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Abstract

This report aims to construct and analyse the results of a numerical scheme for pricing American options using

simulations. American options pricing is a well-studied topic, and this report will look at previous literature

and synthesise concepts to derive a data-driven algorithm. The results obtained suggest that smoothening the

indicator function used in the backward recursive relationship in pricing can change the variance of the point

estimate significantly, and could be beneficial in reducing model risk in most cases.
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1 Introduction

An American option gives the holder the right, with no obligation, to exercise the option and receive its payoff

at any time before and including the termination date. American options are among the most complex financial

instruments to price mathematically. To value American options, one needs to solve an optimal stopping

problem. That is, for a sequence of random variables that can only be observed in order, which of the following

actions is optimal: Accept the current observation based on past information and cannot resume the process,

or reject the current observation permanently and go on to the next. The problem is given by the optimal

stopping representation

Vn = ess sup
n≤τ≤N

EQ[Pτ |Fn],

where P some random payoff process. It is well-known that the price of an American option has no closed

form solution and thus numerical methods are used to approximate a value. Recent research in this area has

applied reinforcement learning methods to obtain estimates. In the work of Becker et al. (2019) [1] the authors

propose a particular form of stopping times which can be approximated by training neural networks. The

trained networks are used to estimate the functional form of the value of an option via Monte Carlo sampling

reminiscent of Longstaff-Schwarz [4]. Another approach is explored in Dong (2023)[3] which applies entropy

regularization to a PDE/HJB formulation of the problem. This casts the problem in a reinforcement learning

framework whereby an optimal policy is derived. This can be interpreted as the probability of stopping related

to the distance of the value from an optimal stopping boundary, which is then used as the basis for training

neural networks and estimating an option value. This report will describe a data-driven numerical scheme to

price American options using a Monte-Carlo algorithm leveraging neural networks, and applying regularisation

techniques to reduce model risk. This report will outline a framework for the problem in Section 2 along with

historical models. Section 3 will present two regularisation models and the general algorithm to price options,

then Section 4 will discuss some examples and results. The main focus was on how smoothing the recursive

policy algorithm can reduce model risk and applications to higher dimension problems.

2 Background

2.1 Optimal stopping problems, Snell envelopes and Superreplication

The payoff that the holder of an American option can receive is dependent on the state of an underlying asset

process S = (Sn)
N
n=0. Simple payoff structures include calls, and puts,

Pτ =


(Sτ −K)+, if call

(K − Sτ )
+, if put

where (x)+ = max(x, 0), K is the strike price and τ is exercise time.
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Definition 2.1. A random variable X is a function that maps outcomes in a sample space Ω to R i.e. X maps

ω ∈ Ω to X(ω) ∈ R. A sequence of random variables (Xn)
N
n=0 is a stochastic process.

Definition 2.2. A a σ-algebra, H, of Ω is a collection of subsets containing elements from Ω such that Ω, ∅ ∈ H

and for any set of events A1, A2, ... ∈ H, then
⋃∞

n=1An ∈ H, or it is closed under countable union.

Definition 2.3. The natural filtration (Fn)
N
n=0 is a sequence of increasing σ-algebras, meaning Fn ⊂ Fm ⊂ F

for all m > n.

This is interpreted the information available to market participants up to a certain time, subject to the usual

condition that
⋂

k≥n Fk = Fn, so one cannot gain an advantage by peeking between time steps in a discrete

time setting.

Definition 2.4. A probability measure P : F → [0, 1] is a function that maps events in F to [0, 1] such that

P (Ω) = 1, P (∅) = 0 and P (∪nAn) =
∑

n P (An) for any disjoint sets A1, A2, ...An ∈ F i.e. Ai ∩Aj = ∅, i ̸= j.

This report assumes a finite-discrete time horizon {0, 1, ...N} and complete probability space (Ω,F ,P), where

Ω represents the set of all spatial possibilities in the time horizon, with individual possible paths ω, and filtration

(Fn)
N
n=0.

Definition 2.5. A random variable X is adapted, or F-measurable if for every x ∈ R, the preimage of the

interval (−∞, x] can be traced to an element in σ-algebra F , or X−1((−∞, x]) = {ω ∈ Ω : X(ω) ≤ x} ∈ F .

Definition 2.6. Let X be F-measurable random variable from Ω to R, equipped with measure P, then the

expected value function is defined by

EP[X] =

∫
Ω

X(ω) dP(ω) =
∫
R
xf(x) dx

where f(x) is the probability density function of X.

Definition 2.7. The conditional expectation of X under sub σ-algebra G ⊂ F is a G-measurable random

variable EP[X|G] : Ω→ R such that for all events G ∈ G∫
G

EP[X|G](ω) dP(ω) =
∫
G

X(w) dP(ω).

It framed as taking the expected value of X with partial information such that the random variable is different,

has the same expected value, but not completely known.

Definition 2.8. We say that X is integrable if E[|X|] is finite.

The Snell Envelope is the framework for problem-setting as suggested by Bensoussan (1984) [2], as it captures

the optimal stopping valuation of the American option to be solved. We assume that there exists a probability

measure Q (known as the arbitrage-free measure) that makes the discounted stock price Sn

Bn
, a martingale (see

Definition 2.10), according to an annual risk-free rate of continuous interest r, and Bn = B0e
rn.
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Definition 2.9. The Snell Envelope V = (Vn)
N
n=0 which represents the value of the option, with respect to the

measure Q of the payoff process P = (Pn)
N
n=0 is

VN = PN

Vn = max(Pn, EQ[Vn+1|Fn]), n ≤ N − 1

Firstly, the terminal option value is the payoff at expiry because the holder of the option has no choice but

to receive its payoff at time N if the option has survived until then. Any time before expiry, the maximum

function is conveying that the value gained by holding the option depends on the stopping decision. The holder

will exercise the option and receive Pn if it is greater than the expected value of keeping the option alive. This

expected value is defined later as the continuation value and its calculation is one of the main challenges when

pricing American options.

Definition 2.10. A martingale M , is an adapted and integrable stochastic process (E[|Mn||Fn] < ∞) such

that E[Mm|Fn] =Mn for all m ≥ n. A supermartingale satisfies E[Mm|Fn] ≤Mn for all m ≥ n.

Theorem 2.11. The Snell envelope of P given by Vn = ess supn≤τ≤N EQ[Pτ |Fn] is the smallest supermartingale

that dominates P .

Proof. Firstly, Vn ≥ EQ[Vn+1|Fn] meaning it is a supermartingale, and Vn ≥ Pn, thus V dominates P . Suppose

Un is some arbitrary super-martingale that dominates P . Then at time N , UN ≥ PN . Assume that UN ≥ VN .

Then UN−1 ≥ EQ[UN |FN−1] ≥ EQ[VN |FN−1] using the supermartingale property and induction assumption.

Furthermore, Un ≥ Pn since U dominates P . Hence UN−1 ≥ max(PN−1, EQ[VN |FN−1]) = VN−1. Through

backwards induction, any dominating super martingale of P also dominates V .

Theorem 2.12. For the process P , which is guided by the Snell Envelope V , largest optimal stopping time is

the first instance when Vτ = Pτ or N if this never happens.

τ = min{j ∈ {1, ..., N} : Pj = Vj}.

Proof. The following proof is restated from a Yale handout on Optimal Stopping by David Pollard. [5]

The goal is to show, E[Pτ ] ≥ E[Pj ] for all stopping times j.

Firstly, if j > τ , then E[Pmin(τ,j) − Pj ] = E[Pτ − Pj ] ≥ E[Vτ − Vj ] since V ≥ P by definition and Pτ = Vτ .

Also, E[Vτ − Vj ] ≥ 0 since V is a supermartingale. Hence, E[Pmin(τ,j) − Pj ] ≥ 0, thus E[Pmin(τ,j)] ≥ E[Pj ] for

all stopping times j. This is an equality if τ ≥ j.

Next consider that E[Pτ ] = E[Vτ ] = E[Vmin(τ,τ)] It can be show that the process Yj = Vmin(τ,j) is a

martingale. Hence E[Pτ ] = E[Vmin(τ,τ)] = E[Yτ ] = E[Yj ] ≥ E[Pmin(τ,j)] using the fact V ≥ P , and it was shown

previously E[Pmin(τ,j)] ≥ E[Pj ], so E[Pτ ] ≥ E[Pj ].

Using the Snell Envelope representation, if Vτ = max(Pτ , Vτ+) = Pτ , then Pτ > Vτ+. In other words, the

optimal stopping rule suggests stopping at the first time where the immediate reward is at least as good as
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the expected future reward. This is the largest time as it delays stopping as long as possible while still being

optimal. What this implies for the long position, the holder of the option, is there is no point in exercising

after τ if given the opportunity. This fact is the core idea in backwards recursion algorithms that estimate the

continuation value, compare to the current payoff, and make an exercise decision.

Definition 2.13. The continuation value is Vn+ := EQ[Vn+1|Fn], and represents the expected current reward

for continuing the options life. Hence Vn = max(Vn+, Pn) = Vn++(Pn−Vn+)+ since the option will be exercised

if the payoff is greater than the value of the option next period if not exercised.

Theorem 2.14. Doobs Decomposition Let V = (Vn)
N
n=0 be an integrable, adapted supermartingale process.

Then V admits a unique decomposition in the form

V =M +A

where M = (Mn)
N
n=0 is a martingale and A = (An)

N
n=0 is an integrable, previsible process, meaning it is Fn−1

measurable and M0 = A0 = 0.

Proof. Define An and Mn by:

An =

n∑
j=1

(Vj−1+ − Vj−1), Mn = V0 +

n∑
j=1

(Vj − Vj−1+).

Since Vn is adapted, it is Fn measurable and integrable. Then An+1 and Mn are Fn measurable. Further-

more, E[|An|] ≤ E[
∑
|E[Vj |Fj−1]|] +

∑
E[|Vj−1|] <∞ by Triangle inequality and since V is integrable, so An

is integrable.

Consider the conditional expectation E[Mn|Fn−1] = E[Mn−1+(Vn−E[Vn|Fn−1])|Fn−1] = E[Mn−1|Fn−1] =

Mn−1. Hence Mn is a martingale. Using a similar argument to A, M can also be shown to be integrable.

Notice that in this unique decomposition, An =
∑n−1

j=0 (Vj+ − Vj) = −
∑n−1

j=0 (Pj − Vj+)+. Hence, the Doobs

Decomposition can be expressed as Vn =Mn −
∑n−1

j=0 (Pj − Vj+)+.

The process −An is non-decreasing and provides an indicator for when to exercise the option. Note that

(Pn − Vn+)+ = (Pn − Vn+)1{Pn−Vn+>0}, so one would exercise at n if Pn − Vn+ > 0, or the payoff granted

exceeds the continuation option value. Hence the largest optimal stopping time can now be reframed as

τ =


N,AN = 0

min{j ∈ {1, ...N − 1} : Aj+1 < 0}, AN < 0.

Theorem 2.15. There exists a Martingale M , such that V and M satisfy

Vn = PN − (MN −Mn) +

N−1∑
j=n

(Pj − Vj+)+.

Proof. From the Doobs Decomposition of V (Theorem 2.14) we have that there exists a unique Martingale M

such that

Vn =Mn −
n−1∑
j=0

(Pj − Vj+)+, and VN = PN =MN −
N−1∑
j=0

(Pj − Vj+)+.
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Subtracting the first equation from the second yields Vn − PN =Mn −MN +
∑N−1

j=n (Pj − Vj+)+. Hence, there

exists a unique M that satisfies, Vn = PN − (MN −Mn) +
∑N−1

j=n (Pj − Vj+)+.

This representation of the option value dynamics is very versatile. It can be manipulated to bring different

ways in evaluating the option price, and will be useful in proving results about these option values.

One of the purposes of holding options is to mitigate investment risks and uncertainty. The seller of the

option may offset their position by investing in the underlying asset and a risk free asset in order to ’hedge’

their risk in most scenarios. Hedging refers to constructing a portfolio using a combination of assets related to

the option to mimic its payoff at any time. In the case of American options, this is not enough.

Definition 2.16. Self-Financing is a term for an investment portfolio that does not require any additional

capital beyond an initial investment of ϕ1 worth of stock and ψ1 worth of bonds at time 0. Mathematically,

this means ∆Vn = ϕn−1∆Sn + ψn−1∆Bn, where ∆ is the difference operator, ∆Yn = Yn − Yn−1.

Definition 2.17. A Super-replicating portfolio of P is self-financing strategy (ϕ, ψ) with initial investment x if

for all n ∈ {0, ..., N},

Vn = x+

n∑
k=1

ϕk∆Sk +

n∑
k=1

ψk∆Bk ≥ Pn

and for the discounted processes, V ∗
n , P

∗
n ,

V ∗
n = x+

n∑
k=1

ϕk∆S
∗
k ≥ P ∗

n .

Thus if π is the true price of the American object, then π ≤ x. In other words, we construct a portfolio with

value exceeding the option payoff at any time.

Definition 2.18. The super-replicating price of P is π̄ = inf{x ∈ R : ∃(ϕ, ψ) that super-replicates P}. Thus, π̄

is the smallest amount needed to begin a superhedging portfolio that the seller of the option can use to service

the payoff at any stopping time, optimal or not.

In the case of American options, the short position needs to superhedge (self-financing and super-replicating

portfolio) because if the option is stopped optimally, an exact hedge may not be enough to cover the payoff, so

the investor needs need to increase funds to cover shortfall between hedge and obligation to the holder. If the

option is not stopped optimally, a part of the superhedge is consumed.

Theorem 2.19. If the market is arbitrage-free and complete, meaning a unique risk-neutral martingale Q exists,

then π̄ = ess supτ≤N EQ[P
∗
τ ] where P

∗ is the discounted payoff process.

This ensures the seller of the option, holds sufficient capital to hedge against the worst possible scenario of

an optimal stopping by the option holder.
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2.2 Existing Models

2.2.1 Binomial Model

The foundation was set by Cox, Ross and Rubinstein’s Multinomial Tree Model where the underlying asset

process has a chance to move constant fixed percentages at discrete intervals. It’s simplicity was effective for

pricing American options but the computational requirements increase exponentially with more time steps and

higher dimensionality.

The Binomial Model assumes the option can be exercised at discrete times with intervals δt, so tn+1 = tn+δt,

and constant risk free rate r over this interval. The price of the underlying at time tn+1, Sn+1 is either unSn

or dnSn where dn < 1 ≤ un for all n. The price of the American option can be expressed similar to the Snell

Envelope where Vn is the value and Pn is the intrinsic value of the option at time tn. The backwards recursive

formula for the value of a call option where the underlying has moved up j times is


Vj,N = (ujdN−jS0 −K)+

Vj,n = max((ujdn−jS0 −K)+, e−rδtEQ[Vn+1|Fj,n]), n ≤ N − 1

where EQ[Vj,n+1|Fn] = qnVj+1,n+1 + (1− qn)Vj,n+1, and qn = er−dn

un−dn
.

2.2.2 Longstaff-Schwarz

Longstaff & Schwartz (2001) [4] take a least-squares Monte-Carlo approach to obtain an optimal exercise strategy

using the continuation value. Sample paths train a model by regressing the next period discounted cashflow (Y )

onto the current stock price (X) using a Laguerre polynomial basis in order to estimate the continuation value

(E[Y |X]). This is recursively applied backwards to determine the optimal stopping time, and the discounted

cashflow of each path collated to obtain a Monte-Carlo estimate of the option price, and compare their estimate

to the finite difference method. Sample asset paths are generated using Geometric Brownian Motion described

by the stochastic differential equation dSt = rSt dt + vSt dWt, with closed form St = S0e
(r− 1

2σ
2)t+vWt , where

Wt is a Brownian Motion stochastic process. However, these sample paths are used for illustrative purposes,

and this model can handle other sample forecasts in one dimension.

The intuition behind this approach is that a rational holder of an American option will try to maximise

the value of their option by comparing the immediate exercise payoff with the expected discounted payoff from

continuing the option’s life. Hence, the task reduces to ways to estimate the continuation value using current

or past data. The algorithm is as follows [4]:

1. Generate sample M paths for times 0, 1, ..., N (possibly under Geometric Brownian Motion).

2. Calculate time N payoffs, discount by one period to obtain a vector of discounted payoffs at time N − 1,

PN−1.

3. Repeat the following for n ∈ {N − 1, ...1}.
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• Let Xn be the vector of stock prices at time n for ITM paths.

• Let Yn be the vector of values from Pn for ITM paths.

• Regress Yn onto Xn using a suitable basis to obtain the continuation value function F (Xn) =

E[Yn|Xn] in terms of Xn.

• For pathm, compare F (xn,m) with the immediate payoff for that path. If immediate payoff is greater,

replace the mth value in Pn with the current payoff.

• Discount the values of Pn by a single period and to obtain Pn−1.

4. Take the mean of P0.

Furthermore, Step 3 assumes E[X|Y ] can be expressed as a countable basis of measurable L2 basis functions,

which is justifiable since L2 is a Hilbert space, hence there exists a countable orthonormal basis of L2. Thus,

approximating E[Y |X] involves a projection of the true functional form of discounted payoff onto some basis.

By focusing on ITM options, the required estimation space is smaller with fewer basis function needed. By

taking N (number of time steps) to be sufficiently large, the value of the option converges to that of an American

option, and more sample paths results in the estimated regression to converge in mean-squared metric.

By proposition 1 of [4] V0 is the true value of the American option estimated through this method, then

V0 ≥ lim
M→∞

1

M

M∑
i=1

D(Pτi , 0, τi).

The intuition is that the value of the American option is the maximum value attainable using any stopping

strategy, so this stopping rule should converge to a value less than the value defined under Snell Envelope.

3 The Proposed Models

Similar to Longstaff-Schwarz, this model is data-driven, meaning any forecast of the underlying asset process

can be used. The remaining pricing aspect is the method of estimating the continuation values to make a

stopping decision. This will be handled by neural networks and optimisation techniques that require smooth

loss. The deterministic stopping decision relies on the use of indicator functions which are discontinuous, so we

shall remove this need.

3.1 Gaussian Model

For the first proposed model, instead of a binary stopping decision at each point of time, the indicator is

smoothed by an auxiliary function that approximates the exact solution under limiting conditions. In this case,

the Gaussian function Φσ(x) =
∫ x

−∞
1

σ
√
2π
e

−t2

2σ2 dt was chosen due to its link with the asymptotic distribution of

Monte-Carlo samples. The smoothness enables optimisation and the existence of optimal network parameters.

The additional flexibility in the function of choice adds randomness to the optimal stopping decision. The new

stopping decision can be interpreted as being determined by a biased coin flip depending on the difference from
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the deterministic optimal stopping boundary (Vj+ = Pj). We expect to see a change in sample variance and

sensitivity to input parameters as new possible values in the stopping decision are allowed.

The backward stochastic relationship for the value process is

Vn = PN + (MN −Mn) +

N−1∑
j=n

(Pj − Vj+)1{Pj−Vj+>0},

where the indicator function 1{x>0} = 1 if x > 0, and 1{x>0} = 0 if x ≤ 0.

Consider the value process V σ which satisfies

V σ
n = PN − (Mσ

N −Mσ
n ) +

N−1∑
j=n

(Pj − V σ
j+)Φσ(Pj − V σ

j+).

In essence, the indicator function is smoothly approximated by Φσ(x). As a heuristic argument to justify this

choice, as σ → 0, V σ will approach V since Φσ(x) → 1{x>0}. Many other sequence of continuous functions

satisfy this convergence, but we use Φσ(x) for demonstration.

The first result we observe is that this method produces undervaluations of the theoretical option value at

all dates before expiry.

Theorem 3.1. For all σ > 0, then V σ
n < Vn for all n < N .

Proof. Define ξσ(x) := xΦσ(x). For x < 0, Φσ(x) > 0, so ξσ(x) < 0. For x ≥ 0, Φσ(x) < 1, so ξσ(x) < x. Thus

for all x, ξσ(x) < max(x, 0) = x+.

It is known that VN = V σ
N = PN , so, V σ

N−1+ = VN−1+. Hence V σ
N−1 = V σ

N−1+ + ξσ(PN−1 − V σ
N−1+) <

V σ
N−1+ + (PN−1 − V σ

N−1+)
+ = VN−1+ + (PN−1 − VN−1+)

+, so V σ
N−1 < VN−1.

Using backward induction, assume that V σ
k < Vk, so V σ

k−1+ = E[V σ
k |Fk−1] < E[Vk|Fk−1] = Vk−1+. Now

V σ
k−1 = V σ

k−1+ + ξσ(Pk−1 − V σ
k−1+) < V σ

k−1+ + (Pk−1 − V σ
k−1+)

+ =

max(V σ
k−1+, Pn) ≤ max(Vk−1+, Pn) = Vk−1 due to the inductive assumption and that ξσ(x) < x+.

The rate at which this approximation converges to the value in Doobs Decomposition can be studied through

establishing an upper bound on the error function Eσ(x) = |1{x≥0} − Φσ(x)|.

Theorem 3.2. The error function Eσ(x) = |1{x≥0} −Φσ(x)| is bounded above by σ
|x|

√
2π
e−

x2

2σ2 for non-zero x,

and Eσ(0) =
1
2 .

Proof. Firstly, Eσ(0) = |1− Φσ(0)| = |1− 1
2 | =

1
2 .

For x > 0, Eσ(x) = |1−
∫ x

−∞
1

σ
√
2π
e−

t2

2σ2 dt|. This is the upper tail Gaussian distribution 1
σ
√
2π

∫∞
x
e−

t2

2σ2 dt ≤
1

σ
√
2π

∫∞
x

t
xe

− t2

2σ2 dt = σ
x
√
2π
e−

x2

2σ2 . Hence, Eσ(x) ≤ σ
x
√
2π
e−

x2

2σ2 for x > 0. Further, Eσ(x) = Eσ(−x), thus

Eσ(x) ≤ σ
|x|

√
2π
e−

x2

2σ2 for all x.

The following result also proves that the Gaussian Model converges to the true option value as σ approaches 0.

Theorem 3.3. For σ > 0, sup(Vn − V σ
n ) ≤ σ√

2π
(N − n)E

[
maxn≤k≤N e−

P2
k

2σ2

]
≤ σ√

2π
(N − n).
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Proof. From Theorem 3.1 it can be shown ξσ(x) ≤ x+ ≤ ξσ(x)+ σ√
2π
e−

x2

σ2 for all σ > 0. By taking the difference,

Vn− V σ
n =MN −Mn− (Mσ

N −Mσ
n ) +

∑N−1
j=n (Pj − Vj+)+− ξσ(Pj − V σ

j+) > 0. Then, applying expectations and

time n filtrations on both sides, E [Vn − V σ
n |Fn] = Vn − V σ

n , and

E

N−1∑
j=n

(Pj − Vj+)+ − ξσ(Pj − V σ
j+)|Fn

 ≤ E
N−1∑

j=n

(Pj − V σ
j+)

+ − ξσ(Pj − V σ
j+)|Fn


by Theorem 3.1 V > Vσ and x+ is a non-decreasing function. Applying the inequality we get this is less than

E

N−1∑
j=n

ξσ(Pj − V σ
j+) +

σ√
2π
e−

(Pj−V σ
j+)2

2σ2 − ξσ(Pj − V σ
j+)|Fn


which is equal to σ√

2π
E

[∑N−1
j=n e−

(Pj−V σ
j+)2

2σ2 |Fn

]
≤ σ√

2π
(N − n)E

[
maxn≤k≤N e−

P2
k

2σ2 |Fn

]
≤ σ√

2π
(N − n). Since

e−x2

< 1 for all x.

This implies that convergence scales linearly in σ and depends on the remaining amount of exercise dates,

since both policy values are identical at N , and diverge as the recursion algorithm is applied further.

3.2 Shannon-Entropy Regularisation Model

The second approach to remove the indicator function is through converting the backwards stochastic equation

into a control problem and applying a regularising term to enforce a unique solution that can be studied. Firstly,

we introduce a control process Γ that evolves discretely with increments ∆Γj that are in [0, 1] to replace the

indicator, and represent the weighting on the stopping decision. The value of the option must be maximised

with this process.

Vn = PN − (MN −Mn) + ess sup
∆Γ∈[0,1]

N−1∑
j=n

(Pj − Vj+)∆Γj .

Suppose the assumption on the form of discretely times random variable increments ∆Γj can be relaxed with

a discrete random variable Xj with support on a finite number of points on [0, 1], S = {x0, x1, x2, ...xL} with a

given smooth probability mass function p. This constraint
∑

x∈S p(x) = 1 forces an explicit and unique solution

to be found.

Vn = PN − (MN −Mn) + ess sup
p

N−1∑
j=n

∑
x∈S

(Pj − Vj+)xpj(x).

The form of p, if it exists, is not well posed, so a regularising term is added. For example, Dong (2022) [3] used

a regulariser in the form of pj(1 − ln(pj)). We instead chose the Shannon-Entropy regulariser pj ln(pj). This

penalty term adds randomness to the stopping decision similar to the Gaussian Model.

Vn = PN − (MN −Mn) + ess sup
p

N−1∑
j=n

∑
x∈S

{(Pj − Vj+)xpj(x)− λpj(x) ln(pj(x))} (A)

Intuitively, the double summation needs to be maximised in p, so pj(x) ln(pj(x)) needs to be minimised. Across

the interval (0, 1], supz∈(0,1] z ln(z) = 0 when z = 1 or z approaches 0. Meanwhile the minimum of z ln(z) is

10



−e−1, which occurs when z = e−1 ≈ 0.37. Thus this condition punishes confident probability assignments of 0

and 1 which introduces greater spread of estimates. The higher λ is, the stronger the randomness.

Clearly, when λ = 0, we get the exact backwards equation for the option value, so we will observe the effects

of taking the limit of λ closer to 0 on variance and the point estimate.

In order to obtain a stopping rule, we must look at the following integral to be maximised:∑
x∈S

{(Pj − Vj+)xpj(x)− λpj(x) ln(pj(x))} = (Pj − Vj+)
∑
x∈S

(
xpj(x)−

λpj(x) ln(pj(x))

(Pj − Vj+)

)

= (Pj − Vj+)
∑
x∈S

pj(x)

(
x
(Pj−Vj+)

λ − ln(pj(x))
(Pj−Vj+)

λ

)
=

(Pj − Vj+)
yj

∑
x∈S

pj(x) (yjx− ln(pj(x)))

where yj =
(Pj−Vj+)

λ for simplicity. The goal of maximising the integral in p is performed by method of

Lagrangian multipliers under the constraint
∑

x∈S p(x) = 1, and objective function

L =
∑
x∈S

pj(x)(yjx− ln(pj(x))) + µ

(
1−

∑
x∈S

p(x)

)
.

The first order condition ∂L
∂µ = 0 will yield the constraint. On the other hand,

∂

∂pj(x)
{pj(x)(yjx− ln(pj(x))) + µ(1− pj(x))} = yjx− ln(pj(x))− 1− µ = 0

ln(pj(x)) = yjx− µ− 1

pj(x) = eyjx−µ−1

1 = e−µ−1
∑
x∈S

eyjx by summing over the support

µ = ln

(∑
x∈S

eyjx

)
− 1

pj(x) =
eyjx∑

x′∈S e
yjx′ ln(pj(x)) = yjx− ln

(∑
x′∈S

eyjx
′

)
Hence the integral simplifies to

(Pj − Vj+)
yj

∑
x∈S

eyjx∑
x′∈S e

yjx′ ln

(∑
x′′∈S

eyjx
′′

)
=

(Pj − Vj+)
yj

ln

(∑
x∈S

eyjx

)
= λ ln

(∑
x∈S

e
Pj−V λ

j+
λ x

)
.

Ultimately, the backward equation to solve for (A) is

Vn = PN − (MN −Mn) +

N−1∑
j=n

λ ln

(∑
x∈S

e
Pj−V λ

j+
λ x

)
.

In this equation, the integrand λ ln

(∑
x∈S e

Pj−V λ
j+

λ x

)
acts as a replacement for (Pj − Vj+)

+, so define the

function Ψλ,S(y) = λ ln
(∑

x∈S e
yx
λ

)
. If points in S are of the form xk = k

L , then the sum inside the logarithm

is a geometric progression, simplifying to Ψλ,L(y) = λ ln
(∑L

k=0 e
kx
λL

)
= λ ln

(
e
x(L+1)

λL −1

e
x

λL −1

)
.

So, the recursive policy update algorithm is:

V λ
n = V λ

n+ + λ ln

(∑
x∈S

e
Pn−V λ

n+
λ x

)
= V λ

n+ + λ ln

(
e(Pn−V λ

n+)
(L+1)
λL − 1

e
Pn−V λ

n+
λL − 1

)
= V λ

n+ +Ψ(Pj − Vj+)

11



Theorem 3.4. |Ψλ,L(x)− x+| ≤ λ ln(L+ 1) for all x ̸= 0

Proof. If x ≤ 0, then |Ψλ,L(x)− 0| = |λ ln
(∑L

k=0 e
k

Lλx
)
| ≤ |λ ln

(∑L
k=0 e

k
Lλ 0
)
| = λ ln(L+ 1).

If x > 0, |Ψλ,L(x) − x| = |λ ln
(∑L

k=0 e
k

Lλx
)
− x| ≤ |λ ln

(∑L
k=0 e

L
Lλx
)
− x| = |λ ln((L + 1)e

x
λ ) − x| =

|λ(ln(L+ 1) + ln(e
x
λ ))− x| = |λ(ln(L+ 1) + x

λ )− x| = |λ ln(L+ 1)|.

Theorem 3.5. For all λ > 0, then V λ
n > Vn for all n < N .

Proof. It is known that VN = V σ
N = PN , so, V λ

N−1+ = VN−1+. Hence V λ
N−1 = V λ

N−1++Ψ(PN−1−V λ
N−1+;λ, L) >

V λ
N−1+ + (PN−1 − V λ

N−1+)
+ = VN−1+ + (PN−1 − VN−1+)

+ = VN−1, so V
λ
N−1 > VN−1.

Using backward induction, assume that V λ
k > Vk, so V λ

k−1+ = E[V λ
k |Fk−1] > E[Vk|Fk−1] = Vk−1+. Now

V λ
k−1 = V λ

k−1+ +Ψλ,L(Pk−1 − V λ
k−1+) > V λ

k−1+ + (Pk−1 − V λ
k−1+)

+ =

max(V λ
k−1+, Pn) ≥ max(Vk−1+, Pn) = Vk−1 due to the inductive assumption and that Ψλ,L(x) > x+.

Theorem 3.6. For 0 < λ < 1, sup(Vn − V λ
n ) ≤ λ(N − n) ln(L+ 1).

Proof. From Theorem 3.4 and Theorem 3.5 it can be shown Ψλ,L(x)−λ ln(L+1) ≤ x+ ≤ Ψλ,L(x) for all λ > 0.

Taking the difference, V λ
n − Vn =Mλ

N −Mλ
n − (MN −Mn) +

∑N−1
j=n Ψλ,L(Pj − V λ

j+)− (Pj − Vj+)+ > 0.

Taking expectations on both sides, E
[
Vn − V λ

n |Fn

]
= Vn − V σ

n , and

E

N−1∑
j=n

Ψλ,L(Pj − V λ
j+)− (Pj − Vj+)+|Fn

 ≤ E
N−1∑

j=n

Ψλ,L(Pj − V λ
j+)− (Pj − V λ

j+)
+|Fn


by Theorem 3.5, V λ > V and x+ is a non-decreasing function. Applying the inequality we get this is less than

E

N−1∑
j=n

Ψ(Pj − V λ
j+)− (Ψλ,L(Pj − V λ

j+)− λ ln(L+ 1))|Fn


which is equal to E

[∑N−1
j=n λ ln(L+ 1)|Fn

]
= λ(N − n) ln(L+ 1)

Similar to the Gaussian Model, this implies that convergence scales linearly in λ and depends on the remain-

ing amount of exercise dates, since both policy values are identical at N , and diverge as the recursion algorithm

is applied further. More divergence is observed the more granular the support points are.

3.3 Algorithm

The numerical scheme for pricing American options uses a backwards recursive Monte-Carlo framework and

uses Neural Networks to approximate the functional form of continuation value in least-squares sense. The

policy update formula has been adjusted to include a function g that smooths out the indicator.

Note that in the implementation of Vn = Vn++(Pn−Vn+)g(Pn−Vn+), the first two continuation values are

different from the continuation value inside g, since the continuation value estimated by the model is used in the

randomised stopping stopping decision only, and the continuation value via backwards recursion is the reward

from continuing the options life. The Longstaff-Schwarz paper [4] notes that if the estimated continuation value

12



were used to update policy values, then there will be an upward bias in the final value due to the convexity of

the maximum operator. We will ignore this fact for the the Regularisation Model. Attempting to seperate the

excess (Pj−Vj+) from the stopping decision, or the function approximating the indicator, results in a singularity

around 0 which leads to numerical complications. However, as will be seen in the results section, this does not

significantly skew the results.

Algorithm 1 Pricing Algorithm

Require: Number of sample paths M , risk-free rate r, volatility v, number of steps N , payoff function f ,

smoothing function g, network architecture

Ensure: Final value V0

generate the sample paths X

set V m
N = f(Xm

N ) for all m = 1 to M

for each n = N − 1 to 1 do

V m
n ← V m

n+1e
−r·dt for all m = 1 to M

optimise θn for objective function

1

M

M∑
m=1

(
F θn(Xm

n )− V m
n

)2
for each m = 1 to M do

V m
n ← V m

n + (f(Xm
n )− V m

n ) g
(
f(Xm

n )− F θn(Xm
n )
)

end for

end for

V m
0 ← V m

1 e−r·dt

return V0 = 1
M

∑M
m=1 V

m
0

4 Numerical results

The algorithm in Section 3.3 was implemented in Python 3.10.11 along with numPy, pandas and PyTorch

libraries. The sample paths for the asset are GBM simulations in order to compare to literature such as Becker

[1]. That is, the process described by dSt = (r − δ) dt + v dWt, S0 = s. With all constants given, expiry date

T and number of time steps N , the value of the asset at time t for path m is Sm
t = se(r−δ− v2

2 )t+v
∑t

k=1 ∆Wm
k

where ∆Wm
k =Wm

k −Wm
k−1 are the Brownian motion increments, Wm

k ∼ N(0, T
N ) and Wm

0 = 0 for all m. The

neural network architecture could take d dimensions of inputs, produced 1 output and had two hidden layers

of 32 and 16 neurons each, seperated by ReLu activation.

13



4.1 Sensitivity Testing

This section will compare the valuation of put options using the proposed models to the Longstaff Schwarz

technique in both convergence of the point estimate and the change in variance of the Monte Carlo samples, as

well as sensitivity to the change in input parameters.

The following figures will depict the effect of taking σ and λ to 0 in the Gaussian and Regularisation

models respectively on the option value and sample path variance, using the Longstaff-Schwarz values as a

benchmark. These results are highly dependent on the number of simulations used. Our implementation of

the Longstaff-Schwarz model used 1, 000, 000 simulations while the Gaussian and Regularisation Models used

100, 000 thousand.

4.1.1 Volatility Changes

In the Gaussian Model (Figure 1), there is a reduction in variance compared to the Longstaff-Schwarz samples

for the v = 0.2 and v = 0.25 cases, with this reduction getting smaller as bias decreases. This is the bias-variance

trade off we were expecting to see for more scenarios. However when volatility is lower, v = 0.1, this variance

reduction effect is flipped, and there is a slight increase in model error.

In all cases for the Regularisation Model (Figure 2), a different pattern is observed. As λ gets smaller, the

option value converges. However, the reduction in variance is always negative, meaning model risk may worsen

using the Regularisation model.

Table 1 describes the change in the option value for changes in volatility for each policy. This is applied to v =

0.2 to get a rough approximation for the partial derivative δV0

δv |v=v0 ≈
h2(V0(v0)−V0(v0−h1))−h1(V0(v0+h2)−V0(v0))

h1h2(h1+h2)
.

The interpretation is that if v were to increase by 1, the option value would shift by δV
δv . A volatility

adjustment of this magnitude would be unlikely in a real scenario, so more applicatively, dividing these entries

by 100 would roughly describe the change with a 1% increase in volatility. We can observe the values in the

Gaussian Model approach the Longstaff Schwarz from below, and the Regularisation from above, suggesting

the Gaussian Model is less sensitive to changes in this input parameters.

v = 0.1 v = 0.2 v = 0.25

Figure 1: Put option, Gaussian Model, s = 90,K = 100, r = 0.06, T = 1, N = 50
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v = 0.1 v = 0.2 v = 0.25

Figure 2: Put option, Regularisation Model, s = 90,K = 100, r = 0.06, T = 1, N = 50

σ/λ 1 10−0.5 0.1 10−1.5 0.01 0.001 Longstaff-Schwarz

Gaussian 15.774947 21.951162 22.624959 23.446612 22.968668 23.074128 24.336893

Regularisation 26.198337 28.831940 38.824398 23.050092 30.587422 26.174088 24.336893

Table 1: Put option, s = 90,K = 100, r = 0.06, v = 0.2, T = 1, N = 50

4.1.2 Starting Price Changes

We see very similar results in these cases to the volatility sensitivity testing case v = 0.2, with the Gaussian

Model (Figure 3) reducing variance and the Regularisation Model (Figure 4) increasing it.

Table 2 depicts the change in the option value for changes in starting price for each policy. This is applied

to s = 100 to get an approximation δV0

δS0
|S0=s =

V0(v0+h)−V0(v0−h)
2h .

The interpretation is that if s were to increase by $1, the option value would shift by δV
δS0

. This is linked

to a concept in Option Theory known as Delta. For put options, Delta is negative since a $1 increase in the

underlying would take the option less ’into-the-money’, thus make its potential payoff distribution less.

s = 90 s = 100 s = 110

Figure 3: Put option, Gaussian Model, K = 100, r = 0.06, v = 0.2, T = 1, N = 50
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s = 90 s = 100 s = 110

Figure 4: Put option, Regularisation Model, K = 100, r = 0.06, v = 0.2, T = 1, N = 50

σ/λ 1 10−0.5 0.1 10−1.5 0.01 0.001 Longstaff-Schwarz

Gaussian -0.476775 -0.436857 -0.422981 -0.420807 -0.416171 -0.423750 -0.420494

Regularisation -0.408675 -0.418091 -0.433940 -0.447188 -0.574733 -0.424451 -0.420494

Table 2: Put option, s = 90,K = 100, r = 0.06, v = 0.2, T = 1, N = 50

4.2 Multi-Dimensional Case

The algorithm can also handle option pricing requiring multiple input dimensions. An example is a Max-Call

option which has payoff dependent on multiple underlying values Pτ = (maxi=1,...,d S
i
τ−K)+. Table 3 compares

the Gaussian Model to Becker’s [1] results for a symmetrical American max-call option, where all assets have

the same input parameters.

S0 V 1 V 10−0.5

V 0.1 V 10−1.5

V 0.01 V 0.001 V 0.0001 Becker

90 7.930149 8.152506 8.202082 8.165762 8.095579 8.214073 8.080862 8.074

100 13.680307 13.921888 13.873100 13.898158 13.942288 13.928569 13.932113 13.899

110 21.164794 21.319122 21.226748 21.203929 21.386157 21.340414 21.342699 21.349

Table 3: Symmetric Max-Call option, Gaussian Model, K = 100, r = 0.05, δ = 0.1, v = 0.2, T = 3, N = 9, d = 2

5 Conclusion

Our results suggest the Gaussian Model is more reliable and reducing model risk relative to the Longstaff-

Schwarz model, while the Regularisation Model is undesirable due to increasing model risk. This method of

pricing options begs further investigation with many ways forward. Firstly, the control problem leading to

the Regularisation Model was posed with with mass function of a discrete random variable, so changing this

to a continuous random variable may yield different results. Experimenting with different regularising terms

may generate a model more adept at reducing model risk. The algorithm could be expanded to accomodate

exotics such as swing options, lookback options and game options. Further sensitivity testing for the simulated

asset process could reveal more input parameter regions where variance reduction is observed. Moreover, the

neural networks loss function could incorporate the fact the indicator function is substituted by a smooth

approximator to allow optimisation methods such as stochastic gradient descent. Lastly, the models could be

applied to real-time stock price data and compared to listed option values.
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