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Abstract

The Gauss-Bonnet theorem for surfaces states that integrating Gaussian curvature over a surface without

boundary yields a topological constant. Consequently, the variation of Gaussian curvature should be identi-

cally zero. In this report we conduct the extrinsic variation of Gaussian curvature, and see that it encodes

the two fundamental equations of submanifold geometry: the Gauss equation and the Codazzi equation.

1 Introduction

The Gauss-Bonnet theorem for surfaces is a classical result stating that the total Gaussian curvature of a surface

without boundary is a topological invariant. Consequently, any deformation of the surface will not change the

total Gaussian curvature. In section 2, we establish essential definitions and notation. We vary the Gaussian

curvature in section 3, yielding a quantity that is identically zero. From this point we derive the Gauss equation

and contracted Codazzi-Mainardi equations, which is done in section 4. Finally, in section 5, we look at how

the Gauss-Codazzi equations present in higher dimensions, and propose further applications of this variational

method.

Statement of Authorship

The equations derived in this report are classical; see [2], for example. The variation of Gaussian curvature and

subsequent derivation of these classical equations was carried out by Annalisa Calvi, under the guidance of her

supervisor Dr. Yann Bernard.

2 Preliminary definitions

We consider a smooth, orientable, compact surface Σ with no boundary. Let Φ⃗ be an immersion of Σ in Rn,

with m ≥ 3.

The metric tensor, denoted g, is a 2 × 2 matrix with entries gij , where gij := ∂iΦ⃗ · ∂jΦ⃗. The entries of its

inverse are denoted gij , and the area element is given by |g|1/2 :=
√
det g. Let∇k denote the covariant derivative

compatible with the metric, so that ∇kgij = ∇kg
ij = 0 for all i, j, k ∈ {1, 2}. Let Γk

ij be the corresponding

Christoffel symbols.

At any point on the surface Σ, there are tangent vectors ∇iΦ⃗ = ∂iΦ⃗, for i = 1, 2. Let πT denote the

projection map onto the tangent space, so that πT F⃗ = (F⃗ · ∇iΦ⃗)∇iΦ⃗ for any vector field F⃗ : Rn → Rn.

Let πN denote the projection onto the normal space of Σ. Note also that πT + πN = id, the identity

map. We can then define a normal Laplacian ∆⊥ := πN∇iπN∇i, and similarly a normal double derivative

(∇2
⊥)ij := πN∇iπN∇j , to use later on.

Let the second fundamental form, denoted h⃗, be a 2× 2 matrix with vector entries h⃗ij := ∇i∇jΦ⃗. Note that

h⃗ij = h⃗ji for all i, j ∈ {1, 2}. We let

|⃗h|2 := trg (⃗h · h⃗) = h⃗ij · h⃗ij .
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The mean curvature, denoted H⃗, is given by

H⃗ :=
1

2
h⃗i
i =

1

2
gij h⃗ij ,

so that 2H⃗ = trg (⃗h). Then |H⃗|2 := H⃗ · H⃗ is equal to 1
4 trg (⃗h)

2.

Gaussian curvature in arbitrary codimension, denoted K, will be defined as K := 2|H⃗|2 − 1
2 |⃗h|

2. The

Gauss-Bonnet theorem states that ∫
Σ

KdA = 2πχ(Σ),

where the Euler characteristic χ(Σ) is defined as 2−2g, where g is the genus of Σ. Supposing Σ has coordinates

x1, x2, we have dA = |g|1/2dx1 ∧ dx2. Then∫
Σ

KdA =

∫
Σ

K|g|1/2dx1 ∧ dx2 = 2πχ(Σ).

We can consider K and |g|1/2 to be functions of the immersion Φ⃗, so that K = K(Φ⃗) and |g|1/2 = |g|1/2(Φ⃗).

The topological constant 2πχ(Σ), on the other hand, does not depend on Φ⃗.

Consider a variation of the form

Φ⃗t := Φ⃗ + t(Aj∇jΦ⃗ + B⃗),

for some tensor Aj , and normal vector B⃗. For any function f of Φ⃗, let

δf :=
d

dt
f(Φt),

so that δ denotes our variation. Then by the Gauss-Bonnet theorem, we have∫
Σ

δ(K|g|1/2) dx1 ∧ dx2 = δ(2πχ(Σ)) = 0. (2.1)

3 Variation of
∫
K

In this section we evaluate δ(K|g|1/2). Using our expression K = 2|H⃗|2 − 1
2 |⃗h|

2, we can rewrite this as

δ(K|g|1/2) = 2δ(|H⃗|2|g|1/2)− 1

2
δ(|⃗h|2|g|1/2), (3.1)

and proceed to expand each of these terms.

3.1 Evaluating δ(|H⃗|2|g|1/2)

The variation δ(|H⃗|2|g|1/2) is carried out in [1], arriving at the result

δ

∫
|H⃗|2 =

∫
B⃗ · W⃗ +∇i

(
H⃗ · ∇iB⃗ − B⃗ · ∇iH⃗ +Ai|H⃗|2

)
,

with

W⃗ := ∆⊥H⃗ + (H⃗ · h⃗i
j )⃗h

j
i − 2|H⃗|2H⃗.

However, in this variation, the contracted Codazzi-Mainardi equation is used. In particular, πN∇j h⃗js is replaced

by 2πN∇sH⃗ early in the variation.
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We will modify the variation of |H⃗|2 from the paper as follows. As our aim is to derive the contracted Codazzi-

Mainardi equation, we will not use it; we will introduce an error term instead. Let C⃗s := πN∇j h⃗js − 2πN∇sH⃗.

Then

πN∇j h⃗js = 2πN∇sH⃗ + C⃗s.

The variation is done exactly as in [1], except that the extra term C⃗s carries through. Ultimately we obtain the

variation

δ

∫
|H⃗|2 =

∫
B⃗ · W⃗ +∇i

(
H⃗ · ∇iB⃗ − B⃗ · ∇iH⃗ +Ai|H⃗|2

)
+AsH⃗ · C⃗s (3.2)

3.2 Evaluating δ(|⃗h|2|g|1/2)

We begin by expanding |⃗h|2, obtaining

|⃗h|2 = h⃗ij · h⃗ij = h⃗ij ·
(
gikgjlh⃗kl

)
= gikgjl

(
h⃗ij · h⃗kl

)
,

where we are summing over i, j, k, l. Now

δ|⃗h|2 = δ(gikgjl)⃗hij · h⃗kl + gikgjlδ(⃗hij · h⃗kl)

= (δgik )⃗hij · h⃗j
k + (δgjl)⃗hij · h⃗i

l + gikgjlh⃗kl · δh⃗ij + gikgjlh⃗ij · δh⃗kl

= 2δ(gik )⃗hij · h⃗j
k + 2h⃗ij · δh⃗ij (3.3)

by repeated application of the product rule.

3.2.1 Finding h⃗ij · δh⃗ij

We focus first on h⃗ij · δh⃗ij . As h⃗ij exists in the normal space we have h⃗ij · δh⃗ij = h⃗ij · πNδh⃗ij . Using the

definition of the covariant derivative, we can expand and contract to commute δ and ∇i:

πNδh⃗ij = πNδ∇i∇jΦ⃗

= πNδ
(
∂i∇jΦ⃗− Γp

ji∇pΦ⃗
)

= πN

(
∂iδ∇jΦ⃗− (δΓp

ji)∇pΦ⃗− Γp
ji(δ∇pΦ⃗)

)
= πN

(
∂iδ∇jΦ⃗− Γp

ji(δ∇pΦ⃗)
)

= πN∇iδ∇jΦ⃗. (3.4)

The normal projection is important here; δ does not commute with covariant derivatives in general. Now we

can evaluate

δ∇jΦ⃗ = ∇jδΦ⃗ = ∇jA
s∇sΦ⃗ +Ash⃗js +∇jB⃗.
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since ∇jΦ⃗ = ∂jΦ⃗, and the flat derivatives δ and ∂j commute. We substitute this in to find

πN∇iδ∇jΦ⃗ = πN∇i

(
∇jA

s∇sΦ⃗ +Ash⃗js +∇jB⃗
)

= πN

[
(∇i∇jA

s)∇sΦ⃗ + (∇jA
s)∇i∇sΦ⃗ + (∇iA

s)⃗hjs +As∇ih⃗js +∇i∇jB⃗
]

= πN

[
(∇jA

s)⃗his + (∇iA
s)⃗hjs +As∇ih⃗js +∇i∇jB⃗

]
= (∇jA

s)⃗his + (∇iA
s)⃗hjs +AsπN∇ih⃗js + πN∇i∇jB⃗. (3.5)

We will now derive a helpful identity; for any u⃗ normal to the surface, we have

0 = ∇j(u⃗ · ∇sΦ⃗)∇sΦ⃗ = πT∇j u⃗+ (u⃗ · h⃗s
j)∇sΦ⃗,

so that

πT∇j u⃗ = −(u⃗ · h⃗s
j)∇sΦ⃗. (3.6)

We use this equation with u⃗ := B⃗ to obtain

πN∇i∇jB⃗ = πN∇iπN∇jB⃗ + πN∇iπT∇jB⃗

= (∇2
⊥)ijB⃗ + πN∇i(−(B⃗ · h⃗s

j)∇sΦ⃗)

= (∇2
⊥)ijB⃗ − πN

(
∇i(B⃗ · h⃗s

j)∇sΦ⃗ + (B⃗ · h⃗s
j)∇i∇sΦ⃗

)
= (∇2

⊥)ijB⃗ − (B⃗ · h⃗s
j )⃗his. (3.7)

Recall that (∇2
⊥)ij = πN∇iπN∇j , as defined in section 2. We now combine (3.4), (3.5) and (3.7) to compute

h⃗ij · δh⃗ij as

h⃗ij · δh⃗ij =h⃗ij ·
[
(∇jA

s)⃗his + (∇iA
s)⃗hjs +As∇ih⃗js + (∇2

⊥)ijB⃗ − (B⃗ · h⃗s
j )⃗his

]
=(∇jA

s)(⃗his · h⃗ij) + (∇iA
s)(⃗hjs · h⃗ij) +As(∇ih⃗js) · h⃗ij + (∇2

⊥)ijB⃗ · h⃗ij − (B⃗ · h⃗s
j)(⃗his · h⃗ij)

=2(∇iA
s)(⃗hjs · h⃗ij) +As(∇ih⃗js) · h⃗ij + (∇2

⊥)ijB⃗ · h⃗ij − (B⃗ · h⃗s
j)(⃗his · h⃗ij),

by switching indices i and j in the first term. We conclude that

2h⃗ij · δh⃗ij = 4(∇iA
s)(⃗hjs · h⃗ij) + 2Ash⃗ij · (∇ih⃗js) + 2((∇2

⊥)ijB⃗) · h⃗ij − 2(B⃗ · h⃗s
j)(⃗his · h⃗ij). (3.8)

3.2.2 Adding δ(gik )⃗hij · h⃗j
k

Now we compute δ(gik )⃗hij · h⃗j
k. The paper [1] provides the variation

δgik = −∇iAk −∇kAi + 2B⃗ · h⃗ik.

Making this substitution gives

2(⃗hij · h⃗j
k)(δg

ik) = 2(⃗hij · h⃗j
k)(−∇iAk −∇kAi + 2B⃗ · h⃗ik)

= −2(∇iAk)(⃗hij · h⃗j
k)− 2(∇kAi)(⃗hij · h⃗j

k) + 2(B⃗ · h⃗ik)(⃗hij · h⃗j
k)

= −2(∇iA
s)(⃗hij · h⃗js)− 2(∇iA

s)(⃗hsj · h⃗ij) + 2(B⃗ · h⃗s
j)(⃗h

ij · h⃗is)

= −4(∇iA
s)(⃗hjs · h⃗ij) + 2(B⃗ · h⃗s

j)(⃗his · h⃗ij). (3.9)

4



From the second line to the third: in the first term we switch k with s; in the second term we switch i with s,

then k with i; and in the third term we switch j with i and k with s.

By equation (3.3), we can obtain δ|⃗h|2 by adding equations (3.8) and (3.9). Then the terms 4(∇iA
s)(⃗hjs ·h⃗ij)

and −2(B⃗ · h⃗s
j)(⃗his · h⃗ij) in (3.8) will be cancelled by the corresponding terms in (3.9), leaving:

δ|⃗h|2 = 2Ash⃗ij · (∇ih⃗js) + 2((∇2
⊥)ijB⃗) · h⃗ij . (3.10)

Sections 3.2.3 and 3.2.4 derive results which are useful for arriving at the final form of this variation.

3.2.3 Preliminary: Reforming ((∇2
⊥)ijB⃗) · h⃗ij

We will first show that

((∇2
⊥)ijB⃗) · h⃗ij = ((∇2

⊥)ij h⃗
ij) · B⃗ − (∇i∇j h⃗

ij) · B⃗ + (∇i∇jB⃗) · h⃗ij . (3.11)

Using the definition of (∇2
⊥)ij and equation (3.6), we see that

((∇2
⊥)ijB⃗) · h⃗ij = ((∇2

⊥)ij h⃗
ij) · B⃗ − (∇i∇j h⃗

ij) · B⃗ + (∇i∇jB⃗) · h⃗ij

⇐⇒ B⃗ ·
(
∇i∇j h⃗

ij − πN∇iπN∇j h⃗
ij
)
= h⃗ij ·

(
∇i∇jB⃗ − πN∇iπN∇jB⃗

)
⇐⇒ B⃗ ·

(
∇iπT∇j h⃗

ij
)
= h⃗ij ·

(
∇iπT∇jB⃗

)
⇐⇒ −B⃗ ·

(
∇i(⃗h

ij · h⃗s
j∇sΦ⃗)

)
= −h⃗ij ·

(
∇i(B⃗ · h⃗s

j∇sΦ⃗)
)

⇐⇒ (B⃗ · h⃗is)(⃗h
ij · h⃗s

j) = (⃗hij · h⃗is)(B⃗ · h⃗s
j).

This final equation is true, as we can switch indices i and j on the LHS, and raise/lower s. Incorporating with

(3.11) the fact that

−(∇i∇j h⃗
ij) · B⃗ + (∇i∇jB⃗) · h⃗ij = ∇i

[
h⃗ij · ∇jB⃗ − B⃗ · ∇j h⃗

ij
]
,

which can be shown by applying the chain rule, we have

((∇2
⊥)ijB⃗) · h⃗ij = ((∇2

⊥)ij h⃗
ij) · B⃗ +∇i

[
h⃗ij · ∇jB⃗ − B⃗ · ∇j h⃗

ij
]
. (3.12)

3.2.4 Preliminary: Collapsing 2Ash⃗ij · (∇ih⃗js) + |⃗h|2∇iA
i

Let C⃗ijs := ∇ih⃗js −∇sh⃗ij . Then

2Ash⃗ij · (∇ih⃗js) = 2Ash⃗ij · (∇sh⃗ij) + 2Ash⃗ij · C⃗ijs. (3.13)

We then see that

2Ash⃗ij · (∇sh⃗ij) + |⃗h|2∇iA
i = As∇s(⃗h

ij · h⃗ij) + |⃗h|2∇iA
i

= As∇s |⃗h|2 + |⃗h|2∇iA
i

= ∇i(A
i |⃗h|2). (3.14)

using the product rule. By combining (3.13) and (3.14), we obtain

2Ash⃗ij · (∇ih⃗js) + |⃗h|2∇sA
s = ∇i(A

i |⃗h|2) + 2Ash⃗ij · C⃗ijs. (3.15)
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3.2.5 Factoring in |g|1/2

First, we have the variation

δ|g|1/2 = |g|1/2[∇iA
i − 2B⃗ · H⃗]. (3.16)

as provided in [1]. Now, we can combine the variations (3.10) and (3.16) with the identities (3.12) and (3.15),

yielding

δ(|⃗h|2|g|1/2) = |g|1/2δ|⃗h|2 + |⃗h|2δ|g|1/2

= |g|1/2
[
2((∇2

⊥)ijB⃗) · h⃗ij + 2Ash⃗ij · (∇ih⃗js) + |⃗h|2∇iA
i − 2|⃗h|2(B⃗ · H⃗)

]
= |g|1/2

[
2((∇2

⊥)ij h⃗
ij) · B⃗ +∇i

[
2h⃗ij · ∇jB⃗ − 2B⃗ · ∇j h⃗

ij
]
+∇i(A

i |⃗h|2)− 2|⃗h|2(B⃗ · H⃗) + 2Ash⃗ij · C⃗ijs

]
= |g|1/2

[
B⃗ ·

(
2(∇2

⊥)ij h⃗
ij − 2|⃗h|2H⃗

)
+∇i

(
2h⃗ij · ∇jB⃗ − 2B⃗ · ∇j h⃗

ij +Ai |⃗h|2
)
+ 2Ash⃗ij · C⃗ijs

]
.

Let Q⃗ := 2(∇2
⊥)ij h⃗

ij − 2|⃗h|2H⃗. Then we have

δ

∫
|⃗h|2 =

∫
B⃗ · Q⃗+∇i

(
2h⃗ij · ∇jB⃗ − 2B⃗ · ∇j h⃗

ij +Ai |⃗h|2
)
+ 2Ash⃗ij · C⃗ijs. (3.17)

3.3 Combining subsections 3.1 and 3.2 to vary
∫
K

We have now obtained the variations δ(|H⃗|2|g|1/2) and δ(|⃗h|2|g|1/2) in a suitable form. Recall equation 3.1,

which stated

δ(K|g|1/2) = 2δ(|H⃗|2|g|1/2)− 1

2
δ(|⃗h|2|g|1/2).

We will use (3.2) and (3.17) to vary
∫
K. Firstly, let

U⃗ := 2W⃗ − 1

2
Q⃗

= 2∆⊥H⃗ + 2(H⃗ · h⃗i
j )⃗h

j
i − 4|H⃗|2H⃗ − (∇2

⊥)ij h⃗
ij + |⃗h|2H⃗

= 2(H⃗ · h⃗i
j )⃗h

j
i + 2∆⊥H⃗ − (∇2

⊥)ij h⃗
ij − 2KH⃗

and

Vi := 2
[
H⃗ · ∇iB⃗ − B⃗ · ∇iH⃗ +Ai|H⃗|2

]
− 1

2

[
2h⃗ij · ∇jB⃗ − 2B⃗ · ∇j h⃗

ij +Ai |⃗h|2
]

= 2H⃗ · ∇iB⃗ − h⃗ij · ∇jB⃗ − B⃗ · ∇i2⃗H + B⃗ · ∇j h⃗
ij +AiK. (3.18)

Then, using these definitions and our previous variations, we obtain

δ

∫
K = δ

∫
2|H⃗|2 − 1

2
|⃗h|2

=

∫
B⃗ · U⃗ +∇iVi +As

[
2H⃗ · C⃗s − h⃗ij · C⃗ijs

]
(3.19)

as our variation of
∫
K.
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4 Obtaining the Gauss and contracted Codazzi equations

4.1 Simplifying the variation using the Gauss-Bonnet theorem

Suppose our transformation satisfies As = 0 for s = 1, 2 everywhere on the surface, so that we are only varying

the shape in the normal direction. Then the variation in (3.19) becomes

δ

∫
Σ

K =

∫
Σ

B⃗ · U⃗ +∇iVi,

where U⃗ is unchanged, and

Vi = 2H⃗∇iB⃗ − h⃗ij · ∇jB⃗ − B⃗ · ∇i2⃗H + B⃗ · ∇j h⃗
ij .

Recall from (2.1) that, by the Gauss-Bonnet theorem, we have δ
∫
Σ
K = 0. As

∫
Σ
∇iVi is the integral of a

divergence over the closed surface Σ, it is equal to 0. Therefore∫
Σ

B⃗ · U⃗ = 0

for all B⃗. Indeed, this is true for B⃗ = U⃗ ; and as
∫
Σ
U⃗ · U⃗ = 0, we conclude that U⃗ = 0⃗ everywhere.

Now, consider again an arbitrary transformation. As U⃗ is identically zero, equation 3.19 becomes

0 = δ

∫
Σ

K =

∫
Σ

∇iV⃗i +As
[
2H⃗ · C⃗s − h⃗ij · C⃗ijs

]
,

and as ∇iV⃗i is a divergence integral over a closed surface, and hence 0, we have∫
Σ

As
[
2H⃗ · C⃗s − h⃗ij · C⃗ijs

]
= 0

for all As. For fixed k ∈ {1, 2}, we can set As = δsk[2H⃗ ·Ck − h⃗ij ·Cijk], where δsk is the Kronecker delta. Then,

0 =

∫
Σ

As
[
2H⃗ · C⃗s − h⃗ij · C⃗ijs

]
=

∫
Σ

[
2H⃗ · Ck − h⃗ij · Cijk

]2
so that 2H⃗ · Ck − h⃗ij · Cijk = 0 at every point on Σ. We conclude that

0 =

∫
Σ

δK =

∫
Σ

∇iVi (4.1)

4.2 Considering a smooth deformation F⃗

Let F⃗ : Σ → Rn be a smooth vector field over Σ. Consider a deformation of the form Φ⃗t := Φ⃗ + tF⃗ . Then,

as Ai and B⃗ are the tangential and normal parts of the deformation respectively, we have Ai := F⃗ · ∇iΦ⃗ and

B⃗ = πN F⃗ . Recall the definition of Vi in (3.18). We then calculate

Vi = 2H⃗ · ∇iB⃗ − h⃗ij · ∇jB⃗ − B⃗ · ∇i2⃗H + B⃗ · ∇j h⃗
ij +AiK

= 2H⃗ · ∇i(πN F⃗ )− h⃗ij · ∇j(πN F⃗ )− (πN F⃗ ) · ∇i2⃗H + (πN F⃗ ) · ∇j h⃗
ij + (F⃗ · ∇iΦ⃗)K (4.2)
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We can expand and contract these first two terms, obtaining

2H⃗ · ∇i(πN F⃗ )− h⃗ij · ∇j(πN F⃗ ) = ∇i(2H⃗ · πN F⃗ )− 2(πN F⃗ ) · ∇iH⃗ −∇j (⃗h
ij · πN F⃗ ) + (πN F⃗ ) · ∇j h⃗

ij

= ∇i(2H⃗ · F⃗ )− 2F⃗ · πN∇iH⃗ −∇j (⃗h
ij · F⃗ ) + F⃗ · πN∇j h⃗

ij

= 2H⃗ · (∇iF⃗ ) + 2F⃗ · ∇iH⃗ − 2F⃗ · πN∇iH⃗ − h⃗ij · ∇jF⃗ − F⃗ · ∇j h⃗
ij + F⃗ · πN∇j h⃗

ij

= 2H⃗ · (∇iF⃗ ) + 2F⃗ · πT∇iH⃗ − h⃗ij · ∇jF⃗ − F⃗ · πT∇j h⃗
ij . (4.3)

Then, substituting (4.3) into (4.2) yields

Vi = F⃗ ·
[
2πT∇iH⃗ − πT∇j h⃗

ij − 2πN∇iH⃗ + πN∇j h⃗
ij +K∇iΦ⃗

]
+ 2(∇iF⃗ ) · H⃗ − (∇jF⃗ ) · h⃗ij

= F⃗ · (T⃗ i + N⃗ i) + 2(∇iF⃗ ) · H⃗ − (∇jF⃗ ) · h⃗ij , (4.4)

where

T⃗ i := 2πT∇iH⃗ − πT∇j h⃗
ij +K∇iΦ⃗

is tangent to Σ, and

N⃗ i := πN∇j h⃗
ij − 2πN∇iH⃗

is normal to Σ. Using (4.4) to substitute for Vi, we find that

∇iVi = F⃗ · ∇i(T⃗
i + N⃗ i) + (∇iF⃗ ) · (T⃗ i + N⃗ i) +∇i

[
2(∇iF⃗ ) · H⃗ − (∇jF⃗ ) · h⃗ij

]
for all F⃗ . Substituting this into 4.1 yields

0 =

∫
Σ

∇iVi =

∫
Σ

F⃗ · ∇i(T⃗
i + N⃗ i) + (∇iF⃗ ) · (T⃗ i + N⃗ i) +∇i

[
2(∇iF⃗ ) · H⃗ − (∇jF⃗ ) · h⃗ij

]
. (4.5)

Suppose F⃗ is a constant, so that F⃗ = a⃗ with a⃗ ∈ R⃗. This amounts to a translation of the surface. Indeed, we

can apply this to any patch Σ0 ⊂ Σ of the surface also, as the translation should not change the total Gaussian

curvature over that patch. That is, for all constant a⃗ ∈ Rn and patches Σ0 ⊂ Σ, we have

0 =

∫
Σ0

δK =

∫
Σ0

a⃗ · ∇i(T⃗
i + N⃗ i) (4.6)

This shows that ∇i(T⃗
i + N⃗ i) is identically zero by the following argument: suppose for a contradiction that

∇i(T⃗
i + N⃗ i) is not identically zero. As ∇i(T⃗

i + N⃗ i) is continuous, there must be at least a small patch

Σ0 ⊂ Σ and a constant a⃗ ∈ Rn for which a⃗ · ∇i(T⃗
i + N⃗ i) is positive-valued everywhere on Σ0. Either way,∫

Σ0
a⃗ · ∇i(T⃗

i + N⃗ i) ̸= 0, contradicting (4.6).

Returning our attention to (4.5), and again letting F⃗ be any smooth function, we see that the term F⃗ ·

∇i(T⃗
i+ N⃗ i) now vanishes. Additionally, as ∇i

[
2(∇iF⃗ ) · H⃗ − (∇jF⃗ ) · h⃗ij

]
is a divergence being integrated over

a surface with no boundary, (4.5) becomes

0 =

∫
Σ

(∇iF⃗ ) · (T⃗ i + N⃗ i).

As this holds for all F⃗ , it must be the case that T⃗ i + N⃗ i = 0⃗.
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4.3 Final steps to extract the Gauss and Codazzi equations

Recall that T⃗ i is tangential to the surface and N⃗ i is normal. Then, as T⃗ i + N⃗ i = 0⃗, it must be the case that

T⃗ i = 0⃗ and N⃗ i = 0⃗. From T⃗ i = 0⃗ we obtain

T⃗ i = 2πT∇iH⃗ − πT∇j h⃗
ij +K∇iΦ⃗

= −2(H⃗ · h⃗is)∇sΦ⃗ + (⃗hij · h⃗s
j)∇sΦ⃗ +Kgis∇sΦ⃗;

therefore, for each i, s ∈ {1, 2},

−2H⃗ · h⃗is + h⃗ij · h⃗s
j +Kgis = 0. (4.7)

This is the Gauss equation. Then N⃗ i = 0⃗ immediately yields

πN∇j h⃗
ij − 2πN∇iH⃗ = 0⃗,

which is the contracted Codazzi-Mainardi equation.

5 Generalisation to higher dimensions

We have shown that, by varying Gaussian curvature, we can obtain the Gauss equation and the contracted

Codazzi-Mainardi equation in dimension 2 and any codimension. Indeed, the Gauss equation is only true in

dimension 2; as it incorporates Gaussian curvature, it does not make sense in any other dimension. However,

the contracted Codazzi-Mainardi equation in dimension 2 is a special case of the far more general Codazzi

equation.

5.1 General contracted Codazzi-Mainardi equation

Let Φ⃗ : Σk → Rn be an immersion of any smooth k-dimensional manifold Σk in Rn. As before, for any

1 ≤ i, j ≤ k, define the second fundamental form h⃗ij := ∇i∇jΦ⃗ and mean curvature H⃗ := 1
kg

ij h⃗ij . We will also

define the antisymmetric tensor η⃗ij := ∇iΦ⃗ ∧ ∇jΦ⃗, where ∧ denotes the wedge product. Finally, we introduce

the Riemann curvature tensor Ra
ecd satisfying

(∇c∇d −∇d∇c)τ
ab = −Ra

ecdτ
eb −Rb

ecdτ
ae (5.1)

for rank 2 tensors τab. We see that

2∇i∇j η⃗
ij = (∇i∇j −∇j∇i)η⃗

ij

= −Ri
sij η⃗

sj −Rj
sij η⃗

is

= Ri
sjiη⃗

sj −Ri
jsiη⃗

sj

= 0⃗,

so that ∇i∇j η⃗
ij = 0⃗. We then see that

∇j η⃗
ij = ∇j(∇iΦ⃗ ∧∇jΦ⃗) = h⃗i

j ∧∇jΦ⃗− kH⃗ ∧∇iΦ⃗ = (⃗hi
j − kH⃗gij) ∧∇jΦ⃗,
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and furthermore,

0⃗ = ∇i∇j η⃗
ij

= ∇i((⃗h
i
j − kH⃗gij) ∧∇jΦ⃗)

= πT∇i(⃗h
i
j − kH⃗gij) ∧∇jΦ⃗ + πN∇i(⃗h

i
j − kH⃗gij) ∧∇jΦ⃗ + (⃗hi

j − kH⃗gij) ∧ h⃗j
i . (5.2)

To simplify, note that

(⃗hi
j − kH⃗gij) ∧ h⃗j

i = h⃗i
j ∧ h⃗j

i − kH⃗ ∧ kH⃗ = 0⃗

and that

πT∇i(⃗h
i
j − kH⃗gij) ∧∇jΦ⃗ = −((⃗hi

j − kH⃗gij) · h⃗is)∇sΦ⃗ ∧∇jΦ⃗

= (⃗hi
j · h⃗is − kH⃗ · h⃗js)(∇jΦ⃗ ∧∇sΦ⃗)

= 0⃗,

as h⃗i
j · h⃗is − kH⃗ · h⃗js is symmetric in j and s, whereas ∇jΦ⃗∧∇sΦ⃗ is antisymmetric in j and s. Therefore, from

(5.2) we deduce

πN∇i(⃗h
i
j − kH⃗gij) ∧∇jΦ⃗ = 0⃗,

and therefore, as ∇1Φ⃗, . . . ,∇kΦ⃗ are all linearly independent, we have

πN∇i(⃗h
i
j − kH⃗gij) = 0⃗

for all 1 ≤ j ≤ k. This gives the contracted Codazzi-Mainardi equation in dimension k.

5.2 Generalisation of Gauss equation

As stated previously, the Gauss equation does not make sense in higher dimensions, as Gaussian curvature is

defined for 2-dimensional surfaces only.

One way we might try to generalise the Gauss equation is by replacing K with the k-dimensional scalar

curvature R, given by R = gijR
ij = k2|H⃗|2 − |⃗h|2, where Rij = Risj

s is the Ricci tensor. When k = 2, we have

R = 2K, and can write

−kH⃗ · h⃗ij + h⃗is · h⃗j
s +

1

2
Rgij = 0 (5.3)

for all 1 ≤ i, j ≤ k, by reformulating (4.7).

It is natural to wonder if this holds for k > 2. However, this turns out not to be the case. For a general

k-dimensional manifold Σk immersed in Rn, the left-hand side of (5.3) is equal to the Einstein tensor Eij , which

happens to be identically zero in dimension 2 only.

It is, however, true that the Einstein tensor is divergence free. One way to see this is to carry out the variation

of scalar curvature δ
∫
R, as done in section 3. Note that the Gauss-Bonnet theorem does not generalise to say

δ
∫
R = 0 in dimensions higher than 2, so we cannot use an arbitrary deformation F⃗ and expect to get zero.

Instead, we can perform a translation, which does preserve scalar curvature. By a line of reasoning similar

to that in section 4, and by using the contracted Codazzi-Mainardi equation when needed, we can obtain the

identity ∇iE
ij = 0.
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6 Conclusion

In this report we have performed an extrinsic variation of Gaussian curvature, which is a topological invariant.

This allowed us to deduce corollaries of the Gauss-Bonnet theorem, which include the two fundamental equations

of submanifold geometry: the Gauss equation and the Codazzi-Mainardi equation. Although these equations are

well-known, this establishes a new link between the Gauss-Bonnet theorem and the Gauss-Codazzi equations,

and demonstrates a useful technique for deriving identities in differential geometry. We then investigated the

Gauss-Codazzi equations in higher dimension, and looked briefly at the Einstein tensor. It is proposed that

following the methodology in this report can show a similar link between the invariance of scalar curvature

under translation, and the fact that the Einstein tensor is divergence-free.
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