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Abstract

The Gauss-Bonnet theorem for surfaces states that integrating Gaussian curvature over a surface without
boundary yields a topological constant. Consequently, the variation of Gaussian curvature should be identi-
cally zero. In this report we conduct the extrinsic variation of Gaussian curvature, and see that it encodes

the two fundamental equations of submanifold geometry: the Gauss equation and the Codazzi equation.

1 Introduction

The Gauss-Bonnet theorem for surfaces is a classical result stating that the total Gaussian curvature of a surface
without boundary is a topological invariant. Consequently, any deformation of the surface will not change the
total Gaussian curvature. In section [2] we establish essential definitions and notation. We vary the Gaussian
curvature in section[3] yielding a quantity that is identically zero. From this point we derive the Gauss equation
and contracted Codazzi-Mainardi equations, which is done in section |4} Finally, in section | we look at how
the Gauss-Codazzi equations present in higher dimensions, and propose further applications of this variational

method.

Statement of Authorship

The equations derived in this report are classical; see [2], for example. The variation of Gaussian curvature and
subsequent derivation of these classical equations was carried out by Annalisa Calvi, under the guidance of her

supervisor Dr. Yann Bernard.

2 Preliminary definitions

We consider a smooth, orientable, compact surface ¥ with no boundary. Let ® be an immersion of ¥ in R™,
with m > 3.

The metric tensor, denoted g, is a 2 X 2 matrix with entries g;;, where g;; := 0 - 8j<f>. The entries of its
inverse are denoted ¢/, and the area element is given by |g|'/? := \/det g. Let V}, denote the covariant derivative
compatible with the metric, so that Vig;; = Vig = 0 for all 4,5,k € {1,2}. Let I‘fj be the corresponding
Christoffel symbols.

At any point on the surface X, there are tangent vectors V,® = §;®, for i = 1,2. Let mp denote the
projection map onto the tangent space, so that mrF = (F" . VZ‘(f)VZ—(i)' for any vector field F:R" - R".

Let wn denote the projection onto the normal space of ¥. Note also that mp + mx = id, the identity
map. We can then define a normal Laplacian A, := myViryV;, and similarly a normal double derivative
(V3)i; :=nnVimn VY, to use later on.

Let the second fundamental form, denoted f_i, be a 2 x 2 matrix with vector entries f_il-j = VZ-VJ-CTS. Note that
hij = hj; for all i,j € {1,2}. We let

-

|h|? :=try(h - h) = hij - h¥.
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The mean curvature, denoted H , is given by

so that 2H = trg(ﬁ). Then |H[? := H - H is equal to %trg(ﬁ)?
Gaussian curvature in arbitrary codimension, denoted K, will be defined as K := 2|H|? — %|f_i|2 The

Gauss-Bonnet theorem states that
/ KdA =2nx(Y),
b

where the Euler characteristic x(X) is defined as 2 — 2g, where g is the genus of X.. Supposing ¥ has coordinates
z', 22, we have dA = |g|'/2dz' A dz®. Then

/ KdA = / Klg|*?dzt A dz? = 2nx (D).
p p

We can consider K and |g|*/2 to be functions of the immersion ®, so that K = K (®) and |g|*/2 = |g|*/2(®).
The topological constant 27x(2), on the other hand, does not depend on 3.
Consider a variation of the form

B, =B +1(AV;® + B),
for some tensor A7, and normal vector B. For any function f of CE, let
d
Of = —f(P
f dtf( t)7
so that ¢ denotes our variation. Then by the Gauss-Bonnet theorem, we have

/26(K|g|1/2) da A dz? = 6(2my(D)) = 0. (2.1)

3 Variation of [ K
In this section we evaluate 6(K|g|'/2). Using our expression K = 2|H|? — %|f_i|2, we can rewrite this as
. 1 -
O(K|gl'?) = 20(1H 9] /2) = So(R[*|g[*/?), (3.1)

and proceed to expand each of these terms.

3.1 Evaluating 0(|H|?|g|'/?)
The variation &(|H|2|g|*/2) is carried out in [I], arriving at the result
5/|ﬁ\2 - /E-W+vi (ﬁ.viéfé.viﬁ+Ai|ﬁ|2),
with
W= AL A + (- BR — 2 f12A.

However, in this variation, the contracted Codazzi-Mainardi equation is used. In particular, 7y V7 fzjs is replaced

by QWNVSﬁ early in the variation.
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We will modify the variation of \ﬁ |2 from the paper as follows. As our aim is to derive the contracted Codazzi-
Mainardi equation, we will not use it; we will introduce an error term instead. Let 675 =nyVI ﬁjs — 27‘(’1\[Vsﬁ .
Then

TNVIhj = 2ny Vo H + Cl.

The variation is done exactly as in [I], except that the extra term C, carries through. Ultimately we obtain the

variation
5/|ﬁ|2:/§-W+vi (-V'B-B-V'H+AH2) + A°f - C, (3.2)
3.2 Evaluating 0(|h|2[g]"/?)

We begin by expanding \ﬁ|2, obtaining

-

|E|2 = ﬁ“ = E (glkgjlhkl) = gikgﬂ (sz : }_ikl) s

where we are summing over i, j, k,l. Now
SA2 = 8(g™ g"Yhij - hag + g g7 6 (hij - )
= (59ik)hij : fli + (5gjl)ﬁij hi+g™* g - 5h” + glkgjl - O
= 26(g™)hyj - Bl + 20 - 5hi; (3.3)

by repeated application of the product rule.

3.2.1 Finding A" - 6ﬁij
We focus first on hiJ - 552»]». As hi exists in the normal space we have R . 5ﬁij = hi . WNél_iij. Using the
definition of the covariant derivative, we can expand and contract to commute § and V;:
WNéﬁij == FNévivj“f)

— 70 (09,8 - T7,9,8)

=N (aﬂsvjcﬁ — TV, — r;;((squ?))

=TN (Glévj(f — F?Z((Svp‘f)))

= 7TNV1'(5Vjcf). (34)
The normal projection is important here; § does not commute with covariant derivatives in general. Now we

can evaluate

6V,;® = V,;08 = V,;A°V, & + A®h;, + V,;B.
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since VjCI; = 3j<1_5, and the flat derivatives § and 9; commute. We substitute this in to find
7TNV¢5V]6 =7a5V; (VjASVS<5 + Asi_ijs + Vﬂ?)
—— [(vivjAS)vscii + (VA VB + (VA + A*Vihjs + vivjé}
= v [(V54%) s 4+ (ViA*)hss + AVl + ViV, ]
= (VA% his + (ViA*)hjs + AN Vihye + TN ViV, B. (3.5)
We will now derive a helpful identity; for any # normal to the surface, we have
0=V;(@ V)V, = 17V;i+ (@ h)V,®,

so that

-

TV, = — (@ - h3)V,P. (3.6)
We use this equation with @ := B to obtain
7NViV;B = nnVinnV;B + nnVinrV; B

= (V)i B+ mvVi(=(B - 5)V,®)

= (V)i B —mn (Vi B )V, + (B - 13)V:7,8)

= (V1) B — (B h))hi.. (3.7)
Recall that (Vﬂ_)ij = nmnV;mnVj, as defined in section We now combine , and to compute
hii -5ﬁij as

R Shy; =h' - | (VA% his + (ViA®)hjs + A*Viljs + (V3)i; B — (B - h3)his

[
1

=(V;A%) (his - B) + (VA% (hjs - h7) 4+ A*(Vihje) - B + (V3)i;

<
o]
X
o
|
—
o]
1
VY
=
>
%
BN
o

=2(V;A%)(hjs - h9) + A*(Vihys) - b9 + (V3);B - k'Y — (B - 13)(his - h'9),
by switching indices ¢ and j in the first term. We conclude that
21 - Shij = 4(ViA%) (hys - h7) + 2A°R7 - (Vihys) + 2((V3)iy B) - B9 — 2(B - h3) (his - h7). (3.8)
3.2.2  Adding §(¢"*)hi; - I,
Now we compute 5(gik)ﬁ¢j . ﬁfc The paper [I] provides the variation
Sgi* = —ViAF — vk A 1 2B . h*.

Making this substitution gives

-

2(hij - h1)(0g™) = 2(hij - hi)(=VIAF — VF AT 4 2B - hiF)
= —2(VIAR) (- h)) — 2(VFAY) (s - b)) + 2(B - B (hyj - )
= —2(ViA) (R - hyy) — 2(ViA%) (B - h9) + 2(B - 1) (R - hi)
= —4(V;A%)(hjs - h'9) + 2(B - h3) (his - h'7). (3.9)
4
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From the second line to the third: in the first term we switch k& with s; in the second term we switch ¢ with s,

then k with 4; and in the third term we switch j with ¢ and k with s.

—

By equation 1D we can obtain (5|i_i|2 by adding equations 1) and l} Then the terms 4(ViAs)(ﬁjs -h)
and —2(B - ﬁj)(ﬁw - hid) in i will be cancelled by the corresponding terms in 1) leaving:
8|h2 = 24°RY - (Vihye) +2((V?3 )i, B) - . (3.10)

Sections and derive results which are useful for arriving at the final form of this variation.

3.2.3 Preliminary: Reforming ((V2);; B) - hii

We will first show that

—

((V3)iB) - b = (V2)i;h"7) - B — (V;V;h7) - B+ (V;V;B) - h'. (3.11)

Using the definition of (V2 );; and equation (3.6]), we see that

—

(V1) B) -1 = (V1)h") - B = (ViV;h) - B+ (ViV;B) - bV

PEN B+ (ViVih = ey Virn Vi) = 9 - (ViV,B = my Viry V)
— B (ViraV;57) = B9 (VirrV, )

= -B (vi(iiif H;vscii)) = —}ii (vi(B’ E;%vsq?))

— (B - his) (R - R3) = (R - k) (B - 13).

This final equation is true, as we can switch indices ¢ and j on the LHS, and raise/lower s. Incorporating with

(3.11)) the fact that

*(Vlv]i_i”) . E + (Vlvjé) . ﬁij =V; {Eij . VJE — E . v]ﬁm} s
which can be shown by applying the chain rule, we have

(V2 B) - B = (V2)y;h) - B + v [ﬁ”‘ V,B-B- vjﬁ”} . (3.12)

3.2.4 Preliminary: Collapsing 2A%h% - (Vi/_ijs) + |h|2V; A
Let Cyjs == Vihjs — Vhij. Then
2A°RY - (Vihjs) = 2A°RY - (Vehi;) 4+ 245RY - Cjs. (3.13)
We then see that
2A°RY - (Vehig) + [PV AT = AV (Y - hyj) + |h|?V; A

= A°V,|h]2 + |R|*V; A

= Vi (A'[R|?). (3.14)
using the product rule. By combining (3.13)) and -, we obtain

2A°KY - (Vihjs) + [PV A® = Vi (A%|h)?) + 24°h7 - Cyj. (3.15)
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3.2.5 Factoring in |g|'/?

First, we have the variation

Slg|'/? = |g|'/*[V; A" — 2B - H). (3.16)
as provided in [I]. Now, we can combine the variations and ( with the identities and -,
yielding
5(|hPlgl2) = |g|* /261> + R |*s]g] "/
= 1912 [2(V3)i3 B) - B9 + 24K - (Vilizo) + B2V AT = 2/R[2(B - )]
= |g|!/? [2((vi)ijﬁiﬂ’) B+ V; [2}?’]’ -V,;B—-2B- vji’iﬂ + V(A |R|?) — 2|h2(B - H) + 2A°h" - c;’js}
= |g|V/2 [B : (2(v’i)ijﬁij - 2|ﬁ|2ﬁ) Y, (25”‘ VB - 2BV, + Ai|/?£|2) S 2A%H . C;-S} .
Let O := 2(V2);;hi — 2|h|2H. Then we have

5 / A2 = / BG4V, (259,828 V5 + AiP) +24°F4 - 0. (3.17)

3.3 Combining subsections and to vary [ K

We have now obtained the variations d(|H|2|g|/2) and 6(|k|2|g|'/2) in a suitable form. Recall equation
which stated
. 1 -
O(K|gl'/) = 26(|H *|g|'"*) — S6(1h|g]'%).

We will use (3.2) and (3.17) to vary [ K. Firstly, let
. L1
U :=2Ww - fQ
=2A H +2(H - hi)h] — 4| HPPH — (V3)i;hY + |h[*H

=2(H - Ri)h! + 20 H — (V3 )i;h7 — 2K H

and

—

VBBV + AHP] - 2 28V, B - 2B VR + AR

N[ —

=20 -VIB-h".V;B—B-V2H + B-V;h" + A'K (3.18)
Then, using these definitions and our previous variations, we obtain

- 1 -
5/K:5/2\H|2—§\h|2

7/ B-U+VV' + A° [QH G, — .7, (3.19)

as our variation of [ K.
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4 Obtaining the Gauss and contracted Codazzi equations

4.1 Simplifying the variation using the Gauss-Bonnet theorem

Suppose our transformation satisfies A° = 0 for s = 1,2 everywhere on the surface, so that we are only varying

the shape in the normal direction. Then the variation in (3.19) becomes

5/K:/§-ﬁ+viVi,
> >

where U is unchanged, and
Vi=2HV'B - h".V;B—B-V2H + B-V;h".

Recall from (2.1)) that, by the Gauss-Bonnet theorem, we have § [, K = 0. As [, V;V* is the integral of a

divergence over the closed surface X, it is equal to 0. Therefore

/E-L?:O
>

for all B. Indeed, this is true for B=U ; and as fzﬁ U= 0, we conclude that U=10 everywhere.

Now, consider again an arbitrary transformation. As U is identically zero, equation becomes
o:a/ K:/Viﬁi—i—As 21 - G~ - €]
b b
and as V,;V' is a divergence integral over a closed surface, and hence 0, we have
/As 211 -G, — - Cij| =0
b

for all A*. For fixed k € {1,2}, we can set A® = 63[2H - Cy, — h' - Cj;], where 67 is the Kronecker delta. Then,

2

— [ [pf oG] = [ [2 G- Ry
b)) x

so that 2H - Cr — hid . Cijr = 0 at every point on 3. We conclude that

oz/zaK:/Evivi (4.1)

4.2 Considering a smooth deformation F

Let F : ¥ — R™ be a smooth vector field over ¥. Consider a deformation of the form ®, := & + tF. Then,
as A" and B are the tangential and normal parts of the deformation respectively, we have A’ := F.Vid and

B =y F. Recall the definition of V* in (3.18). We then calculate

Vi=2f .VB—hY.V;B—B-V2H+ B -V;h"’ + A'K

= Qﬁ . VZ(TFNI“’::) — ﬁij . Vj(ﬂNﬁ) — (WNﬁ> . V’QTJ + (ﬂ'Nﬁ) . Vjﬁij + (ﬁ . VZ(I;)K (42)
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We can expand and contract these first two terms, obtaining

20 -Vi(rnF) = - V,(xnF) = V'(2H - iy F) = 2(xn F) - V' H — V(B - nn F) + (nan F) - V7%

—Vi(2ﬁ~ﬁ)—Qﬁ-ﬂNviﬁ—Vj(Hij'ﬁ)+ﬁ~7TNVjEij

H-(V'F)+2F -V'H - 2F -ayV'H — h¥ - V;F — F-V,;hY + F - nyV,;hY

20 - (VIF) + 2F -7pViH — b .V F — F - np VR, (4.3)

Then, substituting (4.3 into (4.2)) yields

Vi=F. [QWTviﬁ - wijfﬁ'j — 2N VIH + 7y VR + Kvicfi} VAV H — (V,F) - 7

—

= F . (T"+ N+ 2(V'F) - H — (V;F) - h¥, (4.4)
where
fi = 271'Tviﬁ - Wijﬁij + KVZ§
is tangent to X, and
Ni:=7yV,;hY —2nyVIH
is normal to . Using (4.4)) to substitute for V¢, we find that
VoV = F V(T + N + (V,F) - (T + N¥) + V; [2(viﬁ) H — (V,;F)- ﬁﬂ
for all F. Substituting this into yields

0:/ViVi:/f-Vi(fi+Ni)+(Viﬁ)-(fi+J\7i)+Vi [Q(VZF) — (V,;F)- fﬁ'ﬂ}. (4.5)
> b))

Suppose Fisa constant, so that F = @ with @ € R. This amounts to a translation of the surface. Indeed, we
can apply this to any patch 3y C ¥ of the surface also, as the translation should not change the total Gaussian

curvature over that patch. That is, for all constant @ € R™ and patches Xy C X, we have

0= [ 6K= [ a Vi(T'+ N (4.6)

o o

This shows that Vi(fi + N %) is identically zero by the following argument: suppose for a contradiction that
V(T + N*) is not identically zero. As V;(T% + N*) is continuous, there must be at least a small patch

3o C ¥ and a constant @ € R™ for which a - Vi(fz + N %) is positive-valued everywhere on Y. Either way,

fz (T + N') # 0, contradicting (4

Returning our attention to 1' and again letting ﬁ be any smooth function, we see that the term F.
V;(T* + N*) now vanishes. Additionally, as V; [ (VIF)-H — (V,;F)-hii ] is a divergence being integrated over

a surface with no boundary, (4.5) becomes
0= / (ViF) - (T" + NY).
b

As this holds for all ﬁ, it must be the case that 7 + Nt = 0.
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4.3 Final steps to extract the Gauss and Codazzi equations

Recall that T* is tangential to the surface and N is normal. Then, as Ti+ Nt = 0, it must be the case that
Tt =0 and N = 0. From T% = (0 we obtain
T' = 200V H — 7pVh7 + KV'®
= —2(H - ™)V, ® + (k' - h3)V,® + Kg'*V,P;

therefore, for each i, s € {1, 2},

—2H -1 + 1Y - 1S+ Kg'® = 0. (4.7)
This is the Gauss equation. Then Ni=0 immediately yields

ﬂ_ijﬁij - QWNviﬁ = 6,

which is the contracted Codazzi-Mainardi equation.

5 Generalisation to higher dimensions

We have shown that, by varying Gaussian curvature, we can obtain the Gauss equation and the contracted
Codazzi-Mainardi equation in dimension 2 and any codimension. Indeed, the Gauss equation is only true in
dimension 2; as it incorporates Gaussian curvature, it does not make sense in any other dimension. However,
the contracted Codazzi-Mainardi equation in dimension 2 is a special case of the far more general Codazzi

equation.

5.1 General contracted Codazzi-Mainardi equation

Let & : ¥¥ — R™ be an immersion of any smooth k-dimensional manifold ¥* in R™. As before, for any
1 < 14,5 <k, define the second fundamental form ﬁij = Vivj‘f and mean curvature H = Tg9 ﬁ” We will also
define the antisymmetric tensor 7;; := VP A ijf, where A denotes the wedge product. Finally, we introduce

the Riemann curvature tensor R?, ; satisfying
(VeVa = VaVe)T® = =R%, 7" = R’ g7 (5.1)
for rank 2 tensors 7%°. We see that
2V, Vi = (V;V; — V; V)i
L

]

= Rl sjiﬁsj - szszn

|
=1

)

so that V;V ;7 79 = (0. We then see that

Vil = V;(VI® AVI®) = hi AVI® — kH AV'® = (B} — kHgl) AV’ &,
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and furthermore,

= V(RS — ng;) AVI® + 7y V(R — kHgl) AVI® + (Rf — kHgl) A Bl (5.2)

To simplify, note that

and that
Ri —kHg ) AVI® = —((B% — kHg') - his) VB A VIS
N — kH - hyo) (Vi@ AV B)

as ﬁ; ~ﬁis — kH - f_ijs is symmetric in j and s, whereas V7 BAVED is antisymmetric in j and s. Therefore, from

(5.2) we deduce

—

N Vil — kHgh) AVI® =0,
and therefore, as Vltl_i, e VEP are all linearly independent, we hav
WNVi(Hé - kﬁg;) =0

for all 1 < j < k. This gives the contracted Codazzi-Mainardi equation in dimension k.

5.2 Generalisation of Gauss equation

As stated previously, the Gauss equation does not make sense in higher dimensions, as Gaussian curvature is
defined for 2-dimensional surfaces only.

One way we might try to generalise the Gauss equation is by replacing K with the k-dimensional scalar
curvature R, given by R = g;; R = k2|H|? — |h|?, where R = R'J_is the Ricci tensor. When k = 2, we have
R = 2K, and can write

—kH -h" + 1" - b + %Rgij =0 (5.3)
for all 1 <4, 5 <k, by reformulating .

It is natural to wonder if this holds for £ > 2. However, this turns out not to be the case. For a general
k-dimensional manifold ¥* immersed in R”, the left-hand side of (5.3) is equal to the Einstein tensor E*, which
happens to be identically zero in dimension 2 only.

It is, however, true that the Einstein tensor is divergence free. One way to see this is to carry out the variation
of scalar curvature § [ R, as done in section |3| Note that the Gauss-Bonnet theorem does not generalise to say
§ [ R = 0 in dimensions higher than 2, so we cannot use an arbitrary deformation F and expect to get zero.
Instead, we can perform a translation, which does preserve scalar curvature. By a line of reasoning similar
to that in section [l and by using the contracted Codazzi-Mainardi equation when needed, we can obtain the

identity V;E% = 0.

10
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6 Conclusion

In this report we have performed an extrinsic variation of Gaussian curvature, which is a topological invariant.
This allowed us to deduce corollaries of the Gauss-Bonnet theorem, which include the two fundamental equations
of submanifold geometry: the Gauss equation and the Codazzi-Mainardi equation. Although these equations are
well-known, this establishes a new link between the Gauss-Bonnet theorem and the Gauss-Codazzi equations,
and demonstrates a useful technique for deriving identities in differential geometry. We then investigated the
Gauss-Codazzi equations in higher dimension, and looked briefly at the Einstein tensor. It is proposed that
following the methodology in this report can show a similar link between the invariance of scalar curvature

under translation, and the fact that the Einstein tensor is divergence-free.
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