t = et = s1t = ts1 , (P2)

sie = esi if i > 2 , (P3)

es1s2e = es1s2s1 , (P4)

es2es2 = s2es2e , (P5)

eκeκ = κeκe , (P6)

sit = tsi if i > 2 , (P7)

ts2ts2 = s2ts2t , (P8)

tκtκ = κtκt , (P9)

es2ts2 = s2ts2e , (P10)

eκtκ = κtκe , (P11)

where 1 ≤ i, j < n and κ = s2s3s1s2. Define RP = (S1–S3) ∪ (P11–P11). These allow us to state
our second main result, the proof of which is found in Section 4.

Theorem 2.4. The monoid P fd
n has monoid presentation ⟨S ∪ {e, t} : RP ⟩ via Φ .

Given the product decompositions of P fd
n and P fd

n \Sn stated in (2.2), we will also make use of
existing presentations for isomorphic copies of Tn\Sn, Fn and Sn.

Theorem 2.5 ([3, Theorem 3]). The semigroup Tn\Sn has semigroup presentation ⟨E : (T1–T6)⟩
via ϕ|E+ .

Theorem 2.6 ([6, Theorem 2]). The monoid Fn has monoid presentation ⟨T : (F1–F3)⟩ via ϕ|T∗ .

Theorem 2.7 ([8, Theorem A]). The group Sn has monoid presentation ⟨S : (S1–S3)⟩ via Φ|S∗ .

3 Presentation for P fd
n \Sn

In this section, we provide the proof of Theorem 2.3. Let ∼ be the congruence on (E ∪ T )+

generated by RPS . To prove Theorem 2.3, we require ϕ to be a surmorphism such that ker(ϕ) = ∼.
It is clear from the definition of ϕ that it is a homomorphism, so it remains to be shown that ϕ
is surjective (i.e., that (E ∪ T )ϕ generates P fd

n \Sn), which is proven in Proposition 3.1, and that
ker(ϕ) = ∼, which the remainder of this section is dedicated to. Throughout this section, it will be
convenient to extend ∼ and ϕ to (E ∪ T )∗ in such a way that ι ∼ ι and ιϕ = idn, despite the fact
that ι /∈ (E ∪ T )+ and idn /∈ Tn\Sn. However, contradictions will be avoided as ι and idn will only
appear in products that are not equal to ι or idn. For w ∈ (E ∪ T )∗, we will write ŵ = wϕ.

Proposition 3.1. The map ϕ is surjective.

Proof. Any element ρ =
(
A1 · · · Ap

B1 · · · Bp C1 · · · Cq

)
∈ P fd

n \Sn can be expressed as a product ρ = αµ, where

α =
[
A1 A2 · · · Ap

b1 b2 · · · bp

]
∈ Tn\Sn, for some bi ∈ Bi for each 1 ≤ i ≤ p, and µ =

(
B1 · · · Bp C1 · · · Cp

B1 · · · Bp C1 · · · Cq

)
∈ Fn.

Given Tn\Sn is generated by Eϕ and Fn is generated by Tϕ, according to Theorems 2.5 and 2.6,
we have α = uϕ for some u ∈ E+ and µ = vϕ for some v ∈ T ∗, and thus uv ∈ (E ∪ T )+ such
that (uv)ϕ = ρ.

Note that the decomposition for ρ ∈ P fd
n \Sn in the previous proof is not necessarily unique. We

will explore this in further detail in Corollary 3.10, Lemma 3.12 and throughout Section 5.

Proposition 3.2. We have the inclusion ∼ ⊆ ker(ϕ).

Proof. It must be shown that w1 ∼ w2 implies that ŵ1 = ŵ2 for all w1, w2 ∈ (E ∪ T )+. That is,
that each relation in RPS holds for its image under ϕ. This is easily checked diagramatically. For
the i < j case of (PS1),
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t̂ij êij =

1
. . .

. . .

i
. . .

. . .

j
. . .

. . .

n

. . .

. . .

. . .

. . .

. . .

. . .

=

1
. . .

. . .

i
. . .

. . .

j
. . .

. . .

n

= êij .

Further examples can be found in Appendix 8.1. We leave the rest to the reader.

Our goal now is to use the existing presentations for Tn\Sn and Fn in Theorems 2.5 and 2.6
to show that ker(ϕ) ⊆ ∼. First, we will show that any word w ∈ (E ∪ T )+ can be sorted into a
product of two subwords u ∈ E+ and v ∈ T ∗ using the relations in RPS . This is done by moving
each letter eij ∈ E to the left of each letter tkl ∈ T . Relations (PS1–PS3) describe this for three of
the four distinct arrangements of i, j, k, l ∈ n. For the fourth case, we require the following relation
which is a consequence of relations in RPS .

Lemma 3.3. For distinct i, j, k ∈ n, we have

tikeij ∼ eijtik . (PS2′)

Proof. Using (T1) and (PS2), we have tikeij ∼ tikejieij ∼ ejitjkeij ∼ ejieijtik ∼ eijtik .

Lemma 3.4. If v ∈ T+ and u ∈ E, then vu ∼ uv′ for some v′ ∈ T ∗.

Proof. Use strong induction on |v|. Relations (PS1–PS3) and (PS2′) show this is true for all cases
where |v| = 1. If |v| > 1, we have v = v1v2 for some v1, v2 ∈ T+ where |v1|, |v2| < |v|. Then,
vu = v1v2u ∼ v1uv

′
2 ∼ uv′1v

′
2, for some v′1, v′2 ∈ T ∗, using the inductive hypothesis.

Lemma 3.5. If w ∈ (E ∪ T )+, then w ∼ uv for some u ∈ E∗ and v ∈ T ∗.

Proof. Use strong induction on |w|. If |w| = 1, then either w = v ∈ T and u = ι ∈ E∗, or w = u ∈ E

and v = ι ∈ T ∗. Suppose instead that |w| > 1. Then, w = w1w2 for some w1, w2 ∈ (E ∪ T )+ such
that |w2| = 1. By the inductive hypothesis, w1w2 ∼ uvw2 for some u ∈ E∗ and v ∈ T ∗. If w2 ∈ T

then vw2 ∈ T ∗ and we are done. If, however, w2 ∈ E, then vw2 ∼ w2v
′ for some v′ ∈ T ∗, by

Lemma 3.4, and thus w ∼ uw2v with uw2 ∈ E∗ and v ∈ T ∗.

Corollary 3.6. If w ∈ (E ∪ T )+, then w ∼ uv for some u ∈ E+ and v ∈ T ∗.

Proof. By Lemma 3.5, w ∼ uv, for some u ∈ E∗ and v ∈ T ∗. The result is trivial if u ̸= ι, so
suppose u = ι, implying that v ̸= ι. It follows that v = tijv

′ for some v′ ∈ T ∗ and i, j ∈ n where
i ̸= j. Using (PS4), we have v = tijv

′ ∼ eijtijv
′ as required.

Once we have sorted two words w1, w2 ∈ (E∪T )+, we require equality between the Tn\Sn and Fn

elements of the resulting product decompositions of ŵ1 and ŵ2 before we can use the presentations
for Tn\Sn and Fn. As will be demonstrated by Corollary 3.8, equality between the Fn elements is
guaranteed, whilst the Tn\Sn elements can be replaced by equal elements using our relations.

Lemma 3.7. If ρ, σ ∈ Pn are such that coker(ρ) = ∆n, then coker(ρσ) = coker(σ).

Proof. It suffices to show the forward inclusion, as coker(σ) ⊆ coker(ρσ) for all ρ, σ ∈ Pn. Let
(x, y) ∈ coker(ρσ), and let Eρ and Eσ be the sets of edges in the product graph Π(ρ, σ) originating
in the graphs for ρ and σ, respectively. By definition, (x, y) ∈ coker(ρσ) implies there exists a path p

from x′ to y′ in Π(ρ, σ). Observing that no edges in Π(ρ, σ) can be incident with vertices from
both n and n′, any subpath q of p whose internal vertices are a subset of n and whose endpoints
are not in n must have the form r′′ → t1 → t2 → · · · → tm → s′′ where each r, s, ti ∈ n. As a
consequence of coker(ρ) = ∆n, an edge is in Eρ if and only if it is incident with a vertex in n. It
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follows that each edge in q must also be in in Eρ. We then have r = s, as r ̸= s would contradict
coker(ρ) = ∆n. This means p can be modified by removing each edge from q in p to produce a
new path p′. Repeating this process for any remaining subpaths with the form of q in p′, a path p̃

from x′ to y′ that does not intersect n can be obtained. The edges in p̃ must then be a subset of Eσ

and thus (x, y) ∈ coker(σ).

Corollary 3.8. If α, β ∈ Tn and µ, ν ∈ Fn are such that αµ = βν, then µ = ν.

Proof. Here, αµ = βν implies coker(αµ) = coker(βν). Then, recalling that all elements of Tn have
trivial cokernel, we have coker(µ) = coker(ν) by Lemma 3.7, and thus µ = ν.

To assist with the remainder of this section, we will extend the notation used for the letters in
our alphabets E and T . For A = {a1, a2, . . . , ap} ⊆ n such that |A| ≥ 2 and a1 < a2 < · · · < ap,
define eA = ea1a2ea1a3 . . . ea1ap . If |A| ≤ 1, instead define eA = ι. In the case that A = {i, j}, eA
is just the letter eij or eji, depending on whether i < j or i > j. For ε ∈ Eqn with equivalence
classes A1, A2, . . . , Aq such that min(A1) < min(A2) < · · · < min(Aq), define eε = eA1

eA2
. . . eAq

.

Define tA and tε in an analagous way. Observe that êε =
[

A1 A2 · · · Ap

min(A1) min(A2) · · · min(Ap)

]
and t̂ε = idε.

The following lemma and its corollary will allow us to conjure words in E+ from words in T ∗,
via relation (PS4). These conjured words can then be used to induce equality between the Tn\Sn

elements of the images under ϕ of two equivalent words in (E∪T )+, as will be shown in Lemma 3.12.

Lemma 3.9. For all A ⊆ n, we have tA ∼ eAtA.

Proof. Use induction on |A|. In the trivial case that |A| ≤ 1, we have tA = ι = eAtA. Suppose
A = {a1, a2, . . . , ap}, where a1 < a2 < · · · < ap and p > 1. Then, by definition

tA = tA\{ap}ta1ap

∼ (eA\{ap}tA\{ap}) ta1ap
by inductive hypothesis

∼ eA\{ap} (ta1aptA\{ap}) by (F2)
∼ eA\{ap} (ea1ap

ta1ap
) tA\{ap} by (PS4)

∼ eA\{ap}ea1ap
(tA\{ap}ta1ap

) by (F2)
= eAtA .

Corollary 3.10. For all ε ∈ Eqn, we have tε ∼ eεtε.

Proof. Let A1, A2, . . . , Ap ⊆ n for some p ≥ 1 be such that min(A1) < min(A2) < · · · < min(Ap)

and Ai ∩ Aj = ∅ for all i ̸= j. Note that the equivalence classes of any ε ∈ Eqn will satisfy the
above criteria, so it suffices to show that, for all p ≥ 1,

tA1tA2 . . . tAp ∼ eA1eA2 . . . eAptA1tA2 . . . tAp .

Use induction on p. When p = 1, we have tA1
∼ eA1

tA1
by Lemma 3.9. Suppose p > 2. Then

tA1
tA2

. . . tAp
∼ (eA1

eA2
. . . eAp−1

tA1
tA2

. . . tAp−1
)tAp

by inductive hypothesis
∼ eA1eA2 . . . eAp−1(tAptA1tA2 . . . tAp−1) by (F2)
∼ eA1

eA2
. . . eAp−1

(eAp
tAp

)tA1
tA2

. . . tAp−1
by Lemma 3.9

∼ eA1
eA2

. . . eAp
(tA1

tA2
. . . tAp

) by (F2).

Lemma 3.11. For all ε ∈ Eqn, we have eε ∼ tεeε.

Proof. The proof of this is analagous to those used for Lemma 3.9 and Corollary 3.10, however the
roles of the words in E∗ and T ∗ are reversed, and relations (T4) and (PS1) are used in place of
(F2) and (PS4), respectively.
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Lemma 3.12. If α, β ∈ Tn and µ ∈ Fn are such that αµ = βµ, then αγ = βγ, where γ = êker(µ).

Proof. Let ε = ker(µ) hence µ = idε = t̂ε and γ = êε. Then µγ = t̂εêε = êε = γ by Lemma 3.11
and Proposition 3.2, which gives us αγ = αµγ = βµγ = βγ as required.

The final two pieces required are a direct consequence of Theorems 2.5 and 2.6.

Lemma 3.13. If u1, u2 ∈ E+, then û1 = û2 =⇒ u1 ∼ u2.

Lemma 3.14. If v1, v2 ∈ T ∗, then v̂1 = v̂2 =⇒ v1 ∼ v2.

All that remains to prove Theorem 2.3 is to show ker(ϕ) ⊆ ∼ and thus ker(ϕ) = ∼.

Proposition 3.15. We have the inclusion ker(ϕ) ⊆ ∼.

Proof. It must be shown that ŵ1 = ŵ2 implies that w1 ∼ w1 for all w1, w2 ∈ (E∪T )+. First, recall
that w1 ∼ w2 implies that ŵ1 = ŵ2 for all w1, w2 ∈ (E∪T )+ by Proposition 3.2, as this will be used
throughout the proof. Let w1, w2 ∈ (E ∪ T )+ be such that ŵ1 = ŵ2. By Corollary 3.6, w1 ∼ u1v1
and w2 ∼ u2v2 for some u1, u2 ∈ E+ and v1, v2 ∈ T ∗, hence û1v̂1 = ŵ1 = ŵ2 = û2v̂2. It follows
from Corollary 3.8 that v̂1 = v̂2 and thus v1 ∼ v2 by Lemma 3.14. Let ε = ker(v̂1) so that v̂1 = t̂ε
and v1 ∼ v2 ∼ tε ∼ eεtε by Lemma 3.14 and Corollary 3.10. We now have w1 ∼ u1v1 ∼ u1eεtε and
similarly w2 ∼ u2eεtε. Since û1t̂ε = û1v̂1 = û2v̂2 = û2t̂ε, it must also be the case that û1êε = û2êε
according to Lemma 3.12. This gives u1eε ∼ u2eε by Lemma 3.13 because u1eε, u2eε ∈ E+. Putting
it all together we have w1 ∼ u1eεtε ∼ u2eεtε ∼ w2.

4 Presentation for P fd
n

In this section we prove Theorem 2.4. To do this, we adapt the method used to prove [4, Theo-
rem 2.2]. The central idea is to use the transpositions in Sn (i.e., the si partitions) to construct
the generators required for the presentation of P fd

n \Sn from just e and t, with Sn generated from
the transpositions alone.

Let ≈ be the congruence on (S ∪ {e, t})∗ generated by RP . We require Φ to be a surmorphism
such that ker(Φ) = ≈. It is clear from the definition of Φ that it is a homomorphism, so it remains
to be shown that Φ is surjective and ker(Φ) = ≈. Surjectivity and the inclusion ≈ ⊆ ker(Φ) are
proven in Propositions 4.2 and 4.3, while the remainder of this section is dedicated to proving that
ker(Φ) ⊆ ≈.

We will write w = wΦ for w ∈ (S ∪ {e, t})∗. For w = si1si2 . . . sip ∈ S∗, we will write
w−1 = sipsip−1

. . . si1 , giving the relation ww−1 ≈ w−1w ≈ ι, by (S1). For i, j ∈ n where i ̸= j,
define the words

cij = (s2s3 . . . sj−1)(s1s2 . . . si−1) for i < j,

ϵij =

{
c−1
ij ecij if i < j

c−1
ji es1cji if i > j,

and τij = τji = c−1
ij tcij for i < j .

Observe that c1,2 = ι, ϵ1,2 = e and τ1,2 = t. Conjugating e by the word cij (i.e., c−1
ij ecij) transforms

its image under Φ into êij where i < j. Pictorially,

ϵij =

1 i j
. . . . . .

. . . . . .c−1
ij

. . .

. . .

n

. . . . . .

. . . . . .e
. . .

. . .

. . . . . .
. . . . . .

cij
. . .

. . .

=

1
. . .

. . .

i
. . .

. . .

j
. . .

. . .

n

= êij . (4.1)

Conjugating t by cij has an analagous effect. However, to transform the image of e into êij where
i > j we must combine e with s1 to transpose e before conjugation.
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Proposition 4.2. The map Φ is surjective.

Proof. As in (4.1), one may check diagramatically that êij = ϵij and t̂ij = τ ij . By Proposition 3.1,
these elements generate P fd

n \Sn, hence P fd
n \Sn ⊆ im(Φ). We also know from Theorem 2.7 that

the set of transpositions SΦ = {si : 1 ≤ i < n} generates Sn. Together, these show that P fd
n is

generated by (S ∪ {e, t})Φ.

Proposition 4.3. We have the inclusion ≈ ⊆ ker(Φ).

Proof. It must be shown that w1 ≈ w2 implies that w1 = w2 for all w1, w2 ∈ (S ∪{e, t})∗. That is,
that the relations in RP hold for their image under Φ. This is checked diagramatically. For (P2)

1
. . .

. . .

n

=

1
. . .

. . .

n

. . .

. . .

=

1
. . .

. . .

n

. . .

. . .

=

1
. . .

. . .

n

. . .

. . .

.

t et s1t ts1

Further examples can be found in Appendex 8.2, and we leave the rest to the reader.

The following lemma is a direct consequence of Theorem 2.7.

Lemma 4.4. If w1, w2 ∈ S∗, then w1 = w2 =⇒ w1 ≈ w2.

Define a semigroup homomorphism ψ : (E ∪ T )+ → (S ∪ {e, t})∗, by eij 7→ ϵij and tij 7→ τij .
Then, ŵ = wψ (i.e., wϕ = wψΦ) for all w ∈ (E ∪ T )+, so that (E ∪ T )+ψΦ = P fd

n \Sn. To
prove ker(Φ) ⊆ ≈, we aim to show that the image of the relations in RPS under ψ hold for words
in (E ∪ T )+ψ using the relations in RP . This will allow us to incorporate the presentation in
Theorem 2.3 here. We will often need to consider how a letter sk ∈ S interacts with another
word. To understand the possible cases, it is best to think in terms of the partitions to which they
correspond. Recall that a transposition sk ∈ SΦ corresponds to the map k 7→ k + 1, k + 1 7→ k,
and x 7→ x for all x ∈ n\{k, k + 1}. As such, when combining sk with some word cij , ϵij or τij ,
we need to consider all ways that the sets {k, k + 1} and {i, j} can intersect. In each instance,
Cases 1–4 will describe partial intersections, Case 5 complete intersections, and Cases ≥ 6 empty
intersections. We will need the following relations that describe how each letter sk combines with
each word cij . For 1 ≤ i < j ≤ n and 1 ≤ k < n, we have

cijsk ≈


ci+1,j if k = i ̸= j − 1 (C1)

ci−1,j if k = i− 1 (C2)

ci,j+1 if k = j (C3)

ci,j−1 if k = j − 1 ̸= i, (C4)

cijsk ≈


s1cij if {k, k + 1} = {i, j} (C5)

sk+2cij if k < i− 1 (C6)

sk+1cij if i < k < j − 1 (C7)

skcij if j < k. (C8)

Each relation (C1–C8) consists only of words in S∗. Hence, due to Lemma 4.4, they can be proven
diagramatically. Furthermore, because w1 ≈ w2 implies that w−1

1 ≈ w−1
2 for all w1, w2 ∈ S∗ the

inverse of each relation (C1–C8) also holds and will be referred to in the same manner. We will
need two more relations:

e ≈ e2 ≈ s1e, (P1′)
t ≈ t2. (P2′)

These are both consequences of the relations (P1) and (P2). For (P1′), we have e ≈ te ≈ ete ≈ e2

and e ≈ te ≈ s1te ≈ s1e. For (P2′), we have t ≈ et ≈ tet ≈ t2.
The next step is to show that the subscripts of ϵij or τij conjugated by a word w ∈ S∗ are trans-

formed in accordance with the permutation w, thus allowing us to use a specific set of subscripts
to prove a relation in general. For the remainder of this section, recall that, if w ∈ Tn and i ∈ n,
we write iw to indicate the element of n that i is mapped to via w.

10



Lemma 4.5. If i, j ∈ n where i ̸= j and 1 ≤ k < n, then skϵijsk ≈ ϵisk,jsk .

Proof. It must be shown that

skϵijsk ≈



ϵi+1,j if k = i ̸= j − 1 (Case 1)

ϵi−1,j if k = i− 1 ̸= j (Case 2)

ϵi,j+1 if k = j ̸= i− 1 (Case 3)

ϵi,j−1 if k = j − 1 ̸= i (Case 4)

ϵji if {k, k + 1} = {i, j} (Case 5)

ϵij otherwise. (Case 6)

Cases 1-4 follow quickly from (C1–C4). Case 5 can be shown using (C7), (P1′) and, in the subcase
where i > j, (S1). Case 6 has six subcases (one for each ordering of i, j and k). The subcase where
j < k < i− 1 is shown here; the others are treated similarly;

skϵijsk = sk(c
−1
ji es1cji)sk

≈ (c
−1
ji sk+1)es1(sk+1cji) by (C7)

≈ c
−1
ji (es1sk+1)sk+1cji by (P3) and (S2), as k > j ≥ 1

≈ c
−1
ji es1cji by (S1)

= ϵij .

Lemma 4.6. If i, j ∈ n where i ̸= j and 1 ≤ k < n, then skτijsk ≈ τisk,jsk .

Proof. It is clear that the proof for Lemma 4.5 can be adapted for this result, where ϵij is replaced
with τij , e with t, (P1′) with (P2), and (P3) with (P7).

Corollary 4.7. If i, j ∈ n where i ̸= j and w ∈ S∗, then w
−1ϵijw ≈ ϵiw,jw and w−1τijw ≈ τiw,jw.

Proof. Using induction on |w|, this follows quickly from Lemmas 4.5 and 4.6.

We can now incorporate the presentation for P fd
n \Sn from Theorem 2.3.

Lemma 4.8. If u, v ∈ (E ∪ T )+, then u ∼ v =⇒ uψ ≈ vψ.

Proof. Recall that ψ maps each word (E ∪ T )+ to their counterparts in (S ∪ {e, t})∗. It must be
shown that each relation in RPS holds for its image under ψ in (S ∪ {e, t})∗ via the relations in RP .
For (T3), choose w ∈ S∗ such that 1w = i, 2w = k, and 3w = j. Then

ϵikϵjk ≈ (w
−1ϵ1,2w)(w

−1ϵ3,2w) by Corollary 4.7
≈ w

−1(e)(c
−1
2,3es1c2,3)w by (S1)

≈ w
−1e(s1s2)es1(s2s1)w

≈ w
−1(es1s2s1)s1s2s1w by (P4)

≈ w
−1ew by (S1)

≈ w
−1ϵ1,2w

≈ ϵik by Corollary 4.7.

For each of the remaining relations in RPS , Corollary 4.7 can be applied in the same way to
transform the subscripts to a fixed set of values so that the relations from RP can be used to prove
the congruence in general. See Appendix 8.3 for further examples.

The next two lemmas show that the combination of any word w ∈ im(ψ) and a letter sk ∈ S

must also be congruent to some w′ ∈ im(ψ). Lemma 4.11 extends this by showing that any
w ∈ (S ∪ {e, t})∗ containing a letter u /∈ S must also be congruent to some w′ ∈ im(ψ). As a
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consequence, every word w ∈ (S ∪ {e, t})∗ is either strictly in S∗, so that w ∈ Sn and can be
explained using the presentation in Theorem 2.7, or it is congruent to some w′ ∈ im(ψ) so that
w′ ∈ P fd

n \Sn and can be explained using the presentation in Theorem 2.3.

Lemma 4.9. If i, j ∈ n where i ̸= j and 1 ≤ k < n, then ϵijsk ≈ w1 and skϵij ≈ w2 for some
w1, w2 ∈ im(ψ).

Proof. For ϵijsk, it can be shown using the relations (S1–S3), (P1′), (P3) and (P4) that

ϵijsk ≈



ϵijϵj,i+1ϵi+1,iϵij if k = i ̸= j − 1 (Case 1)
ϵijϵj,i−1ϵi−1,iϵij if k = i− 1 ̸= j (Case 2)
ϵijϵj,j+1 if k = j ̸= i− 1 (Case 3)
ϵijϵj,j−1 if k = j − 1 ̸= i (Case 4)
ϵji if {k, k + 1} = {i, j} (Case 5)
ϵijϵj,k+1ϵk+1,kϵjk otherwise. (Case 6)

As in Lemma 4.8, Corollary 4.7 is used to transform the subscripts for each case. Case 3 is shown
here using the transformation (i, j) = (1, 2):

ϵ1,2s2 ≈ es2
≈ e(s1s1)s2(s1s1) by (S1)
≈ es1(s2s1s2)s1 by (S3)
≈ (es1s2e)s2s1 by (P3)
≈ e(c

−1
2,3)e(c2,3)

≈ ϵ1,2ϵ2,3 .

Further examples can be found in Appendix 8.4. By Lemma 4.5 and (S1),

skϵij ≈ skϵijsksk ≈ ϵisk,jsksk ,

hence skϵij is also considered above.

Lemma 4.10. If i, j ∈ n where i ̸= j and 1 ≤ k < n, then τijsk ≈ w1 and skτij ≈ w2 for some
w1, w2 ∈ im(ψ).

Proof. According to (PS4), tij ∼ eijtij which implies skτij ≈ skϵijτij by Lemma 4.8. Using
Lemma 4.9, skϵijτij ≈ wτij for some w ∈ im(ψ), hence wτij ∈ im(ψ). Furthermore, we have
τijsk ≈ skskτijsk ≈ skτisk,jsk , so each τijsk case has also been considered.

Lemmas 4.9 and 4.10 allow us to adapt the key result [4, Lemma 4.7] to this setting.

Lemma 4.11. If w ∈ (S ∪ {e, t})∗\S∗, then w is ≈-equivalent to an element of im(ψ).

Proof. Let Σ = (E ∪ T )ψ = {ϵij : i, j ∈ n, i ̸= j} ∪ {τij : i, j ∈ n, i ̸= j}, noting that im(ψ) = ⟨Σ⟩.
Since e = ϵ1,2 ∈ Σ and t = t1,2 ∈ Σ, it suffices to show that every element of ⟨Σ ∪ S⟩\S∗ is
≈–equivalent to an element of ⟨Σ⟩. With this is in mind, let w ∈ ⟨Σ∪S⟩\S∗, and write w = x1 . . . xk,
where x1, . . . , xk ∈ Σ ∪ S. Denote by l the number of factors xi that belong to S. We proceed by
induction on l. If l = 0, then we already have w ∈ ⟨Σ⟩, so suppose l ≥ 1. Since w /∈ S∗, there
exists 1 ≤ i ≤ k − 1 such that either (i) xi ∈ S and xi+1 ∈ Σ, or (ii) xi ∈ Σ and xi+1 ∈ S. In
either case, Lemmas 4.9 and 4.10 tell us that xixi+1 ≈ u for some u ∈ imψ = ⟨Σ⟩. But then
w ≈ (x1 . . . xi−1)u(xi+2 . . . xk), and we are done, after applying the inductive hypothesis (noting
that (x1 . . . xi−1)u(xi+2 . . . xk) has l − 1 factors from S).

We can now show ker(Φ) ⊆ ≈, and thus ker(Φ) = ≈, completing the proof of Theorem 2.4.
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Proposition 4.12. We have the inclusion ker(Φ) ⊆ ≈ .

Proof. Let w1, w2 ∈ (S ∪ {e, t})∗ be such that w1 = w2. If w1, w2 ∈ Sn then w1, w2 ∈ S∗

and w1 ≈ w2, by Lemma 4.4. If, however, w1, w2 /∈ Sn, then w1, w2 ∈ (S ∪ {e, t})∗\S∗, and
thus w1 ≈ u1ψ and w2 ≈ u2ψ for some u1, u2 ∈ (E ∪ T )+ using Lemma 4.11. In this case,
û1, û2 ∈ P fd

n \Sn, hence û1 = u1ψ = w1 = w2 = u2ψ = û2 implies that u1 ∼ u2 by Proposition 3.15.
Finally, we have u1ψ ≈ u2ψ by Lemma 4.8, showing w1 ≈ w2.

5 Alternative presentations using action pairs

In Section 3, our presentation for P fd
n \Sn was proven directly using existing presentations for its

product decomposition. In [2], however, many of these arguments have been generalised to handle
any semigroup that factorises into so-called action pairs, including right restriction semigroups such
as P fd

n , both of which we will define shortly. This section applies the techniques of [2] to P fd
n \Sn

and P fd
n . Through this approach we provide an alternative proof for the presentation of P fd

n \Sn in
Theorem 2.3 (see Section 5.1) and obtain an alternative presentation for P fd

n in Theorem 5.5 (see
Section 5.2). Whilst we include some context for these results, this section is intended to be read
in conjunction with [2] which provides a more comprehensive description of concepts involved. We
will be using a left-right dual of the notation, definitions, and concepts found in [2], as they are
specific to left rather than right restricion semigroups such as P fd

n .
Given a semigroup S, we write S1 to denote the monoid completion of S. That is, S1 = S if S

is already a monoid, otherwise S1 = S ∪ {e}, where e /∈ S and e acts as an identity element in S1.
If S is a subsemigroup of a monoid M , we will assume the identity element in S1 is the same as that
in M . A right action of a semigroup S on a set M is a map M × S → M : (x, s) 7→ xs such that
(xs)t = xst for all x ∈M and s, t ∈ S. If M is a monoid with identity element e and S has a right
action on M such that (xy)s = xsys and es = e for all s ∈ S and x, y ∈M , we say the action is by
monoid morphisms. A strong right action pair in a monoid M is a pair (U, S) of subsemigroups of
M satisfying:

S has a right action on U1 by monoid morphisms such that

us = sus for all s ∈ S and u ∈ U1,
(SA1)

su = tv implies that u = v for all u, v ∈ U1 and s, t ∈ S. (SA2)

A right restriction semigroup S is a semigroup that, in addition to its binary operation, is equipped
with a unary operation x 7→ R(x) such that, for all x, y ∈ S,

x = xR(x), (R1)

R(x)R(y) = R(y)R(x), (R2)

R(x)R(y) = R(xR(y)), (R3)

R(x)y = yR(xy). (R4)

We refer to R(x) as the range of x. A right restriction monoid M also contains the submonoids

P (M) = {R(x) : x ∈M} and T (M) = {x ∈M : R(x) = e},

where e is the identity element in M . The monoid (indeed, semilattice) P (M) is called the set of
projections in M . The monoid M acts on P (M) by the right action px = R(px) for all x ∈ M

and p ∈ P (M). Given a right restriction monoid M , the pair (Q,S) is a strong action pair for any
Q ≤ P (M) and S ≤ T (M) such that Q1 is closed under the action of S [2, Proposition 4.44 (ii)].
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Proposition 5.1. The pairs (Fn, Tn) and (Fn, Tn\Sn) are strong action pairs with the right action
µα = idcoker(µα).

Proof. According to [5, Proposition 4.23], P fd
n is a right restriction monoid with range operation

R(ρ) = idcoker(ρ), hence P (P fd
n ) = Fn and T (P fd

n ) = Tn. We also have that Tn\Sn ≤ Tn and Fn is
closed under the action of Tn. By [2, Proposition 4.44 (ii)], (Fn, Tn\Sn) and (Fn, Tn) are strong
action pairs with the right action µα = R(µα) = idcoker(µα).

For each µ ∈ Fn, consider the left congruences

θµ = {(α, β) ∈ Tn × Tn : αµ = βµ},

Θµ = {(α, β) ∈ (Tn\Sn)
1 × (Tn\Sn)

1 : αµ = βµ}.

Note that (α, β) ∈ θµ or (α, β) ∈ Θµ if and only if for each x ∈ n we have

[x]αµ = [x]βµ ⇐⇒ [xα]µ = [xβ]µ ⇐⇒ (xα, xβ) ∈ ker(µ) .

When applying the techniques in [2] to our setting, we need to find subsets of θµ and Θµ for each
µ ∈ Fn that generate θµ and Θµ as left congruences. These generating sets can be simplified as a
result of the following lemma.

Lemma 5.2. For all µ, ν ∈ Fn, we have

(i) θµν = θµ ∨ θν and (ii) Θµν = Θµ ∨Θν .

Proof. Let µ, ν ∈ Fn and ε, η ∈ Eqn be such that µ = idε and ν = idη. As discussed in the proof
for [2, Lemma 4.71 (ii)], it suffices to show the forward inclusions due to the commutativity of Fn.

(i) Let (α, β) ∈ θµν . This implies (xα, xβ) ∈ ε ∨ η for all x ∈ n and thus, for each x ∈ n,
there exists a chain xα

ε−→ yx,1
η−→ yx,2

ε−→ · · · ε−→ yx,mx−1
η−→ xβ of some even length mx ∈ N. By

the reflexive property, any such chain can be extended to an arbitrary even length by appending
some number of xβ ε−→ xβ

η−→ xβ to the chain. Let m = max{mx : x ∈ n} and choose a chain
xα → xβ in ε ∪ η of length m for each x ∈ n. In addition, if x1α = x2α and x1β = x2β for some
x1, x2 ∈ n, choose the same chain x1α → x1β in ε ∪ η for both x1 and x2 so that yx1,k = yx2,k for
all 1 ≤ k < m. Define γk ∈ Tn by xγk = yx,k for 1 ≤ k < m. We then have (α, β) ∈ θµ ∨ θν by the

chain α
θµ−→ γ1

θν−→ γ2
θµ−→ · · · θµ−→ γm−1

θν−→ β.
(ii) This proof is similar to (i), except extra steps may be necessary to ensure each γk /∈ Sn\{idn}.

Let (α, β) ∈ Θµν . If α = β = idn then trivially (α, β) ∈ Θµ ∨Θν , so we will assume β ∈ Tn\Sn and
thus there exist distinct elements x1, x2 ∈ n such that x1β = x2β. There are two cases to consider.

Case 1: Suppose x1α = x2α, and define γk as in (i). Then, x1γk = x2γk and thus γk /∈ Sn for
1 ≤ k < m, showing (α, β) ∈ Θµ ∨Θν as per the proof for (i).

Case 2: Suppose instead that x1α ̸= x2α. If α ̸= idn, choose distinct z1, z2 ∈ n such that
z1α = z2α. Then, it could be that either x1 or x2 is in {z1, z2}, but x1α ̸= x2α implies it cannot
be both, so we will assume without loss of generality that x1 /∈ {z1, z2}. By the symmetric and
transitive properties, x1β = x2β and (x1α, x1β), (x2α, x2β) ∈ ε ∨ η imply (x1α, x2α) ∈ ε ∨ η, so
there is a chain x1α

ε−→ y1
η−→ y2

ε−→ · · · ε−→ yp−1
η−→ x2α of some even length p ∈ N. For all x ∈ n

and 1 ≤ k < p, define the maps λk and α′ by

xλk =

{
yk if x = x1
xα otherwise

and xα′ =

{
x2α if x ∈ {x1, x2}
xα otherwise.

If α ̸= idn, we have z1λk = z2λk for all 1 ≤ k < p. If α = idn, either x1λk = x1 so that
λk = idn, or x1λk = x′ = x′λk for some x′ ∈ n\{x1}. In either case, each λk /∈ Sn\{idn}. Hence,
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(α, α′) ∈ Θµ ∨ Θν by the chain α
Θµ−−→ λ1

Θν−−→ λ2
Θµ−−→ · · · Θµ−−→ λp−1

Θν−−→ α′. Furthermore, we have
(α′, β) ∈ Θµν by transitivity, x1α′ = x2α

′ and x1β = x2β, therefore (α′, β) ∈ Θµ ∨ Θν by Case 1.
It follows that (α, β) ∈ Θµ ∨Θν by another appeal to transitivity.

The following example is intended to help illustrate part (ii) of Lemma 5.2.

Example 5.3. Let µ, ν ∈ F4 be such that µ =
({1, 2} {3, 4}
{1, 2} {3, 4}

)
and ν =

({1} {2, 3} {4}
{1} {2, 3} {4}

)
, let α, β ∈ T4\S4

be such that α =
[{1} {2, 3} {4}
1 2 4

]
and β =

[{1} {2, 4} {3}
2 4 1

]
, and let ε = ker(µ) and η = ker(ν). Suppose,

knowing that (α, β) ∈ Θµν , we want to show that (α, β) ∈ Θµ ∨ Θν . Here m = 4 and the most
direct chains of relations xα→ xβ in ε ∪ η of length four for each x ∈ 4 are

(i) 1α = 1
ε−→ 2

η−→ 2 ε−→ 2
η−→ 2 = 1β , (iii) 3α = 2

ε−→ 1
η−→ 1 ε−→ 1

η−→ 1 = 3β ,

(ii) 2α = 2
ε−→ 2

η−→ 3 ε−→ 4
η−→ 4 = 2β , (iv) 4α = 4

ε−→ 4
η−→ 4 ε−→ 4

η−→ 4 = 4β .

However, defining γk using these chains would not show that (α, β) ∈ Θµ ∨ Θν , as γ3 ∈ S4\{id4}
(see each xγ3 in boxes above). Rather, this example fits Case 2, where x1 = 4, x2 = z1 = 2 and

z2 = 3. First, let α′ =
[{1} {2, 3, 4}
1 2

]
. Then, use the chain 4α = 4

ε−→ 3
η−→ 2 = 4α′ to define λ1 in

order to use the chain α
Θµ−−→ λ1

Θν−−→ α′ to show that (α, α′) ∈ Θµ ∨Θν . Pictorially,

1 2 3 4

α =

µν =

Θµ−−→
1 2 3 4

λ1

Θν−−→
1 2 3 4

= α′

= µν.

In addition, notice how it was necessary to choose x1 /∈ {z1, z2} to ensure that λ1 /∈ S4\{id4}.
Hence α′ and β satisfy the conditions for Case 1, as 4α′ = 2α′ and 4β = 2β, so both 4α′

and 2α′ can use chain (ii). When γk is defined using chains (i), (ii) and (iii), each γk /∈ S4\{id4}
as 2γk = 4γk for all 1 ≤ k < 4. As a result, we can use the chain α′ Θµ−−→ γ1

Θν−−→ γ2
Θµ−−→ γ3

Θν−−→ β

to show that (α′, β) ∈ Θµ ∨Θν and thus (α, β) ∈ Θµ ∨Θν . Pictorially,

1 2 3 4

α′ =

µν =

Θµ−−→
1 2 3 4

γ1

Θν−−→
1 2 3 4

γ2

Θµ−−→
1 2 3 4

γ3

Θν−−→
1 2 3 4

= β

= µν.

5.1 Presentation for P fd
n \Sn using the action pair (Fn, Tn\Sn)

What follows is an alternative proof for Theorem 2.3 via the action pair approach. For letters
u ∈ E and v ∈ T , we will write vu = tε, where ε = ker(v̂ û).

Proof. We will use [2, Theorem 6.44 (ii)] to show that P fd
n \Sn has the presentation in Theorem 2.3

using the action pair (Fn, Tn\Sn) and their presentations from Theorems 2.6 and 2.5. First, Propo-
sition 5.1 and Lemma 5.2 show that (Fn, Tn\Sn) satisfies the conditions of [2, Theorem 6.44 (ii)].
For µ ∈ Fn, let Ωµ be a subset of (Tn\Sn)

1 × (Tn\Sn)
1 that generates Θµ as a left congruence and

define

R1 = {(vu, uvu) : u ∈ E, v ∈ T} and R2 = {(u1v, u2v) : v ∈ T, (û1, û2) ∈ Ωv̂}.

By [2, Theorem 6.44 (ii)], P fd
n \Sn has semigroup presentation

⟨E ∪ T : (T1–T6) ∪ (F1–F3) ∪R1 ∪R2⟩ via ϕ .

For R1, recall that tij = tji and observe that, for i, j, k, l ∈ n where i ̸= j and k ̸= l,
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t
eij
kl =


ι if {i, j} = {k, l} (Case 1)

til if k = j and l ̸= i (Case 2)

tkl if k, l /∈ {i, j} (Case 3)

tkl if k = i and l ̸= j. (Case 4)

Cases 1-3 correspond to relations (PS1–PS3) and Case 4 corresponds to (PS2′). However, as
demonstrated in Lemma 3.3, (PS2′) is a consequence of (T2) and (PS1), so it can be omitted.
Therefore R1 = (PS1–PS3).

For R2, let µ = t̂ij ∈ Tϕ for some i, j ∈ n where i ̸= j and let ⊢ be the left congruence generated
by (êij , idn). One may check diagrammatically that êij t̂ij = t̂ij , showing that (êij , idn) ∈ Θµ and
hence ⊢ ⊆ Θµ. For the reverse inclusion, suppose (α, β) ∈ Θµ so that αt̂ij = βt̂ij . It can also
be shown diagrammatically that êij = t̂ij êij , giving us αêij = αt̂ij êij = βt̂ij ê = βêij . But then
α ⊢ αêij = βêij ⊢ β, showing that Θµ ⊆ ⊢. Hence, for each µ = t̂ij ∈ Tϕ, we have that
Ωµ = {(êij , idn)} generates Θµ as left congruence and thus R2 = (PS4).

5.2 Presentation for P fd
n using the action pair (Fn, Tn)

In this section, we obtain an alternative presentation for P fd
n using the action pair (Fn, Tn). Given

w ∈ (S ∪ {e})∗ and v ∈ T , we will write vw = tε, where ε = ker(v̂w). In addition, for i, j ∈ n

where i ̸= j we have N(êij) = ϵij . That is, each partition êij has the normal form ϵij in (S∪{e})∗.
Consider the relations

t1,2e = e , (A1)

t1,je = t2,je = et1,j for j > 2, (A2)

tije = etij for i, j > 2, (A3)

ti,i+1si = siti,i+1 for i < n, (A4)

tijsi = siti+1,j for j ̸= i+ 1 ≤ n, (A5)

tijsi−1 = si−1ti−1,j for j ̸= i− 1 ≥ 1, (A6)

tijsk = sktij for k /∈ {i−1, i, j−1, j}, (A7)

ϵijtij = tij for distinct i, j, (B1)

e2 = e = s1e , (P1′′)

where i, j ∈ n and 1 ≤ k < n. Define

RT = (S1–S3) ∪ (P1′′) ∪ (P3–P6),

RF = (F1–F3), RA = (A1–A7), RB = (B1),

ΨF = ϕ|T∗ , and ΨT = Φ|(S∪{e})∗ .

The following presentation for Tn is shown by restricting the arguments in Section 4 to the presen-
tation for Tn\Sn in Theorem 2.5 alone. It is analagous to that which is found in [7, Theorem 9].

Theorem 5.4. The monoid Tn has monoid presentation ⟨S ∪ {e} : RT ⟩ via ΨT .

Define a monoid surmorphism

Ψ : (S ∪ {e} ∪ T )∗ → P fd
n : x 7→

{
xΨF if x ∈ T

xΨT if x ∈ S ∪ {e}.

We can now prove this alternative presentation for P fd
n .

Theorem 5.5. The monoid P fd
n has monoid presentation ⟨S ∪ {e} ∪ T : RT ∪ RF ∪ RA ∪ RB⟩

via Ψ.

Proof. We will use [2, Theorem 6.5] to show that P fd
n has the above presentation using the action

pair (Fn, Tn) and their presentations in Theorems 2.6 and 5.4. By Proposition 5.1, (Fn, Tn) is a
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strong action pair and hence it satisfies the conditions of [2, Theorem 6.5]. For µ ∈ Fn, let Ωµ be
a subset of Tn × Tn that generates θµ as a left congruence and define

R1 = {(vw,wvw) : w ∈ S ∪ {e}, v ∈ T} and RΩ = {(vN(w1), vN(w2)) : v ∈ T, (w1, w2) ∈ Ωv̂}.

By [2, Theorem 6.5] and Lemma 5.2, P fd
n has monoid presentation

⟨S ∪ {e} ∪ T : RT ∪RF ∪R1 ∪RΩ⟩,
via Ψ.

For R1, recall that tij = tji and observe that, for i, j ∈ n where i ̸= j and 1 ≤ k < n,

t eij =


ι if {i, j} = {1, 2} (Case 1)

t1,j if i = 2 < j (Case 2.1)

t1,j if i = 1 and j > 2 (Case 2.2)

tij if i, j > 2, (Case 3)

t skij =


ti+1,j if k = i ̸= j − 1 (Case 4)

ti−1,j if k = i− 1 ̸= j (Case 5)

tij if {k, k + 1} = {i, j} (Case 6)

tij for k /∈ {i− 1, i, j − 1, j}. (Case 7)

Cases 1-7 correspond to (A1–A7), showing R1 = RA.
For RΩ, let µ = t̂ij ∈ TΨF for some i, j ∈ n where i ̸= j and recall that êij = ϵij . It can be

shown that Ωµ = {(ϵij , idn)} generates θµ using a proof analgous to that found Section 5.1, except
each êij is replaced by ϵij and each Θµ replaced by θµ. It follows that RΩ = RB as required.

The presentation for P fd
n in Theorem 5.5 can simplified to obtain one similar to that found

in Theorem 2.4 by replacing the alphabet T with {t} as in Section 4 and reducing the relations
accordingly. We omit the details for reasons of space.

6 Discussion and Conclusion

The ease with which Theorem 2.3 was proven in Section 5.1 compared to Section 3 demonstrates
the effectiveness of the techniques in [2] for semigroups satisfying the assumptions in [2, Theo-
rem 6.44 (ii)]. On the other hand, the presentation for P fd

n in Theorem 2.4 is significantly simpler
than that found in Theorem 5.5 via [2, Theorem 6.5]. Using a different presentation for Tn (such
as that which is found in [1]) in combination with [2, Theorem 6.5] could produce a more desirable
presentation for P fd

n .
But there may be a better alternative. The method from [4] of using the group of units in a

monoid to extend a presentation of its singular ideal was applied without difficulty, which suggests
it could be generalised. This could then be used to extend the techniques in [2] to better handle
monoids like P fd

n . As such, further research in this direction would be of significant interest.
In addition to the action pairs (Fn, Tn\Sn) and (Fn, Tn) discussed in this paper, [2] discusses

the existence of other action pairs that can be found within P fd
n , including (Fn\{idn}, Tn). This

produces the semigroup P fd
n \Tn, which is analogous to the semigroup of strictly partial transforma-

tions PT n\Tn. Finding a presentation for P fd
n \Tn may provide important insights into semigroups

such as these, which are typically more challenging to work with.
Finally, another intriguing monoid for further research is Ptc

n = {ρ ∈ Pn : coker(ρ) = ∆n}.
Similar to P fd

n and PT n, this monoid has product decomposition Ptc
n = TnEn, where En is the

semilattice of partial identities. It is not a restriction monoid, however, so a new approach would
be required to obtain a presentation.
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8 Appendices

These Appendices include further examples of the diagramatic and algebraic calculations involved
in proving many of the results in this paper. Not all calculations omitted from the body of this
paper are included here, however, due to their extent and similarity to one another.

To simplify the diagrams in our diagramatic proofs, we will typically omit vertices and edges that
are inconsequential to the calculation. All vertices are assumed to be in n and in sequential order
from left to right. All omitted vertices in an upper row are assumed to be adjacent only to their
counterpart (also omitted) in the lower row and vice versa. For example, instead of representing êij
as

1
. . .

. . .

i
. . .

. . .

j
. . .

. . .

n

,

we will represent it as
i

. . .

. . .

. . .

. . .

j
. . .

. . .

k
. . .

. . .
.

8.1 Further examples for Proposition 3.2

Example 8.1. Diagramatic proof of relation (PS2) in the case i < j < k:

i
. . .

. . .

. . .

. . .

j
. . .

. . .

k
. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

=

i
. . .

. . .

. . .

. . .

j
. . .

. . .

k
. . .

. . .
=

i
. . .

. . .

. . .

. . .

j
. . .

. . .

k
. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

t̂jkêij êij t̂ik

Example 8.2. Diagramatic proof of relation (PS3) in the case i < j < k < l:

i
. . .

. . .

. . .

. . .

j
. . .

. . .

k
. . .

. . .

l
. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

=

i
. . .

. . .

. . .

. . .

j
. . .

. . .

k
. . .

. . .

l
. . .

. . .
=

i
. . .

. . .

. . .

. . .

j
. . .

. . .

k
. . .

. . .

l
. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

t̂klêij êij t̂kl

Example 8.3. Diagramatic proof of relation (PS4) in the case i < j:

i
. . .

. . .

. . .

. . .

j
. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

=

i
. . .

. . .

. . .

. . .

j
. . .

. . .
.

êij t̂ij t̂ij
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8.2 Further examples for Proposition 4.3

Example 8.4. Diagramatic proof of relation (P4):

1
. . .

. . .

n

. . .

. . .. . .

. . .. . .

. . .

=

1
. . .

. . .

n

=

1
. . .

. . .

n

. . .

. . .. . .

. . .. . .

. . .

.

e s1s2e e s1s2s1

Example 8.5. Diagramatic proof of relation (P11) (recall that κ = s1s3s1s2):

1
. . .

. . .

n

. . .

. . .. . .

. . .. . .

. . .

=

1
. . .

. . .

n

,

s1s3s1s2

1
. . .

. . .

n

. . .

. . .. . .

. . .. . .

. . .

=

1
. . .

. . .

n

=

1
. . .

. . .

n

. . .

. . .. . .

. . .. . .

. . .

.

e κ t κ κ t κ e

20



8.3 Further examples for Lemma 4.8

Recall that Corollary 4.7 allows us to transform the subscripts of the words ϵij and τij .

Example 8.6. To show relation (PS2) holds for its image under ψ, we will use the transformation
(i, j, k) = (1, 2, 3):

τ2,3ϵ1,2 = (c−1
2,3tc2,3)(e)

= (s1s2)t(s2s1)e

≈ s1s2ts2(e) by (P1′)
≈ s1(es2ts2) by (P10)
≈ (e)s2ts2 by (P1′)
= e(c−1

1,3)t(c1,3)

= ϵ1,2τ1,3 .

Example 8.7. To show relation (F2) holds for its image under ψ, we will use the transformation
(i, j, k, l) = (1, 2, 3, 4):

τ1,2τ3,4 = (t)(c−1
3,4tc3,4)

= t(s2s1s3s2)t(s2s3s1s2)

≈ ts2(s3s1)s2ts2s3s1s2 by (S2)
≈ s2s3s1s2ts2s3s1s2t by (P9)
≈ s2(s1s3)s2ts2s3s1s2t by (S2)
= (c−1

3,4)t(c3,4)t

= τ3,4τ1,2 .

Example 8.8. To show relation (T5) holds for its image under ψ, we will use the transformation
(i, j, k) = (1, 2, 3):

ϵ3,1ϵ1,2ϵ2,3 = (c−1
1,3es1c1,3)(e)(c

−1
2,3ec2,3)

= (s2)es1(s2)e(s1s2)e(s2s1)

≈ s2es1s2(s1e)s1s2(s1e)s2s1(s2s2) by (P1′) and (S1)
≈ s2e(s2s1s2)es1s2s1e(s1s2s1)s2 by (S3)
≈ s2es2s1s2es1s2s1(es1s2e)s2 by (P4)
= (c−1

1,3)e(c1,3)(c
−1
2,3)es1(c2,3)es1(c

−1
1,3)e(c1,3)

= ϵ1,3ϵ3,2ϵ2,1ϵ1,3 .
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8.4 Further examples for Lemma 4.9

Recall that Corollary 4.7 allows us to transform the subscripts of the words ϵij and τij .

Example 8.9. To show ϵi,i+1si ≈ ϵji (Case 1) we will use the transformation i = 1:

ϵ1,2s1 = es1
= ϵ2,1 .

Example 8.10. To show ϵijsi−1 ≈ ϵijϵj,i−1ϵi−1,iϵij if j ̸= i− 1 (Case 2) we will use the transfor-
mation (i, j) = (2, 3):

ϵ2,3ϵ3,1ϵ1,2ϵ2,3 = (c−1
2,3ec2,3)(c

−1
1,3es1c1,3)(e)(c

−1
2,3ec2,3)

= (s1s2)e(s2s1)(s2)es1(s2)e(s1s2)e(s2s1)

≈ s1s2e(s1s2s1)(es1s2s1)s1s2es2s1 by (S3) and (P4)
≈ s1s2es1s2(e)s1es2s1 by (P1′) and (S1)
≈ s1s2(es1s2s1)s1es2s1 by (P4)
≈ s1s2es1s2es2s1 by (S1)
≈ s1s2(es1s2s1)s2s1 by (P4)
≈ s1s2e(s2s1s2)s2s1 by (S3)
≈ s1s2es2s1s1 by (S1)
= (c−1

2,3)e(c2,3)s1
= ϵ2,3s1 .
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