
Phonetic Spelling Correction Using
Dimensionality Reduction

Louisa Best
Supervised by

Dr. Simon James & Dr. Julien Ugon
Deakin University
February 26, 2025

Abstract
Phonetic spelling correction is essential for individuals who rely on non-standard phoneme-based spellings,

including those with intellectual disabilities, early learners, and second-language users. Traditional text-
based spell-checking struggles to handle these variations due to the complexity of phonetic similarity. This
study investigates the use of dimensionality reduction techniques, specifically Principal Component Analysis
(PCA) and Singular Value Decomposition (SVD), to improve phonetic word retrieval by reducing sparse, high-
dimensional feature spaces. Both pre-scaled and post-scaled SVD were evaluated in terms of variance reten-
tion and phonetic similarity matching. Results indicate that post-scaled SVD significantly enhances phoneme
representation, leading to more accurate word predictions when combined with cosine similarity. In con-
trast, Euclidean and Manhattan distances failed to adequately capture phonetic structure, highlighting the
importance of feature scaling in phonetic vector spaces. These findings provide a foundation for further ad-
vancements in hybrid models, alternative similarity measures, and context-aware phonetic embeddings, with
potential applications in assistive spelling tools, speech recognition, and language learning.

1 Introduction
1.1 Problem Statement and Motivation
Written language presents a barrier for individuals with intellectual disabilities (ID), early learners, and second-
language speakers, many of whom rely on phonetic spelling - writing words as they sound rather than following
conventional spelling rules. Standard spell checkers, designed for typographical errors, do not address phonetic
misspellings, creating a gap in accessible assistive technologies (Garay-Vitoria and Abascal 2006; Dessemontet
et al. 2021; Leutzinger 2022). For instance, using “halow” in place of “hello” and “ingre” instead of “injury” are
phonetic spellings that standard spell checkers do not identify, underscoring the need for more comprehensive
solutions.

Given the orthographic complexity of English, where phonemes (speech sounds) do not map directly to
graphemes (letters), individuals using phonetic spelling require specialised correction tools. Existing phonetic
algorithms such as Soundex and Double Metaphone fail in non-standard linguistic contexts, particularly for those
with ID (Trinh et al. 2012; Pan, Rickard, and Bjork 2021; Phillips 2000; Knuth 1998).

To address these challenges, this research investigates phonetic spelling errors, existing correction methods,
and phoneme feature representation before proposing an approach that takes advantage of n-gram vectorisa-
tion and dimensionality reduction to improve phonetic word retrieval. The following sections 1.2-1.5 outline
the characteristics of phonetic misspellings, current limitations in phonetic correction, and the research con-
tributions of this study.

1.2 Phonetic Spelling and Types of Spelling Errors
Phonetic misspellings arise due to deviations from conventional orthographic norms. These errors fall into
three primary categories:

1

• Phonological Errors: Incorrect or missing phonemes Example: “ingre” → “injury” (missing /ʊ/ in
/ɪnˈdʒʊri/), or “hello” (Frith 1980).

• Orthographic Errors: Incorrect letter substitutions, Example: “helo” instead of “hello” or “hallow” in-
stead of “halo” → /həˈloʊ/ (Tong et al. 2009).

• Morphological Errors: Incorrect word formation, Example: “runned” instead of “ran”, “mouses” instead
of “mice” (Bahr, Lebby, and Wilkinson 2020).

To effectively tackle these challenges, a reliable phonetic spelling correction system is crucial, as it needs
to comprehend the fundamental phoneme representations and precisely link them to the appropriate words.

1.3 Phonetic Spelling Challenges and Existing Approaches
Phonetic spelling, in which words are written based on sound rather than conventional rules, is common
among individuals with intellectual disabilities (ID) (Dessemontet et al. 2021; Leutzinger 2022), ESL learn-
ers (Nagata, Takamura, and Neubig 2017), and children developing literacy (Brown and Loosemore 1994).
Existing algorithms fail to address phonetic misspellings, instead focussing on typographical errors.

Traditional algorithms like Soundex, Metaphone, and NYSIIS encode words into phonetic representations
but rely on strict letter-sequence rules, making them ineffective for non-standard phonetic variations (Vykho-
vanets, Du, and Sakulin 2020; Philips 2000). This requires more flexible and data-driven approaches.

1.4 Phonetic Feature Representation and Vectorisation
Phonetic spelling requires alternative linguistic representation beyond rule-based algorithms. Techniques in-
clude character-level embeddings, which represent words at the character level and improve the handling
of spelling variants (Rubehn et al. 2024); n-gram frequency matrices, which capture phoneme cooccurrence
(Ryskina 2022; Flint et al. 2017); and word embeddings (Word2Vec, GloVe), which encode words based on
semantic similarity but fail to capture phonetic relationships (Mikolov et al. 2013; Pennington, Socher, and
Manning 2014). High-dimensional representations pose computational challenges, making dimensionality
reduction necessary.

1.5 Research Gap and Project Contribution
Existing models fail in three important aspects: (1) capturing nuanced phoneme-to-grapheme mappings in
non-standard spellings (Sofroniev and Çöltekin 2018), (2) efficiently handling high-dimensional phoneme data
without losing important structure (Treistman et al. 2022), and (3) generalising well across different spelling
patterns in small datasets (Zouhar et al. 2023).

To address these limitations, this study proposes a dimensionality reduction-driven approach to phonetic
spelling correction. The method takes advantage of phonetic n-gram vectorisation instead of rule-based en-
codings, applies Singular Value Decomposition (SVD) and Principal Component (PCA) to extract principal

2

phoneme features while preserving phonetic integrity, and integrates phonetic similarity metrics to improve
word retrieval.

The following sections outline the methodology (Section 2), discuss experimental results (Section 3) and
summarise findings and explore future directions for improving phonetic spelling models (Section 4).

2 Methodology
Phonetic spelling correction requires a structured data flow to process input, extract meaningful phonetic
representations, and apply computational techniques for improved word retrieval. This section outlines the
key steps in the correction process, from phonetic preprocessing to dimensionality reduction and similarity-
based retrieval.

2.1 Phonetic Processing
The phonetic spelling correction system begins with preprocessing phonetic inputs, ensuring a structured rep-
resentation suitable for computational analysis. The following subsections describe each stage of this process,
including phoneme tokenisation, feature vectorisation and the application of dimensionality reduction to op-
timise computational efficiency.

2.1.1 Lexicon Selection

A corpus of phoneme-to-word mappings is required to serve as the reference dataset. Given the lack of a
standard phonetic dataset for Australian English, we selected an IPA-based lexicon and structured phonemes
as a discrete sequence P = (p1, p2, ..., pn) where each phoneme pi represents an atomic speech sound.

2.1.2 Phoneme Tokenisation

Aword, denoted as w, is defined as a sequence of characters representing a discrete linguistic unit. In this con-
text, words consist solely of alphabetic letters without spaces or punctuation, and their length varies depending
on the input.

Each word is tokenised into n-grams (bigrams and trigrams) to capture phonetic structures. This process
involves breaking the word into overlapping sequences of n consecutive characters. For example, the word
“hello” is decomposed as follows:

“hello” → {‘‘he”, ‘‘el”, ‘‘ll”, ‘‘lo”} (bigrams)

“hello” → {‘‘hel”, ‘‘ell”, ‘‘llo”} (trigrams)

N-grams capture local patterns in phoneme sequences, which are crucial for distinguishing between dif-
ferent phonetic structures. Bigrams model direct adjacent phoneme relationships, while trigrams provide a

3

broader phonetic context. This multilevel representation enhances the model’s ability to generalise across
phonetic variations, improving similarity matching for phonetic spelling correction.

2.1.3 Phoneme-to-Letter Mapping

English orthography is non-phonemic, meaning that the spelling of words does not always correspond directly
to their pronunciation. To address this, a mapping function f : P → Lwas developed, where f assigns phoneme
sequences to plausible letter sequences. Some phonemes lacked direct English equivalents, necessitating the
use of approximation mappings:

f(pi) =

lj , if pi ∈ dom(f)

“UNK”, otherwise
In this function, lj represents the letter sequence corresponding to the phoneme pi, and “UNK” is used for

phonemes without direct English equivalents.
Common phoneme sequences, such as those in words like TRUNK (/tɹʌŋk/), are explicitly accounted for in

the mapping. The “UNK” token is only assigned when a phoneme has no plausible English representation or
when a reasonable approximation does not exist. This ensures that frequently occurring phonemes are mapped
accurately, while only rare or non-standard phonemes fall back to the unknown category.

2.2 Vectorisation of Phonetic Representations
Once the phonemes are mapped, each phonetic variant is transformed into a numerical vector for further
processing.

2.2.1 N-Gram Feature Matrix

We construct an n-gram frequency matrix where rows represent words and columns correspond to n-gram
features. The matrix in Table 1 captures the frequency of each n-gram within the word “hello”.

Word he el ll lo hl ell
hello 1 1 1 1 0 1
halo 1 0 0 1 0 0

Table 1: N-Gram Frequency Matrix for Sample Word “hello”

For a given word w, its feature vector xw is

xw = (x1, x2, . . . , xm) ∈ Rm

where xi represents the frequency of the i-th n-gram, and m represents the total number of possible bigrams
and trigrams.

4

2.2.2 High-Dimensional Representation

The full dataset results in a high-dimensional space, where words are represented as points in Rm. The n-
gram feature vectors are constructed using non-negative integer counts, indicating the frequency of n-gram
occurrences within each word. Although represented in Rm, the feature vectors remain sparse, which means
that most entries contain zeros.

This combination of high dimensionality and sparsity introduces additional challenges, as sparse data can
lead to inefficiencies in both memory usage and similarity computations. To mitigate these issues, we apply
dimensionality reduction techniques to the n-gram feature vectors, transforming them into a more compact
representation that preserves the key features while improving computational efficiency.

2.3 Dimensionality Reduction
To mitigate high dimensionality, we applied Singular Value Decomposition (SVD) and Principal Component
Analysis (PCA). By reducing the dimensionality of the n-gram feature vectors, we make themmore manageable
and highlight the most important features.

2.3.1 Principal Component Analysis (PCA)

PCA transforms the data into a new coordinate system where the greatest variances are found along the first
coordinates, known as the principal components. Given an input data matrix X, where X ∈ Rn×m represents
a dataset with n samples (rows) and m features (columns), PCA is performed on the covariance matrix:

C =
1

n
XTX

The eigenvectors of C define the principal components, and the corresponding eigenvalues indicate the
amount of variance captured by each component. The transformation to the new coordinate system is given
by:

Z = XW
whereW ∈ Rm×k is the matrix whose columns are the top-k eigenvectors of C, corresponding to the largest

eigenvalues. The resulting matrix Z ∈ Rn×k represents the transformed data in the reduced k-dimensional
space.

2.3.2 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) factorises a given matrix into three other matrices, capturing the most
significant underlying structures. Unlike PCA, which relies on the covariance matrix, SVD operates directly
on the original data and is particularly useful for sparse matrices and text data. Given the n-gram matrix
X ∈ Rn×m, where n represents the number of samples (words) and m represents the number of features
(n-grams), we decompose X as:

X = UΣVT

5

whereU ∈ Rn×n contains the left singular vectors, representing word relationships,Σ ∈ Rn×m is a diagonal
matrix of singular values, indicating the importance of each dimension, and VT ∈ Rm×m contains the right
singular vectors, representing n-gram relationships.

To reduce dimensionality while preserving essential structure, we approximate X using only the top-k
singular values:

Xk ≈ UkΣkVT
k

where Uk ∈ Rn×k contains the top-k left singular vectors, Σk ∈ Rk×k is the truncated diagonal matrix of
the largest k singular values, and VT

k ∈ Rk×m contains the top-k right singular vectors.
This reduced representation retains the most important phonetic structures while significantly reducing

computational complexity.

2.4 Similarity Measures for Word Prediction
After dimensionality reduction, a new phonetic input is mapped into the reduced feature space, where its
phonetic variant is compared to stored word representations. The goal is to retrieve the closest valid word
based on phonetic distance.

2.4.1 Distance Metrics

Given a test phoneme input q, similarity is computed against stored word vectors Xk, which are precomputed
from phonetic spellings. The similarity measures determine the most likely intended word.

A distance metric d(q, x) is a function that quantifies how different two phoneme vectors are. Formally,
it must satisfy the following properties:

1. Non-negativity: d(q, x) ≥ 0, with equality if and only if q = x.

2. Symmetry: d(q, x) = d(x,q).

3. Triangular inequality: d(q, x) + d(x,y) ≥ d(q,y), ensuring that direct distances are never greater than
indirect paths.

Since similarity is the inverse of distance, we define similarity measures as transformations of distance
functions, such as:

s(q, x) = 1

1 + d(q, x)
or

s(q, x) = 1− d(q, x)
max d

where higher similarity values indicate phonetic closeness. Cosine similarity is an exception, as it is inher-
ently a similarity measure rather than a distance.

In this study, we evaluate phonetic retrieval using Cosine Similarity, Euclidean Distance, and Manhattan
Distance, comparing their effectiveness in matching phonetic spellings to intended words.

6

1. Cosine Similarity: Measures the directional alignment of vectors, useful when phonetic representations
vary in magnitude but maintain structural consistency:

cos(θ) = q · xw
∥q∥∥xw∥ =

∑n
i=1 qixwi√∑n

i=1 q
2
i

√∑n
i=1 x

2
wi

where q is the test phoneme input vector and xw is the stored word vector. This is effective for phonetic
mappings where the relative relationships between features matter more than absolute distance.

2. Euclidean Distance: Measures the straight-line distance between phonetic vectors in the reduced space:

dE(q, xw) = ∥q− xw∥2

Useful for cases where phonetic misspellings alter multiple phoneme components simultaneously.

3. Manhattan Distance: Computes phonetic similarity by summing absolute differences:

dM (q, xw) =
k∑

i=1

|qi − xwi |

Captures phonetic structure by emphasising stepwise differences, making it ideal for cases where phoneme
insertions, deletions, or substitutions occur in a structured, sequential manner - similar to navigating a
grid where changes occur in discrete steps along individual phoneme dimensions.

2.5 Phonetic Spelling Correction and Word Retrieval
To find the best match, we retrieve the closest stored word w∗:

w∗ = argmin
w

d(q, xw)

where d is the distance metric chosen. The process is as follows.

1. Phonetic Vectorisation: Encode the input word as an n-gram feature vector.

2. Dimensionality Reduction: Project the vector into the SVD/PCA-reduced feature space.

3. Similarity Computation: Find the closest stored phoneme representation based on similarity.

4. Word Retrieval: Retrieve the best match using SQLite, where phonetic variants are indexed for efficient
lookup.

SQLite stores precomputed phoneme variants and their word mappings, allowing fast similarity-based re-
trieval rather than recomputing vector comparisons for every query.

By combining vector-based phoneme mapping, dimensionality reduction, and efficient similarity search,
this approach effectively bridges the gap where traditional rule-based phonetic spelling correction methods
fail.

7

2.6 Challenges in the Methodology
This section outlines the key challenges faced during the development of the phonetic spelling correction
system and the solutions implemented.

2.6.1 Choosing the right Lexical Dataset

A phonetic lexicon was needed that included phoneme transcriptions to proceed. Several issues arose in finding
the right lexicon. Many phonetic lexicons were based on American English, whereas the project focused on
Australian English. In addition, different phonetic transcription systems, for example, ARPAbet vs. IPA,
where ARPAbet lacks phonemes found in Australian English. An Australian English lexicon was selected
and preprocessing techniques were applied to normalise the phoneme representation, ensuring spaces between
phonemes for correct tokenisation.

2.6.2 Preprocessing Requirements: Formatting and Handling Special Characters

The lexicon contained various formatting inconsistencies. For instance, the phonemes had no spaces between
them, making tokenisation difficult. Diacritics (“ ’ ”, “ , ”, and “ ː ”) were removed. The entries were cleaned of
zero-width joiners and other unicode characters. The solution in implementing these preprocessing steps was
to strip stress markers and ensure spaces between phonemes for better tokenisation. The unwanted Unicode
characters were removed.

2.6.3 Data Explosion Issue: Exponential growth in data set size

The generation of phoneme variants led to an exponential increase in the size of the data set. Each phoneme
sequence had multiple possible letter mappings, resulting in a combinatorial expansion of word spellings.
As the number of phonemes per sequence increased, the number of possible spellings grew exponentially,
significantly increasing the storage and computational requirements. For instance, if a phoneme sequence
contained five (5) phonemes and each phoneme had three (3) possible letter mappings, the number of unique
spellings for a single word would be:

35 = 243

This rapid combinatorial growth underscores the need for dimensionality reduction and efficient phonetic
encoding techniques to manage the dataset effectively. The solution involved restricting phoneme-letter map-
pings to a maximum of 10 variants per word, implementing sampling techniques to limit phoneme sequence
variations, and queue processing when saving in SQLite to avoid memory overload.

2.6.4 Mapping Issues: Converting Phonemes to Letters

There were many non-singular one-to-one phoneme mappings, meaning that multiple letters could map to
the same phoneme. For example, “f”, “ph”, “gh” all map to IPA [f] and some phonemes had no direct letter

8

equivalent in English. Unknown phonemes appeared that were not in the mapping dictionary. For example,
the voiceless velar fricative /x/ as in Scottish English “loch” or German “Bach”, has no standard English letter,
and for the glottal stop /ʔ/ in Cockney “bo’le” for “bottle”, English does not have a letter at all. The solutions
involved creating a phoneme-to-letter dictionary with multiple mappings per phoneme. Then, to identify
and capture phonemes that had not been converted, introducing a default “UNK” (unknown) mapping to
log unhandled phonemes to a separate file (unhandled_phonemes.log) for further debugging and mapping.
For instance, mapping /x/ → [“kh”, “h”, “k”] and mapped the glottal stop /ʔ/ → [“”, “’”]. Additionally,
tokenisation methods were implemented to preserve multicharacter phonemes before mapping aided correct
phoneme-to-letter transcription.

2.6.5 Vectorisation and Dimensionality Challenges: High-Dimensional Data for Phoneme Embed-
dings

After mapping phonemes to letters, the next challenge was to vectorise phoneme spellings. The system used
bigram and trigram vectorisation, which created a high-dimensional feature space, increasing computational
cost. To solve this, PCA (Principal Component Analysis) and SVD (Singular Value Decomposition) were applied
to reduce dimensions. Variance retention in scaled versus unscaled data was evaluated to ensure optimised
results. Dimensionality was successfully reduced while maintaining the distinctiveness of the word. The
Manhattan distance, cosine similarity, and Euclidean distance were used to compare phonetic spellings.

2.6.6 Summary of Key Challenges and Solutions

The challenges in this project influenced the design of the phonetic spelling prediction system, and are sum-
marised in Table 2. Addressing these issues required:

• Selecting the right dataset (IPA-spaced phonetic lexicon).

• Implementing strong preprocessing (cleaning, tokenisation).

• Optimising computational efficiency (restricting explosion, reducing dimensions).

• Testing multiple approaches (phoneme-letter mapping, vectorisation).

These solutions ensured that the project successfully processed phonetic spellings while maintaining com-
putational feasibility.

3 Results
This section presents the impact of pre-scaled and post-scaled dimensionality reduction on phonetic spelling
correction. The focus is on variance retention and the effectiveness of similarity measures.

9

Challenge Issue Solution

Finding a lexicon No standard dataset for Australian En-
glish phonetics

Selected Australian lexicon and
applied IPA normalisation

Preprocessing phonemes No spaces, stress markers, Unicode
issues

Used regex-based cleaning, en-
sured space-separated phonemes

Data Explosion Phoneme-to-letter mappings in-
creased dataset size massively

Limited mappings, capped vari-
ant generation, used chunked
processing

Phoneme-to-letter map-
ping

Some phonemes had no English letter
equivalent

Created fallback “UNK” map-
pings, logged missing phonemes

Vectorisation complexity Bigram/trigram embeddings created
high-dimensional vectors

Applied PCA/SVD, optimised vari-
ance retention

Dimensionality reduction Needed to balance information loss
vs. vector size

Used variance analysis before and
after scaling

Table 2: Summary of Challenges and Solutions in Phonetic Spelling Correction

3.1 Dimensionality Reduction and Variance Analysis
Dimensionality reduction was applied to retain the essential phonetic structure while reducing computational
complexity. PCA and SVD were applied before and after feature scaling, and their effectiveness was analysed
based on variance retention.

3.1.1 Variance Per Component

The variance explained per component for PCA and SVD is shown in Figure 1.

Figure 1: Per-component variance for PCA and SVD (pre- and post-scaling).

10

From the figure, it is evident that pre-scaled SVD captures most variance in the first few components,
making it efficient for compression. In contrast, post-scaled SVD distributes variance more evenly, avoiding
dominance by high-magnitude phonemes.

3.1.2 Cumulative Variance Explained

The cumulative variance for PCA and SVD is visualised in Figure 2.

Figure 2: Cumulative variance explained for PCA and SVD (pre- and post-scaling).

Observations from the figure indicate that pre-scaled SVD reaches 80% variance at approximately 20 com-
ponents, while post-scaled SVD requires around 45 components. Despite the slower variance accumulation,
post-scaled SVD leads to better word retrieval accuracy, as discussed next.

3.2 Effectiveness of Similarity Measures in Phonetic Word Prediction
Phonetic similarity retrieval was evaluated using cosine similarity, Euclidean distance, and Manhattan dis-
tance. The results were compared using both pre-scaled and post-scaled datasets.

3.2.1 Pre-Scaled SVD Results

Cosine similarity retrieved phoneme variants with some structure but struggled with multi-syllabic words.
Euclidean and Manhattan distances disproportionately matched shorter phoneme variants, making them in-
effective for accurate phonetic spelling correction. Many matches were single-phoneme outputs, leading to
errors in phonetic word prediction.

11

Table 3: Phonetic Word Prediction (Pre-Scaled SVD)
Input Method Closest Match Distance

ingre
Cosine surly, swirly, surlier, surreal ≈ 0.55

Euclidean e, ea, E ≈ 1.32

Manhattan ER, Er, Ir ≈ 7.27

halow
Cosine revers’s, Rickey’s, air ≈ 0.56

Euclidean A, AA, AR ≈ 0.44

Manhattan A, AA, AR ≈ 2.42

pitcha
Cosine Quebec’s, weep, quickie, keep ≈ 0.63

Euclidean E, e, ea ≈ 1.18

Manhattan A, a, eh ≈ 6.80

3.2.2 Post-Scaled SVD Results

A significant improvement was observed in post-scaled SVD, particularly for cosine similarity. Cosine similarity
now retrieves multi-syllabic phoneme variants, indicating better phonetic structure preservation. Euclidean
and Manhattan distances still fail to capture the phonetic structure, returning mostly short, truncated phoneme
variants. The retrieved words are now semantically and phonologically closer to the intended correct spelling.

Table 4: Phonetic Word Prediction (Post-Scaled SVD)
Input Method Closest Match Distance

ingre
Cosine tinkering, ringings, printings ≈ 0.09

Euclidean e’en, T, Thai ≈ 4.17

Manhattan T, Te, Ty ≈ 22.97

halow
Cosine Missourian, Rousseau’s, pronoun ≈ 0.05

Euclidean Ron, rain, rein ≈ 3.83

Manhattan T, Te, Thai ≈ 20.36

pitcha
Cosine chitchat, Rorschach, nature ≈ 0.01

Euclidean Ron, Wren, rain ≈ 3.95

Manhattan T, Te, Thai ≈ 21.63

3.3 Mathematical Interpretation of Results
The results suggest that post-scaled SVD improves the phoneme vector space for word retrieval due to balanced
feature scaling. Cosine similarity measures the angular distance, meaning that it performs best when feature
magnitudes are normalised. Euclidean and Manhattan distances depend on absolute magnitude, making them
unsuitable when phoneme representations vary significantly in scale.

12

Mathematically, post-scaling transforms feature distributions to have unit variance, ensuring that phonetic
distance is based on meaningful phoneme structure rather than raw frequency. Cosine similarity benefits from
this transformation because it measures the relative orientation of phoneme vectors rather than their raw
magnitude.

4 Discussion and Conclusion
4.1 Summary of Findings
This study explored the correction of phonetic spelling using dimensionality reduction techniques and simi-
larity metrics. The primary goal was to improve the retrieval of phonetic words using feature transformation
methods such as PCA and SVD. The performance of pre-scaled and post-scaled SVD was evaluated based on
variance retention and phonetic similarity measures.

Key results demonstrated that:

• Pre-scaled SVD retained a higher cumulative variance in fewer dimensions but led to suboptimal word
retrieval due to imbalanced feature scaling.

• Post-scaled SVD, despite requiring more components to reach the same variance threshold, significantly
improved phonetic word prediction accuracy.

• Cosine similarity emerged as themost effectivemetric, outperforming Euclidean andManhattan distances
in retrieving multi-syllabic phoneme variants.

The shift from pre-scaled to post-scaled SVD improved the alignment of phoneme vector representations,
leading to more accurate phonetic word retrieval. Although the Euclidean and Manhattan distances struggled
with phonetic structure preservation, cosine similarity successfully captured phonological relationships by
measuring angular similarity.

4.2 Implications and Contributions
The results highlight the importance of feature scaling in phonetic representation. The post-scaling process
ensures that phoneme vectors are mapped in a way that preserves their relative phonetic structure, improving
similarity-based retrieval. The findings contribute to enhanced phonetic spelling correction methodologies,
improved handling of non-standard phoneme spellings, and a scalable approach to processing phonetic input
using dimensionality reduction.

This research provides a foundation for further refinement of phonetic spelling correction models, partic-
ularly in applications where spelling errors are heavily influenced by phonetic transcription inconsistencies.

13

4.3 Future Work
Although this study demonstrates the effectiveness of post-scaled SVD and cosine similarity, several enhance-
ments can be pursued. Integrating Hidden Markov Models (HMMs) could improve phoneme clustering by
capturing sequential dependencies in spoken language. Further, exploring contextual word embeddings, for
instance Word2Vec, BERT or transformer-based architectures, could refine phonetic similarity by incorporat-
ing broader linguistic patterns.

Expanding the dataset with larger and more diverse phonetic corpora would enhance model robustness
and generalisation, ensuring better performance across various dialects and speech patterns. Furthermore,
alternative dimensionality reduction techniques, such as t-SNE and UMAP, could be explored to improve the
preservation of phonetic structures in a reduced space.

Deploying this methodology in a real-time phonetic spelling correction system and conducting user eval-
uations would provide insights into its practical effectiveness. Future iterations could incorporate feedback-
driven refinements to optimise accuracy and usability in real-world applications.

4.4 Conclusion
This study demonstrated that post-scaled SVD, combined with cosine similarity, significantly enhances pho-
netic spelling correction. While pre-scaled SVD efficiently captures variance, its reliance on unnormalised
feature magnitudes reduces retrieval accuracy. In contrast, post-scaling ensures balanced phoneme represen-
tations, leading to more precise word predictions.

These findings highlight the crucial role of feature scaling in phoneme vectorisation and confirm that cosine
similarity is the most effective metric for phonetic retrieval. By preserving phonetic structure while reducing
dimensionality, post-scaled SVD provides a strong foundation for real-world phonetic spell-checking systems.

Future research should refine phoneme embeddings, incorporating probabilistic models, contextual em-
beddings, or deep learning architectures to further enhance accuracy. Integrating this approach into real-time
phonetic correction tools could provide practical support for individuals with phonetic spelling tendencies,
improving accessibility and communication.

Acknowledgements
• Associate Professor Simon James

• Associate Professor Julien Ugon

With thanks

14

References
Bahr, Ruth Huntley, Stephanie Lebby, and Louise C Wilkinson (2020). “Spelling error analysis of written sum-

maries in an academic register by students with specific learning disabilities: Phonological, orthographic,
and morphological influences”. In: Reading and Writing 33.1, pp. 121–142.

Brown, Gordon DA and Richard PW Loosemore (1994). “Computational approaches to normal and impaired
spelling”. In: Handbook of spelling: Theory, process and intervention, pp. 319–335.

Dessemontet, Rachel Sermier et al. (2021). “Effects of a phonics-based intervention on the reading skills of
students with intellectual disability”. In: Research in Developmental Disabilities 111, p. 103883.

Flint, Emma et al. (2017). “A text normalisation system for non-standard English words”. In: Proceedings of the
3rd Workshop on Noisy User-generated Text, pp. 107–115.

Frith, Uta (1980). Cognitive processes in spelling. ERIC.
Garay-Vitoria, Nestor and Julio Abascal (2006). “Text prediction systems: a survey”. In: Universal Access in the

Information Society 4, pp. 188–203.
Knuth, Donald E. (1998). The Art of Computer Programming, Volume 3: Sorting and Searching. 2nd. Addison-

Wesley. ISBN: 978-0201896855.
Leutzinger, Bridget (2022). “Phonics and Spelling Intervention for Children with Intellectual Disabilities”. In:

Public Access Theses, Dissertations, and Student Research from the College of Education and Human Sciences.
412.

Mikolov, Tomas et al. (2013). “Efficient Estimation of Word Representations in Vector Space”. In: arXiv preprint
arXiv:1301.3781.

Nagata, Ryo, Hiroya Takamura, and Graham Neubig (2017). “Adaptive spelling error correction models for
learner English”. In: Procedia Computer Science 112, pp. 474–483.

Pan, Steven C, Timothy C Rickard, and Robert A Bjork (2021). “Does spelling still matter—and if so, how
should it be taught? Perspectives from contemporary and historical research”. In: Educational Psychology
Review, pp. 1–30.

Pennington, Jeffrey, Richard Socher, and Christopher D Manning (2014). “Glove: Global vectors for word
representation”. In: Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pp. 1532–1543.

Philips, Lawrence (2000). “The double metaphone search algorithm”. In: C/C++ users journal 18.6, pp. 38–
43.

Phillips, Lawrence (2000). The Double Metaphone Search Algorithm. URL: https://drdobbs.com/the-double-

metaphone-search-algorithm/184401251?pgno=2.
Rubehn, Arne et al. (2024). “Generating Feature Vectors from Phonetic Transcriptions in Cross-Linguistic Data

Formats”. In: arXiv preprint arXiv:2405.04271.
Ryskina, Mariia (2022). “Learning Computational Models of Non-Standard Language”. PhD thesis. Carnegie

Mellon University.

15

https://drdobbs.com/the-double-metaphone-search-algorithm/184401251?pgno=2
https://drdobbs.com/the-double-metaphone-search-algorithm/184401251?pgno=2

Sofroniev, Pavel and Çağrı Çöltekin (2018). “Phonetic vector representations for sound sequence alignment”.
In: Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and Morphology,
pp. 111–116.

Tong, Xiuli et al. (2009). “Morphological awareness, orthographic knowledge, and spelling errors: Keys to
understanding early Chinese literacy acquisition”. In: Scientific Studies of Reading 13.5, pp. 426–452.

Treistman, Avraham et al. (2022). “Word embedding dimensionality reduction using dynamic variance thresh-
olding (DyVaT)”. In: Expert Systems with Applications 208, p. 118157.

Trinh, Ha et al. (2012). “Applying prediction techniques to phoneme-based AAC systems”. In: Proceedings of
the Third Workshop on Speech and Language Processing for Assistive Technologies, pp. 19–27.

Vykhovanets, Valeriy S, Jianming Du, and Sergey A Sakulin (2020). “An overview of phonetic encoding algo-
rithms”. In: Automation and Remote Control 81, pp. 1896–1910.

Zouhar, Vilém et al. (2023). “Pwesuite: Phonetic word embeddings and tasks they facilitate”. In: arXiv preprint
arXiv:2304.02541.

16

	Introduction
	Problem Statement and Motivation
	Phonetic Spelling and Types of Spelling Errors
	Phonetic Spelling Challenges and Existing Approaches
	Phonetic Feature Representation and Vectorisation
	Research Gap and Project Contribution

	Methodology
	Phonetic Processing
	Lexicon Selection
	Phoneme Tokenisation
	Phoneme-to-Letter Mapping

	Vectorisation of Phonetic Representations
	N-Gram Feature Matrix
	High-Dimensional Representation

	Dimensionality Reduction
	Principal Component Analysis (PCA)
	Singular Value Decomposition (SVD)

	Similarity Measures for Word Prediction
	Distance Metrics

	Phonetic Spelling Correction and Word Retrieval
	Challenges in the Methodology
	Choosing the right Lexical Dataset
	Preprocessing Requirements: Formatting and Handling Special Characters
	Data Explosion Issue: Exponential growth in data set size
	Mapping Issues: Converting Phonemes to Letters
	Vectorisation and Dimensionality Challenges: High-Dimensional Data for Phoneme Embeddings
	Summary of Key Challenges and Solutions

	Results
	Dimensionality Reduction and Variance Analysis
	Variance Per Component
	Cumulative Variance Explained

	Effectiveness of Similarity Measures in Phonetic Word Prediction
	Pre-Scaled SVD Results
	Post-Scaled SVD Results

	Mathematical Interpretation of Results

	Discussion and Conclusion
	Summary of Findings
	Implications and Contributions
	Future Work
	Conclusion

	References

