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Abstract

This report presents various techniques for the construction of large graphs with low degree and diameter,

in an investigation of a graph-theoretic optimisation problem known as the degree-diameter problem. The

techniques include both constructions of graphs such as the de Bruijn graph, Kautz graph, and Brown graph,

as well as functions of graphs including the Kronecker product, star product, vertex duplication, and voltage

assignment. We discuss the theory of these techniques along with their implementations in the mathematical

software system SageMath. The implementation of these techniques will be used to programatically construct

the currently-known low-diameter networks, and provides computational groundwork to improve on the best

known constructions.

1 Introduction

Scientific and AI applications are increasingly demanding more resources; namely processors, memory and

accelerators. These applications require multi-node configurations integrated with some type of interconnection

network. The performance of these applications is influenced by how the processing nodes are connected, which

is defined as the network topology. Key parameters of the network topology are the number of nodes (or

vertices), and the maximum distance between these nodes. The degree-diameter problem is one way of formally

characterising the constructions of graphs (or networks) that, for a given node degree (number of neighbouring

vertices) and diameter (maximum number of edges between any two vertices), maximise the number of nodes

in the graphs. This research explores techniques to build low diameter graphs, with emphasis on diameter

three, that maximise the degree-diameter problem for degrees that are representative of current and foreseeable

network technology. An upper bound for the number of nodes of a network is given by the Moore bound,

M(deg, diam) (whose value is approximately (deg− 1)diam); see [3] and [4, p. 5,22]. Our current knowledge on

lower bounds for the optimal size N(deg, diam) of a network with maximum degree deg and diameter diam can

be found in the form of tables of largest known graphs in [3]. For diameter 2, Brown [4] constructed a graph

of maximum degree deg and 1 + (deg − 1) + (deg − 1)2 nodes, for each positive integer deg such that deg − 1

is a prime power. The Brown graph ensures that N(deg, 2) is asymptotically equivalent to the Moore bound.

We can get large graphs of diameter two whose number of nodes is more than 95% of the corresponding Moore

bound. The MMS graphs [4] are another good construction for diameter two. For diameter three, Delorme [4],

seemingly inspired by the Brown graphs, produced two important constructions, the Kronecker product and

the star product of graphs. These two constructions already ensure that N(deg, 3) is asymptotically equivalent

to the corresponding Moore graph. It was also noted by Delorme that, combining these constructions with the

Paley graph, we can obtain graphs of diameter three whose number of nodes are more 50% of the Moore bound.

Constructions of large graphs have found important applications in the construction of network topologies. See,

for instance, the Slimfly network topology of diameter two [1], which is based on the MMS graphs, and the

Bundlefly network of diameter three[2], which is a star product of MMS graphs and Payley graphs. In this
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project, we will apply the most successful approaches, which are borrowed from geometry and algebra. These

include the voltage assignment technique [4], polarity graphs, the Kronecker product [4], and the star product

of graphs [4]. A background of the necessary mathematical concepts is provided in the appendix.

2 Statement of Authorship

The algorithms and code included in this report were devised and implemented by Matthew Cochran, based on

the techniques and concepts presented in the literature and the guidance of Dr Guillermo Pineda-Villavicencio.

The implementations were written using SageMath, and leverage existing SageMath libraries.

3 Techniques for the constructions of large graphs with low degree

and diameter

The following definitions are adapted from [5] unless otherwise stated.

3.1 de Bruijn Graph

The de Bruijn graph of type (t, k) has its vertex set formed by all sequences of length k, the entries of which

are taken from a fixed alphabet A consisting of t distinct letters. Two vertices u = (u1, u2, . . . , uk) and

v = (v1, v2, . . . , vk) are joined by an edge if either ui = vi + 1 or ui + 1 = vi, for 1 ≤ i ≤ k − 1.

The generation of a de Bruijn graph with parameters (t, k) can therefore be described according to the

following algorithm:

Algorithm 1 de Bruijn Graph

alphabet← {0, 1, 2, . . . , t− 1}

V ← {v ∈ alphabetk}

E ← ∅

for all u = [u1, u2, . . . , uk] ∈ V do

for all v = [v1, v2, . . . , vk] ∈ V do

for all a ∈ alphabet do

if v = [a, u1, u2, . . . , uk−1] or v = [u2, u3, . . . , uk, a] then

E ← E ∪ {(u, v)}

end if

end for

end for

end for

I have implemented this in SageMath as follows:
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from i t e r t o o l s import product

def de bru i jn g raph ( t : int , k : int ) −> Graph :

a lphabet = [ i for i in range ( t ) ]

v e r t i c e s = product ( alphabet , r epeat=k )

g = Graph ( loops=True )

for ver tex in l i s t ( v e r t i c e s ) :

g . add vertex ( ver tex )

for u in g . v e r t i c e s ( ) :

for v in g . v e r t i c e s ( ) :

for l e t t e r in alphabet :

i f ( l e t t e r , ) + u [ : −1 ] == v or u [ 1 : ] + (

l e t t e r ,

) == v :

g . add edge (u , v )

return g

If t ≥ 3 and k ≥ 3, the de Bruijn graph of type (t, k) has order tk, diameter k, and maximum degree 2t. For

any D and even ∆, these graphs give the lower bound

N∆,D ≥
(

∆

2

)D

Accordingly, I can validate my implementation by executing the following code:

t , k = 3 , 3

g = de bru i jn g raph ( t , k )

a s s e r t g . order ( ) == t ∗∗ k

a s s e r t g . diameter ( ) == k

a s s e r t max( [ g . degree ( v ) for v in g . v e r t i c e s ( ) ] ) == 2 ∗ t

Naturally, the above and forthcoming validations hold for all valid input to the graph construction.

SageMath also has a built-in function to generate de Bruijn graphs, which has been parameterised by degree

and diameter here.

def d e b r u i j n ( degree : int , d iameter : int ) −> Graph :

i f degree % 2 != 0 :

raise ValueError ( ”Degree  must  be  even . ” )

a l p h a b e t s i z e = degree // 2
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word length = diameter

return digraphs . DeBruijn ( a l p h a b e t s i z e , word length ) . t o un d i r e c t ed ( )

3.2 Kautz Graph

The Kautz graph of type (t, k) is an induced subgraph of the de Bruijn graph of type (t, k). The Kautz graph

of type (t, k) is obtained by deleting words (represented by vertices) with two consecutive identical letters in

the de Bruijn graph of type (t, k).

Since the Kautz graph is an induced subgraph of the de Bruijn graph, the algorithm to generate a Kautz

graph of type (t, k) can be described, with reference to the previous algorithm, as follows:

Algorithm 2 Kautz Graph

G← de bruijn(t, k)

for all v = [v1, v2, . . . , vk] ∈ V (G) do

if ∃i ∈ {1, 2, . . . , k − 1} such that vi = vi+1 then

G← G− v

end if

end for

return G

My resulting SageMath code is as follows:

def kautz graph ( t , k ) :

g = d e b r u i j n ( t , k )

for ver tex in g . v e r t i c e s ( ) :

i f any ( [ ve r tex [ i ] == vertex [ i + 1 ] for i in range ( k − 1 ) ] ) :

g . d e l e t e v e r t e x ( ver tex )

return g

If t ≥ 3 and k ≥ 3, the Kautz graph of type (t, k) has order t(t − 1)k−1, diameter k, and maximum degree

2t− 2. Thus, for any D and even ∆, such graphs improve the bound given in (3.2), and consequently, we have

N∆,D ≥
(

∆

2

)D

+

(
∆

2

)D−1

Thus, I can validate my implementation by executing the following code:

t , k = 3 , 3

g = kautz graph ( t , k )

a s s e r t g . order ( ) == t ∗ ( t − 1) ∗∗ ( k − 1)

a s s e r t g . diameter ( ) == k

a s s e r t max( [ g . degree ( v ) for v in g . v e r t i c e s ( ) ] ) == 2 ∗ t − 2
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Again, SageMath has a built-in function to generate Kautz graphs, which I have parameterised by degree

and diameter.

def kautz ( degree : int , d iameter : int ) −> Graph :

return digraphs . Kautz ( degree // 2 , diameter ) . t o un d i r e c t ed ( )

3.3 Brown Graph

The Brown graph is a polarity graph of a projective plane of order ∆−1, whose polarity has ∆ absolute points.

The Brown graph can be constructed as follows: Let V be a three-dimensional vector space over the finite

field F of order ∆ − 1. The vertex set of Γ is formed by a non-zero vector from each of the one-dimensional

subspaces of V , and the edge set is formed by edges with orthogonal endvertices.

Implemented in SageMath, I have constructed the Brown graph according to the above description as follows:

def brown graph ( degree : int ) −> Graph :

f = F i n i t e F i e l d ( degree − 1)

g = Graph ( )

v e r t i c e s = Pro j e c t i veSpace (2 , f ) . r a t i o n a l p o i n t s ( )

g . a d d v e r t i c e s ( v e r t i c e s )

for v in g . v e r t i c e s ( ) :

for u in g . v e r t i c e s ( ) :

i f v == u : continue

i f vec to r ( v ) ∗ vec to r (u) == 0 :

g . add edge (v , u)

return g

The Brown graph has diameter 2, ∆ vertices of degree ∆ − 1 (the absolute points of the polarity) and

(∆− 1)2 vertices of degree ∆.

Therefore, I validate my implementation by executing the following code:

degree = 5

g = brown graph ( degree )

a s s e r t g . diameter ( ) == 2

a s s e r t g . order ( ) == ( degree − 1) ∗∗ 2 + degree

a s s e r t len ( [ v for v in g . v e r t i c e s ( ) i f g . degree ( v ) == degree − 1 ] ) == degree

a s s e r t len ( [ v for v in g . v e r t i c e s ( ) i f g . degree ( v ) == degree ] ) == ( degree − 1) ∗∗ 2

3.4 Generalised Polygons

The current best known constructions for D = 2, 3 and 5 are polarity graphs of the corresponding generalised

polygons. Here, we will focus on the construction of the incidence graph of a generalised polygon, as it is used
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later along with the Kronecker product.

To construct the incidence graphs of generalised polygons in SageMath, we leverage GAP (Groups, Al-

gorithms, and Programming), a system for discrete computational algebra, for which SageMath provides an

interface. The lines used to construct the generalised polygons were sourced from [7].

g e n e r a l i s e d p o l y g o n = l ibgap . f u n c t i o n f a c t o r y ( ’ General isedPolygonByBlocks ’ )

i n c idence g raph = l ibgap . f u n c t i o n f a c t o r y ( ’ IncidenceGraph ’ )

def g e n e r a l i s e d p o l y g o n i n c i d e n c e g r a p h ( b locks : L i s t [ L i s t [ int ] ] ) −> Graph :

gen po ly = g e n e r a l i s e d p o l y g o n ( b locks )

gap g = inc idence g raph ( gen po ly ) . sage ( )

v e r t i c e s = gap g [ ” r e p r e s e n t a t i v e s ” ]

a d j a c e n c i e s = gap g [ ” a d j a c e n c i e s ” ]

a d j d i c t = { v e r t i c e s [ i ] : a d j a c e n c i e s [ i ] for i in range ( len ( v e r t i c e s ) )}

g = Graph ( a d j d i c t )

return g

Note that the above depends on the GAP package, FinInG, being installed.

3.5 Paley Graph

The Paley graph is a graph of diameter 2, used by Delorme in his construction of large graphs of diameter 6. It

is constructed as follows: Given the finite field F of order q such that q ≡ 1 (mod 4), the Paley graph of order

q is a graph whose vertex set is formed by the elements of F, and two vertices are adjacent if, and only if, their

difference is a non-zero square in F.

The Paley graph is available in SageMath as a function in the graphs module, parameterised by order.

def paley ( order ) :

g = graphs . PaleyGraph ( order )

return g

3.6 Kronecker Product

The Kronecker product is a function of two bipartite graphs Γ, with partite sets A and B and Γ′ with partite

sets A′ and B′, denoted by Γ ⊗ Γ′. It has vertex set (A × A′) ∪ (B × B′) and (a, a′) ∼ (b, b′) if and only if

ab ∈ E(Γ) and a′b′ ∈ E(Γ′).

The algorithm to generate the Kronecker product of two bipartite graphs can therefore be described as

follows:

6



Algorithm 3 Kronecker Product

Γ← bipartite graph(A,B,E)

Γ′ ← bipartite graph(A′, B′, E′)

V ← (A×A′) ∪ (B ×B′)

E ← ∅

for all u = (a, a′) ∈ V do

for all v = (b, b′) ∈ V do

if ab ∈ E(Γ) and a′b′ ∈ E(Γ′) then

E ← E ∪ {(u, v)}

end if

end for

end for

My resulting SageMath code is as follows:

from i t e r t o o l s import product

def kronecker ( g1 : Graph , g2 : Graph ) −> Graph :

try :

g1 = Bipart i teGraph ( g1 )

except Exception :

raise ValueError ( ”Graph  1  i s  not  b i p a r t i t e . ” )

try :

g2 = Bipart i teGraph ( g2 )

except Exception :

raise ValueError ( ”Graph  2  i s  not  b i p a r t i t e . ” )

a = l i s t ( product ( g1 . l e f t , g2 . l e f t ) )

b = l i s t ( product ( g1 . r i ght , g2 . r i g h t ) )

g = Graph ( )

for v in ( a + b ) :

g . a d d v e r t i c e s ( a + b)

for v1 in g . v e r t i c e s ( ) :

for v2 in g . v e r t i c e s ( ) :

i f g1 . has edge ( v1 [ 0 ] , v2 [ 0 ] ) and g2 . has edge ( v1 [ 1 ] , v2 [ 1 ] ) :

g . add edge ( v1 , v2 )

return g

The graph which is created by applying the Kronecker product is bipartite, has diameter max{D(Γ), D(Γ′)},
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order |A||A′| + |B||B′|, and maximum degree max{∆A∆A′ ,∆B∆B′}, where ∆X denotes the maximum degree

of the vertices in X.

I can verify this as follows:

a = randint (2 , 5)

b = randint (2 , 5)

g1 = Bipart i teGraph ( graphs . RandomBipartite ( a , b , 1 ) )

g2 = Bipart i teGraph ( graphs . RandomBipartite ( a , b , 1 ) )

g = Bipart i teGraph ( kronecker ( g1 , g2 ) )

a s s e r t g . diameter ( ) == max( g1 . diameter ( ) , g2 . diameter ( ) )

a s s e r t g . order ( ) == len ( g1 . l e f t ) ∗ len ( g2 . l e f t ) + len ( g1 . r i g h t ) ∗ len ( g2 . r i g h t )

a s s e r t max( [ g . degree ( v ) for v in g . v e r t i c e s ( ) ] ) == max( [ len ( g1 . l e f t ) ∗ len ( g2 . l e f t ) , len ( g1 . r i g h t ) ∗ len ( g2 . r i g h t ) ] )

Further, the Kronecker product of the incidence graph of a generalised quadrangle of order ∆− 1, ∆− 1 a

prime power, and its opposite, has maximum degree ∆2, diameter 4, and order 2(1+(∆−1)+(∆−1)2+(∆−1)3)2.

To verify the above, we also define the opposite of a bipartite graph Γ = (A ∪ B,E) as (B ∪ A,E). I have

implemented this in SageMath as follows:

def oppos i t e ( g : Bipart i teGraph ) −> Bipart i teGraph :

i f not isinstance ( g , Bipart i teGraph ) :

try :

g = Bipart i teGraph ( g )

except Exception :

raise ValueError ( ” Input  graph  i s  not  b i p a r t i t e . ” )

oppos i t e = Bipart i teGraph ( )

for edge in g . edges ( ) :

oppos i t e . add edge ( ( edge [ 1 ] , edge [ 0 ] ) )

return oppos i t e

With this, we can now verify the above result. Note that in the following code, generalised quadrangle is a

function first fetches the blocks of the generalised quadrangle from a file, and then constructs the incidence graph

of the generalised quadrangle using the aforementioned generalised polygon incidence graph function.

d e l t a = 4

gq = g e n e r a l i s e d q u a d r a n g l e ( d e l t a − 1)

op = oppos i t e ( gq )
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g = kronecker ( gq , op )

a s s e r t maximum degree ( g ) == d e l t a ∗∗ 2

a s s e r t g . diameter ( ) == 4

a s s e r t g . order ( ) == 2 ∗ (1 + ( d e l t a − 1) + ( d e l t a − 1) ∗∗ 2 + ( d e l t a − 1) ∗∗ 3)

3.7 Star Product

The star product of two graphs Λ and Γ, denoted by Λ ∗ Γ, results in graphs of greater order than de Bruijn

and Kautz graphs for diameter 4 and 6[8]. They are constructed by first choosing an orientation of the graph

arbitrarily; that is to say, assigning a direction to each of the undirected edges of Λ. A(Λ) then denotes

the set of all the arcs of Λ. For each arc (x, y) ∈ A(Λ), choose a bijection ω(x, y) on the set V (Γ). Then

V (Λ ∗ Γ) = V (Λ)× V (Γ) and

E(Λ ∗ Γ) = {(u, x)(v, y)|either u = v and xy ∈ E(Γ) or (u, v) ∈ A(Λ) and y = ω(u, v)(x)}.

The resulting graph has diameter at most D(Λ) +D(Γ), order |Λ| × |Γ|, and maximum degree ∆(Λ) + ∆(Γ). A

good choice of the bijections ω(x, y) can result in a diameter smaller than D(Λ) + D(Γ).

The algorithm to generate the star product of two bipartite graphs can therefore be described as follows:

Algorithm 4 Star Product

Γ← bipartite graph(A,B,E)

Γ′ ← bipartite graph(A′, B′, E′)

V ← (A×A′) ∪ (B ×B′)

E ← ∅

for all v = (a, a′) ∈ V do

for all u = (b, b′) ∈ V do

if ab ∈ E(Γ) and a′b′ ∈ E(Γ′) or a = b and a′b′ ∈ E(Γ′) or a′b′ ∈ E(Γ′) and a = b′ then

E ← E ∪ {(u, v)}

end if

end for

end for

My resulting SageMath code is as follows:

def s t a r p roduc t ( g1 : Graph , g2 : Graph , b : Dict ) −> Graph :

g = Graph ( )

g . a d d v e r t i c e s ( l i s t ( product ( g1 . v e r t i c e s ( ) , g2 . v e r t i c e s ( ) ) ) )

for u in g . v e r t i c e s ( ) :
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for v in g . v e r t i c e s ( ) :

i f u == v : continue

continue

i f (u [ 0 ] == v [ 0 ] and u [ 1 ] in g2 . ne ighbors ( v [ 1 ] ) ) or (u [ 0 ] in g1 . ne ighbors ( v [ 0 ] ) and b [ v [ 1 ] ] == u [ 1 ] ) :

g . add edge (u , v )

return g

3.8 Vertex Duplication

Given a (∆, D)-graph Γ, the technique of vertex duplication refers selecting a vertex x of Γ and adding a new

vertex x′ (the duplicate of x) such that N(x′) = N(x)∪x. The resulting graph has maximum degree ∆ + 1 and

diameter D.

Algorithm 5 Vertex Duplication

Γ← graph

v ← vertex

v′ ←v.duplicate

for all u ∈ N(v) do

add edge(v′, u)

end for

add edge(v′, v)

return Γ

My resulting SageMath code is as follows (note: this implementation chooses a random vertex to duplicate

by default):

def v e r t e x d u p l i c a t i o n ( g : Graph , v = None ) −> Graph :

i f v and v not in g . v e r t i c e s ( ) :

raise ValueError ( ” Vertex  must  be  in  graph . ” )

i f not v :

v = g . random vertex ( )

new vertex = g . add vertex ( )

for u in g . ne ighbors ( v ) :

g . add edge ( new vertex , u)

g . add edge ( new vertex , v )
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return g

3.9 Voltage Assignment

The technique of voltage assignment has been used in the construction of graphs with maximum degree 3 ≤

Delta ≤ 16 and diameter 2 ≤ D ≤ 10 [9]. The following definitions are taken from [9].

Let Γ be a finite, undirected graph, possibly with loops and multiple edges. We also allow semi-edges, which

are edges with just one end-vertex and with the other end free. To facilitate the description of voltages, we

think of the (undirected) edges of Γ that are not semi-edges as pairs of oppositely directed arcs. A semi-edge

admits, by definition, just one direction (into its unique end vertex). So, we obtain the digraph Λ. The number

of elements in the set A(Λ) of all arcs of Λ is therefore twice the number of all edges of Γ minus the number of

semi-edges. If e is an arc, then e−1 denotes the arc reverse to e; in the case of a semi-edge we set e−1 = e by

convention.

Let G be a finite group. A mapping α : A(Λ) → G is called a voltage assignment if α(e−1) = (α(e))−1 for

every arc e ∈ A(Λ). Thus, a voltage assignment sends a pair of mutually reverse arcs onto a pair of mutually

inverse elements of the group. Note that if e is a semi-edge, then the voltage condition means that α(e) has

order 2 in G. The pair (Λ, α) is the voltage graph, which determines a lift Λα of Λ as follows. The vertex set

and the arc set of the lift are V (Λα) = V (Λ)×G and A(Λα) = A(Λ)×G, respectively. In the lift, (e, g) is an

arc from the vertex (u, g) to the vertex (v, h) if, and only if, e is an arc from u to v in Λ and h = gα(e). The

lift itself is considered to be undirected, since (e, g) and (e−1, gα(e)) form a pair of mutually reverse arcs and

therefore give rise to an undirected edge of Λα.

I have implemented the following code in SageMath to obtain a voltage assignment of a graph given a group:

def vo l tage as s i gnment ( graph , group ) −> Dict :

members = l i s t ( group )

v a = {}

for e in graph . edges ( ) :

member = members . pop ( )

edge = ( e [ 0 ] , e [ 1 ] )

i n v e r s e e d g e = ( e [ 1 ] , e [ 0 ] )

i f not v a . get ( edge ) :

v a [ edge ] = [ ]

v a [ edge ] . append (member)

i f member . i n v e r s e ( ) in members :

i f not v a . get ( i n v e r s e e d g e ) :

v a [ i n v e r s e e d g e ] = [ ]
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v a [ i n v e r s e e d g e ] . append (member . i n v e r s e ( ) )

members . remove (member . i n v e r s e ( ) )

return v a

With this mapping, we can apply the voltage assignment to the graph to obtain the voltage graph. I have

also created a function which does this in SageMath:

def l i f t ( graph : Graph , vo l tage as s i gnment : Dict , group ) −> Graph :

vo l tage graph = Graph ( )

v e r t i c e s = [ ]

for v in graph . v e r t i c e s ( ) :

for h in group :

v e r t i c e s . append ( ( v , h ) )

vo l tage graph . a d d v e r t i c e s ( v e r t i c e s )

edges = [ ]

for e in graph . edges ( ) :

for h in group :

edges . append ( ( e [ 0 ] , e [ 1 ] , h ) )

for e in edges :

u , v , g = e

i f v in graph . ne ighbors (u ) :

for h in group :

for alpha in vo l tage as s i gnment [ ( u , v ) ] :

i f h == g ∗ vo l tage as s i gnment [ ( u , v ) ] [ 0 ] :

vo l tage graph . add edge ( ( u , g ) , (v , h ) )

return vo l tage graph

With these two functions, we are able to replicate the example in [9] in construction of the Petersen graph

using voltage assignment. Note that here, we manually construct the voltage assignment, as the above method

will find a different, but also valid, voltage assignment.

g = Graph ( loops=True , mult i edges=True )

g . a d d v e r t i c e s ( [ ”u” , ”v” ] )

g . add edge ( ”u” , ”u” )

g . add edge ( ”v” , ”v” )

g . add edge ( ”u” , ”v” )
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z5 = CyclicPermutationGroup (5 )

vo l tage as s i gnment = {

( ”u” , ”v” ) : [ z5 [ 0 ] ] ,

( ”v” , ”u” ) : [ z5 [ 0 ] ] ,

( ”u” , ”u” ) : [ z5 [ 1 ] , z5 [ 4 ] ] ,

( ”v” , ”v” ) : [ z5 [ 2 ] , z5 [ 3 ] ] ,

}

vo l tage graph = l i f t ( g . t o d i r e c t e d ( ) , vo l tage ass ignment , z5 )

a s s e r t vo l tage graph . i s i s o m o r p h i c ( graphs . PetersenGraph ( ) )

4 Discussion and Conclusion

The techniques for the construction of large graphs with low degree and diameter have been presented, along

with their implementations in SageMath. The techniques include both constructions of graphs such as the de

Bruijn graph, Kautz graph, and Brown graph, as well as functions of graphs including the Kronecker product,

star product, and vertex duplication. The implementations have been validated by verifying that the constructed

graphs satisfy the properties of the respective techniques.

In future, these implementations may be used to recreate and improve on the best known constructions of

large graphs with low degree and diameter, and to explore new constructions.
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6 Appendix

The following definitions are taken from [5].

6.1 Groups

Let X be a non-empty set, together with an associative binary operation ·. Then Ω = (X, ·) is a group if:

1. There exists an element id ∈ Ω, called the identity, such that for all ω ∈ Ω, id · ω = ω · id = ω.

2. For each ω ∈ Ω there exists an element ω−1 ∈ Ω, called the inverse of ω, such that ω−1 ·ω = ω ·ω−1 = id.

If the operation · is commutative, we say that the group is commutative. Commutative groups are called abelian.

The order of a group Ω, denoted by |Ω|, is the number of elements in Ω. The order of an element ω of a

finite group Ω is the smallest positive integer n such that ωn = id, where id is the identity element of Ω. An

element of order 2 is called an involution of Ω.

6.2 Graphs

Assume that [X]k denotes the set of all k-subsets of a set X. A graph Γ is a pair (V,E) of sets satisfying

E ⊆ [V ]2, where V ̸= ∅. The elements of V and E are called the vertices and edges of the graph Γ, respectively.

A graph so defined is called undirected, where each edge is an unordered pair of vertices, and hence, has no

direction.
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The vertex set V of a graph Γ is denoted by V (Γ), and the edge set of Γ by E(Γ). In some instances for a

vertex (or an edge), we may write x ∈ Γ instead of x ∈ V (Γ) (or E(Γ)). The number of vertices of Γ represents

the order of Γ, denoted |Γ|. An edge e = {x, y} may be written e = xy, xy, or x ∼ y. For an edge e = xy, we

say that x and y are theend vertices or ends of e, adjacent or neighbours, and incident with e. We also say that

e is incident with x and y. Two edges e ̸= f are adjacent if they share an end vertex. If two vertices x and y

are not adjacent, then we write x ̸∼ y.

We denote by EΓ(X,Y ) the set of edges in a graph Γ joining a vertex in X to a vertex in Y . For simplicity,

instead of EΓ({x}, Y ), we write EΓ(x, Y ), and instead of EΓ(X,X), we write EΓ(X). The set of all edges in

E(Γ) incident with a vertex x is denoted by EΓ(x).

Let Γ be a graph. The set of neighbours of a vertex x in Γ is denoted by NΓ(x). The set of neighbours of a

vertex set X, X ⊆ V (Γ), denoted by NΓ(X), can be defined as follows:

NΓ(X) =
⋃
x∈X

NΓ(x).

The degree of a vertex x is the number of edges incident with x, denoted by dΓ(x). The number ∆(Γ) =

max{dΓ(x) |x ∈ V (Γ)} is the maximum degree of Γ, while the minimum degree over all the vertices of Γ is

called the minimum degree of Γ.

In any of the aforementioned concepts, as elsewhere, the index referring to the underlying graph is dropped

if the reference is clear. For instance, in such cases, we write N(x) instead of NΓ(x).

Let Γ and Γ′ be two graphs. If V (Γ′) ⊆ V (Γ) and E(Γ′) ⊆ E(Γ), then Γ′ is a subgraph of Γ, denoted by

Γ′ ⊆ Γ. When we have Γ′ ⊆ Γ without equality, we say that Γ′ is a proper subgraph of Γ, denoted by Γ′ ⊂ Γ.

If Γ′ ⊆ Γ and Γ′ contains all the edges xy ∈ E(Γ) with x, y ∈ V ′ = V (Γ′), then Γ′ is an induced subgraph of Γ,

denoted by Γ[V ′].

Let Γ and Γ′ be two graphs. The graphs Γ and Γ′ are isomorphic, denoted by Γ ∼= Γ′, if there is a bijection

f : V (Γ) → V (Γ′) such that xy ∈ E(Γ) if, and only if, f(x)f(y) ∈ E(Γ′). The function f is called an

isomorphism, and if Γ = Γ′, it is called an automorphism.

The set of automorphisms of a graph Γ forms a group under the operation of composition of functions. This

group is called the automorphism group of Γ, denoted by Aut(Γ). The group Aut(Γ) is a permutation group

on V (Γ), which helps us to understand the symmetries in Γ. We say that Γ is vertex-transitive if Aut(Γ) acts

transitively on V (Γ), that is, for any two vertices u and v, there is an automorphism ω ∈ Aut(Γ) such that

ω(u) = v. Analogously, we say that Γ is edge-transitive if, for any two edges e and f in E(Γ), there is an

automorphism w ∈ Aut(Γ) such that w(e) = f , where w(e = {x, y}) = {w(x), w(y)}.

Let Γ be a bipartite graph with partite sets V1 and V2. A polarity ω on Γ is an involution of Aut(Γ) that

interchanges V1 and V2, that is, ω(V1) = V2 and ω(V2) = V1.

6.3 Generalised Polygons

Generalised polygons were introduced by Tits in 1974 [6]. They are related to incidence geometry, and their

definition requires elements of geometry, such as the notions of incidence structures and incidence graphs.
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An incidence structure is a triple Ω = (P,L, I), where P ̸= ∅ is a set of points, L ̸= ∅ is a set of lines,

P ∩ L = ∅, and I ⊆ P × L is a relation, called the incidence relation. Given a point p and a line l, if (p, l) ∈ I

then we say that p and l are incident.

Two points are collinear if they are incident with at least one common line. Two lines are concurrent if they

share at least one point. Given an incidence structure Ω, if each line is incident with s + 1 points, and each

point is incident with t + 1 lines, we say that Ω has order (s, t). If s = t then Ω is said to have order s.

An incidence structure Ω = (P,L, I) is said to be finite if P and L are finite sets.

Let Ω = (P,L, I) be an incidence structure. The incidence graph Γ of Ω is the graph with vertex set

V (Γ) = P ∪ L, and the following adjacency relation: (x, y) ∈ E(Γ)↔ xIy or yIx for x, y ∈ V (Γ).

A generalised D-gon is an incidence structure whose incidence graph is a bipartite graph of diameter D and

girth 2D. It is common to use standard names for small polygons, for instance, generalised quadrangle instead

of generalised 4-gon.

A generalised triangle of order s, s > 1, is a projective plane of order s. To date projective planes of order s

have been obtained only when s is a prime power.

Let Ω = (P,L, I) be an incidence structure with a polarity ω (a polarity of the incidence graph). The

polarity graph, denoted by Γω, of Ω with respect to ω is the graph with vertex set V (Γ) = P , and the following

adjacency relation: pp1 ∈ E(Γω) if p ̸= p1 and (p, ω(p1)) ∈ I. We call a point p an absolute point of the polarity

ω if (p, ω(p)) ∈ I. The number of absolute points of ω is denoted by Nω.
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