
Categories of directed and undirected

graphs

Chun Hei Lee
Supervised by Prof. Finnur Lárusson & Dr David Baraglia

University of Adelaide

January 2024

Abstract

This project mainly investigate the connection between the category of directed graphs and category of

undirected graph, by finding adjunctions to the forgetful functor. In addition, some various definitions of

graphs are introduced and relations between those definitions are discussed. The major result of this project

is answering the existence of adjunctions to the forgetful functor when different definitions of graphs are

adopted.

Contents

1 Introduction 2

2 Categories of graphs and forgetful functor 2

2.1 Directed graphs . 2

2.2 Quotient and universal property . 3

2.3 Undirected graphs and forgetful functor . 4

3 Adjunctions of the forgetful functor 5

3.1 Definition of adjunction . 6

3.2 Left adjoint of U . 6

3.3 Right adjoint of U . 7

4 Various types of graphs 11

4.1 Restricted (un)directed graphs and forgetful functors . 11

4.2 Forgetful functor theorem of graphs . 13

5 Acknowledgements 19

1

1 Introduction

Intuitively, one can obtain an undirected graph by forgetting how the edges of a directed graph is directed.

The first question come into mind is to find a reasonable way to undo this process. However, it is impossible

to exactly recover the original directed graph once you forget the orientation of each edges. The main theme

of this project is to find a way to convert an undirected graph to a directed graph which interact well with the

forgetting process.

Statement of Authorship

The results of this report are developed and written by Chun Hei Lee under the guidance provided by Professor

Finnur Larusson and Dr David Baraglia.

2 Categories of graphs and forgetful functor

In this section, we will introduce the category of directed graphs DG, category of undirected graphs UG and

the forgetful functor U .

2.1 Directed graphs

Definition 2.1. A directed graph A is a 4-tuple (V,E, s, t) where V,E are sets and s, t : E → V are functions.

• An element v ∈ V is called a vertex.

• An element e ∈ E is called an edge.

• The function s maps an edge e to a vertex s(e) called the source of that edge.

• The function t maps an edge e to a vertex t(e) called the target of that edge.

We say an edge is oriented from its source to its target. In addition, we can characterise the vertices and

edges of a graph by the following properties.

Definition 2.2. Let A = (V,E, s, t) be a directed graph. An edge e is called a loop if s(e) = t(e), a line

otherwise. We say A is loopless if {e ∈ E : s(e) = t(e)} = ∅. A vertex is called isolated vertex if it is neither a

source nor a target of any edge, denote the set of isolated vertex as Viso, i.e. Viso := V \ (s(E) ∪ t(E)).

Definition 2.3. Let A1 = (V1, E1, s1, t1) and A2 = (V2, E2, s2, t2) be directed graphs. A directed graph

homomorphism α : A1 → A2 consists of a pair of maps ⟨αV : V1 → V2, αE : E1 → E2⟩ which satisfy

s2αE = αV s1 and t2αE = αV t1 (2.1)

Remark 2.4. Condition (2.1) is called graph homomorphism property. It requires α to preserve the orientation

of edges, hence is a structure preserving map. When we write the pairs of maps of α, we use angle bracket

2

⟨αV , αE⟩ to emphasis it is a directed graph homomorphism rather than functions with ordered pairs as output.

We always put the vertex map on the first entry and the edge map on the second entry.

Proposition 2.5. A loop cannot be map into a line through directed graph homomorphism.

Proof. Let E1 be a edge set of directed graph A1 and e ∈ E1 be a loop. By way of contradiction, assume there

exist a graph homomorphism α maps e to a line αE(e) ∈ E2. Since e is a loop, s1(e) = t1(e). Apply αV on

both side give αV (s1(e)) = αV (t1(e)) and (2.1) imply s2(αE(e)) = t2(αE(e)). On the other hand, αE(e) is a

line yields s2(αE(e)) ̸= t2(αE(e)), this is absurd.

Remark 2.6. Now if we see directed graphs as objects and graph homomorphisms as morphisms, a category of

directed graphs DG is formed. A natural way to define the composition of morphisms is to compose the maps

termwise, in particular, suppose α1 : A1 → A2, α2 : A2 → A3 and α1 = ⟨α1V , α1E⟩, α2 = ⟨α2V , α2E⟩, we have

α2 ◦ α1 : A1 → A3 and α2 ◦ α1 := ⟨α2V ◦ α1V , α2E ◦ α1E⟩.

In this manner, the identity morphism is the identity map on vertex and edge. The associativity and unity

of graph homomorphisms follow through the associativity and unity of ordinary functions. To be rigorous, we

should verify the composed morphism α2 ◦α1 satisfy (2.1). We prove this on the source function and the target

function is analogous. Suppose A1 = (V1, E1, s1, t1), A2 = (V2, E2, s2, t2) and A3 = (V3, E3, s3, t3). Then apply

graph homomorphism property and associativity repeatedly yields

s3 ◦ (α2E ◦ α1E) = (s3 ◦ α2E) ◦ α1E = α2V ◦ s2 ◦ α1E = α2V ◦ (α1V ◦ s1) = (α2V ◦ α1V) ◦ s1.

Hence, we have defined the category of directed graphs DG.

2.2 Quotient and universal property

Intuitively, an undirected graph is a graph whose edges have no preferred orientation. We can always get an

undirected graph from a directed graph by forgetting the orientation of every edge. In fact, this can be made

precise into a mathematical statement. Let us take a step back and develop some theory on equivalence relation

and quotient sets.

Definition 2.7. Let ∼ be an equivalence relation on a set X. Denote q : X → X
/
∼ to be the canonical

surjection, i.e. x 7→ [x]∼.

Theorem 2.8 (universal property of quotients). Let ∼ be an equivalence relation on a set X. If f : X → Y

satisfy x1 ∼ x2 =⇒ f(x1) = f(x2) for any x1, x2 ∈ X, then there exist unique f : X
/
∼ → Y such that f = fq.

Proof. We claim f : X
/
∼ → Y is defined by [x]∼ 7→ f(x). To show existence, we have to justify this map is

well-defined. Note x1, x2 ∈ [x]∼ =⇒ x1 ∼ x2 =⇒ f(x1) = f(x2), hence any representative of the equivalence

class give the same output. Simple calculation shows f = fq. To see uniqueness, suppose f ′ : X
/
∼ → Y is

an arbitrary map satisfy f = f ′q, then for any x ∈ X, we have f(x) = f ′(q(x)) = f ′([x]∼). In other words,

f ′ : [x]∼ 7→ f(x).

3

Next, we are going to define the equivalence relation to be used in this report.

Definition 2.9. Given a set X, we define the equivalence relation on X2 by (x1, x2) ∼ (x2, x1).

Remark 2.10. 1. Instead of writing the equivalence class [(x1, x2)]∼ in full terms, [x1, x2] is used to represent

the set of equivalent class. Square brackets will only be used to denote equivalence class in this report.

2. For any x1, x2 ∈ X, follow thought (x1, x2) ∼ (x2, x1), we have #[x1, x2] be either 1 or 2. If #[x1, x2] = 1,

then x1 = x2 and [x1, x2] = {(x1, x1)}. Else if #[x1, x2] = 2, then x1 ̸= x2 and [x1, x2] = {(x1, x2), (x2, x1)}.

Since ∼ is defined on X2, it is expected that we want to extend our maps from taking in one element to a

pair of elements, a shorthand notation is introduced below.

Definition 2.11. For any f : X → Y , define f† : X2 → Y 2 by f† = (f, f). i.e. f† : (x1, x2) 7→ (f(x1), f(x2)).

Corollary 2.12. Let X,Y be sets. Given f : X → Y and obtain f† : X2 → Y 2 from the definition above, there

exist a unique qf† : X2
/
∼ → Y 2

/
∼ such that qf† = qf†q.

Proof. Observe that any x, x′ ∈ X2 satisfy x ∼ x′ =⇒ qf†(x) = qf†(x′). Apply theorem 2.8 to qf† yields the

claim.

Remark 2.13. 1. The expression qf† is quite bulky, we simplify it to f‡. In short, if f : x 7→ f(x), then

f‡ : [x1, x2] 7→ [f(x1), f(x2)].

2. Technically, (−)‡ is a functor from Set to Set that send a set X to X‡ = X2
/
∼ and send function

f : X → Y to the unique function f‡ : X‡ → Y ‡. We will use this notation from now on, reader may fill

in the details for this functor.

2.3 Undirected graphs and forgetful functor

Definition 2.14. An undirected graph B is a triple (V,E, u) where V,E are sets and u : E → V ‡ is a function.

• An element v ∈ V is called a vertex.

• An element e ∈ E is called an (undirected) edge.

• The function u maps an undirected edge e to an equivalence class of vertex pairs u(e), we say u(e) is

connected by e.

Remark 2.15. For any undirected graph B = (V,E, u) and e ∈ E, from remark 2.10, #u(e) is either 1 or 2.

An edge e is a loop if #u(e) = 1, a line if #u(e) = 2. So, B is loopless if #u(e) = 2 for all e ∈ E.

Definition 2.16. Let B1 = (V1, E1, u1) and B2 = (V2, E2, u2) be undirected graphs. An undirected graph

homomorphism β : B1 → B2 consists of a pair of maps ⟨βV : V1 → V2, βE : E1 → E2⟩ which satisfy

u2βE = β‡
V u1. (2.2)

4

Remark 2.17. 1. Condition (2.2) requires β to preserve adjacency relations. Similar to directed graph

homomorphisms, we use angle bracket ⟨βV , βE⟩ to write the pairs of map defining the undirected graph

homomorphisms β.

2. Likewise, the category of undirected graphs UG has undirected graphs as objects and undirected graph

homomorphisms as morphisms. The composition of morphisms is defined as termwise composition and

the identity morphism is just identity maps in both vertex and edge. Checking the composition respect

(2.2) and the associativity, unity axioms are left as an exercise for the reader.

Definition 2.18. The forgetful functor U : DG → UG consists of:

• function on objects:

ob(DG) → ob(UG), A = (V,E, s, t) 7→ U(A) = (V,E, q ◦ (s, t)) (2.3)

where q ◦ (s, t) : E → V ‡ by e 7→ q(s(e), t(e));

• any objects A1, A2 ∈ ob(DG), a function on morphisms:

homDG(A1, A2) → homUG(U(A1), U(A2)), α 7→ U(α) = α. (2.4)

Loosely speaking, the forgetful functor only change the way to relate edges and vertices by forgetting which

vertex is the source and which vertex is the target by merging them together as an equivalence class. Despite of

the ease of understanding the forgetful functor, reader should check the definition above indeed define a functor.

Proposition 2.19. U is faithful but not full.

Proof. Let A1, A2 ∈ ob(DG), the function on morphisms homDG(A1, A2) → homUG(U(A1), U(A2)) given

by U is the identity function and hence injective, proves the faithfulness. Now fix A1 = •
v1

•
v2

e1

e2
, A2 =

•
w1

•
w2d2

d1

. Then, U(A1) = •
v1

•
v2

e1

e2
, U(A2) = •

w1

•
w2d2

d1

. Consider λ ∈ homUG(U(A1), U(A2))

does the following: (v1 7→ w1, v2 7→ w2, e1 7→ d1, e2 7→ d2). However, λ fails to preserve orientation imply

λ /∈ homDG(A1, A2). The surjectivity for the map of a particular pair of object is disproved and therefore U is

not full.

This says that U is not an equivalence because a functor is an equivalence if and only if it is full, faithful

and essentially surjective on objects. However, in some sense, there is a weak form of equivalence, namely

adjunction. So, it guides us to the main goal of this project, finding an (left or right) adjoint to U .

3 Adjunctions of the forgetful functor

We will first give the definition of adjunction between functors and determine whether U has a left or right

adjoint. The definition of adjunction is adopted from Leinster’s book, Basic Category Theory, Chapter 2 [1].

5

3.1 Definition of adjunction

Definition 3.1. Let A B
F

G
be categories and functors. F is a left adjoint to G, and G is a right adjoint

to F , and write F ⊣ G if

homB(F (A), B) ∼= homA(A,G(B)) (3.1)

for all A ∈ ob(A) and B ∈ ob(B) such that the naturality axiom is satisfied.

We will state the naturality axiom shortly. Beforehand, some notations and terminology are introduced

to make the work precise. The bijection between hom-sets in (3.1) can be described by a pair of mutually

inverse functions, tp : homB(F (A), B) → homA(A,G(B)) and tp∗ : homA(A,G(B)) → homB(F (A), B). Those

functions are called transpose, by mutually inverse, we meant that tp∗ ◦ tp = idhomB(F (A),B) and tp ◦ tp∗ =

idhomA(A,G(B)).

Definition 3.2. The naturality axiom demands for any F (A1) B1
γ

, A1 G(B1)
δ , A2 A1

α

and B1 B2
β

, where A1, A2 ∈ ob(A) and B1, B2 ∈ ob(B) that

tp(β ◦ γ) = G(β) ◦ tp(γ) (3.2)

and

tp∗(δ ◦ α) = tp∗(δ) ◦ F (α). (3.3)

Remark 3.3. 1. The name “naturality axiom” comes from the fact that F ⊣ G if and only if the bifunctors

homB(F (−),−) and homA(−, G(−)) are naturally isomorphic.

2. Whenever an adjoint exist, it must be unique up to isomorphism. This is a consequence of the Yoneda

lemma.

3.2 Left adjoint of U

One may guess U has a left adjoint since many forgetful functors of algebraic structures have a left adjoint.

Unluckily, this is not the case for graphs.

Lemma 3.4. Let A1 = (V1, E1, s1, t1) and A2 = (V2, {e}, s2, t2) be directed graphs which satisfy s1(E1) ∩

t1(E1) = ∅. Then

homDG(A1, A2) ∼= homSet(V1iso, V2).

Proof. Recall V1 =
(
s1(E1) ∪ t1(E1)

)
∪ V1iso and by definition

(
s1(E1) ∪ t1(E1)

)
∩ V1iso = ∅. Suppose α =

⟨αV , αE⟩ ∈ homDG(A1, A2), then αE have no choice but the constant map E1 → {e}. Thus, to satisfy the

graph homomorphism property (2.1), αV must have

v ∈ s1(E1) =⇒ αV : v 7→ s2(e) and v ∈ t1(E1) =⇒ αV : v 7→ t2(e).

On the other hand, v ∈ V1iso can be mapped to any w ∈ V2 without violating (2.1), let η : V1iso → V2 be such

a map. In this manner, there is a one to one correspondence between η and α, hence proven the claim.

6

Theorem 3.5. U does not have a left adjoint.

The strategy for the proof is to find a particular undirected graph B and deduce that the existence of L(B)

(here we denote the left adjoint to be L) will violate (3.1). This method will be used repeatedly in this report

to disprove the existence of adjunction.

Proof. Assume otherwise U has a left adjoint L. Fix B = • • and denote L(B) = (V,E, s, t).

Pick 1. A1 = •
v1

•
v2

, the forgetful functor give U(A1) = •
v1

•
v2

. Note #homUG(B,U(A1)) = 2

imply #homDG(L(B), A1) = 2. Here v1 ̸= v2 ⇒ s(E) ∩ t(E) = ∅, apply lemma 3.4 on directed graphs

L(B) and A1 yields homDG(L(B), A1) ∼= homSet(Viso, {v1, v2}). Therefore,

2 = #homDG(L(B), A1) = #homSet(Viso, {v1, v2}) = (#{v1, v2})(#Viso) = 2(#Viso).

The equality above requires Viso to be an one element set, name that element as v∗. As a result, we can

express the vertex set of L(B) as three mutually disjoint union, V = s(E) ∪ t(E) ∪ {v∗}.

Pick 2. A2 = •
v1

•
v2
•
v3

•
v4

e1 e2
, U(A2) = •

v1
•
v2
•
v3

•
v4

e1 e2
and #homUG(B,U(A2)) = 4. Yet, we

will show #homDG(L(B), A2) ≥ 8 by writing out at least 8 maps between L(B) and A2:

E → {e1}, s(E) → {v1}, t(E) → {v2}, {v∗} → {v1, v2, v3, v4}

give four distinct map and

E → {e2}, s(E) → {v3}, t(E) → {v4}, {v∗} → {v1, v2, v3, v4}

give another four. In summary, we deduced #homDG(L(B), A2) > #homUG(B,U(A2)) which contra-

dicts (3.1).

Actually this proof says something more than what we stated in theorem 3.5, we will come back to this

point later. To move on, it is time for us to consider the right adjoint of U .

3.3 Right adjoint of U

Definition 3.6. Let B = (V,E, u) be a undirected graph, define the double edge set

E′ = {(e, v, w) ∈ E × V 2 : (v, w) ∈ u(e)}. (3.4)

Remark 3.7. Note (e, v, w) ∈ E′ ⇒ (e, w, v) ∈ E′. If B is loopless (and E is finite), then #E′ = #E +#E.

This explains the word “double” in its name.

Definition 3.8. The i-th projection map πi extract the i-th entry from an ordered n-tuple.

Definition 3.9. Let R : UG → DG be a functor which contain the following:

7

• functions on objects:

ob(UG) → ob(DG), B = (V,E, u) 7→ R(B) = (V,E′, π2, π3) (3.5)

• any objects B1, B2 ∈ ob(UG), a function on morphisms:

homUG(B1, B2) → homDG(R(B1), R(B2)), β = ⟨βV , βE⟩ 7→ R(β) = ⟨R(β)V , R(β)E⟩ (3.6)

where R(β)V = βV and R(β)E = (βE ◦ π1, βV ◦ π2, βV ◦ π3).

Remark 3.10. 1. The definition above may be complicated to understand at the first glance, however, the

picture behind it is relatively simple. Basically it does the following:

R(•
v1

•
v2

e) = •
v1

•
v2

(e,v1,v2)

(e,v2,v1)
, R(•

v
e) = •

v
(e,v,v) , R(•) = •

these three undirected graphs can be seen as the basic building blocks of undirected graphs, every undi-

rected graph is in a sense a combination of those three graphs.

2. From definition 3.9, every R(B) share the same source function (target function) which is the projection

map. For example, e′ = (e, v, w) ∈ E′, the source of e′ is π2(e
′) = v and the target of e′ is π3(e

′) = w.

So, most of the information is loaded in the edge set and the source function (target function) is kept as

simple as possible.

3. Since the element of E′ is an ordered triple, the function R(β)E : E′
1 → E′

2 maps a triple to a triple. For

example, R(β)E = (βE ◦ π1, βV ◦ π2, βV ◦ π3) and e′ = (e, v, w) ∈ E′
1. Then,

R(β)E(e
′) =

(
βE(π1(e, v, w)), βV (π2(e, v, w)), βV (π3(e, v, w))

)
=
(
βE(e), βV (v), βV (w)

)
.

4. In contrast to the (un)directed graph homomorphisms, the way to compose R(β1) and R(β2) is NOT ob-

tained by composing the function termwise, it is not meaningful to compose it termwise. For completeness,

we will recall the composition rule of n-tuple valued functions.

Definition 3.11. Let X be a set, Y be set of n-tuples and Z be set of m-tuples. Given f : X → Y and

g : Y → Z. Denote fi = πi ◦ f to be the i-th component function of f , write f = (f1, · · · , fn). Similarly,

g = (g1, · · · , gm). Then,

g ◦ f := (g1 ◦ f, · · · gm ◦ f) =
(
g1 ◦ (f1, · · · , fn), · · · , gm ◦ (f1, · · · , fn)

)
, (3.7)

which is (g ◦ f)i = gi ◦ f .

Remark 3.12. In the context of multivariable calculus, X,Y, Z will be Rn for some n ∈ N, the component

function are scalar-valued function and f, g are vector-valued function/vector field.

Proposition 3.13. R : UG → DG satisfy the axioms of functor, hence R is a functor.

8

Proof. First, we will show the functions on morphisms are well defined. That is, a undirected graph homomor-

phism β being mapped to R(β) is indeed a directed graph homomorphism. This is obvious from the definition,

consider

π2 ◦R(β)E = π2 ◦ (βE ◦ π1, βV ◦ π2, βV ◦ π3) = βV ◦ π2 = R(β)V ◦ π2.

It is analogous for the target function π3. This shows R(β) is a directed graph homomorphism. Showing

R preserve identity is elementary, we move on to show R preserve composition. Suppose β1 : B1 → B2,

β2 : B2 → B3 and β1 = ⟨β1V , β1E⟩, β2 = ⟨β2V , β2E⟩, then

R(β2) ◦R(β1) =
〈
β2V , (β2E ◦ π1, β2V ◦ π2, β2V ◦ π3)

〉
◦
〈
β1V , (β1E ◦ π1, β1V ◦ π2, β1V ◦ π3)

〉
=
〈
β2V ◦ β1V , (β2E ◦ π1, β2V ◦ π2, β2V ◦ π3) ◦ (β1E ◦ π1, β1V ◦ π2, β1V ◦ π3)

〉
=
〈
β2V ◦ β1V , (β2E ◦ β1E ◦ π1, β2V ◦ β1V ◦ π2, β2V ◦ β1V ◦ π3)

〉
=
〈
(β2 ◦ β1)V , ((β2 ◦ β1)E ◦ π1, (β2 ◦ β1)V ◦ π2, (β2 ◦ β1)V ◦ π3)

〉
= R(β2 ◦ β1)

Despite it is a little bit messy to read, every steps unpack the definition of composition for the one highlighted

in red. Identifying what objects are being composed helps reading the proof (and all the proofs later on). In

the first step we compose undirected graphs morphism; the second step we compose n-tuple valued functions;

and the third step we use the composition rule of undirected graph homomorphism again.

Definition 3.14. Let A ∈ ob(DG), B ∈ ob(UG). Define a pair of transposes

tp : homUG(U(A), B) −→ homDG(A,R(B))

γ = ⟨γV , γE⟩ 7→ tp(γ) = ⟨γV , (γE , γV ◦ s, γV ◦ t)⟩

and

tp∗ : homDG(A,R(B)) −→ homUG(U(A), B)

δ = ⟨δV , δE⟩ 7→ tp∗(δ) = ⟨δV , π1 ◦ δE⟩.

Remark 3.15. Both transpose did nothing to the vertex map, this is expected as the vertex map and vertex

set are invariant under U and R.

Lemma 3.16. Let A = (V1, E1, s, t) ∈ ob(DG) and B ∈ ob(UG). Suppose ⟨δV , δE⟩ ∈ homDG(A,R(B)), then

δE = (π1 ◦ δE , δV ◦ s, δV ◦ t).

Proof. Let B = (V2, E2, u) and thus R(B) = (V2, E
′
2, π2, π3). Consider δE : E1 → E′

2 and

e 7→ δE(e) = (π1(δE(e)), π2(δE(e)), π3(δE(e)))

= (π1(δE(e)), δV (s(e)), δV (t(e))).

The last line follows from the graph homomorphism property (2.1) as we are in DG. This hold for any e ∈ E1

and hence δE = (π1 ◦ δE , δV ◦ s, δV ◦ t).

9

Without exaggeration, the lemma we proved above will be the least obvious thing in the proof of U ⊣ R.

With that being said, the notation in the following proof is quite heavy and tedious. Anyway, we have already

established enough tools for the next theorem.

Theorem 3.17. U ⊣ R.

Proof. It is sufficient to show tp and tp∗ defined in definition 3.14 satisfy (3.1), (3.2) and (3.3).

Step 1. We begin by defining all the notations needed for this proof. Let A1, A2 ∈ ob(DG) and B1, B2 ∈ ob(UG),

we want to explicitly write A1 = (V1, E1, s, t), B1 = (V2, E2, u) and thereby R(B1) = (V2, E
′
2, π2, π3).

Next, denote ⟨αV , αE⟩ ∈ homDG(A2, A1), ⟨βV , βE⟩ ∈ homUG(B1, B2), ⟨γV , γE⟩ ∈ homUG(U(A1), B1)

and ⟨δV , δE⟩ ∈ homDG(A1, R(B1)).

Step 2. Consider

(tp∗ ◦ tp)⟨γV , γE⟩ = tp∗⟨γV , (γE , γV ◦ s, γV ◦ t)⟩

= ⟨γV , π1 ◦ (γE , γV ◦ s, γV ◦ t)⟩

= ⟨γV , γE⟩

= id⟨γV , γE⟩

this shows tp∗ ◦ tp = idhomUG(U(A1),B1). Hereafter, we will show tp ◦ tp∗ = idhomDG(A1,R(B1)),

(tp ◦ tp∗)⟨δV , δE⟩ = tp⟨δV , π1 ◦ δE⟩

= ⟨δV , (π1 ◦ δE , δV ◦ s, δV ◦ t)⟩

= ⟨δV , δE⟩

= id⟨δV , δE⟩

note the second last line uses lemma 3.16. At this stage we proved tp and tp∗ are mutually inverse.

Step 3. Consider

tp⟨βV ◦ γV , βE ◦ γE⟩ = ⟨βV ◦ γV , (βE ◦ γE , βV ◦ γV ◦ s, βV ◦ γV ◦ t)⟩

meanwhile

R⟨βV , βE⟩ ◦ tp⟨γV , γE⟩ = ⟨βV , (βE ◦ π1, βV ◦ π2, βV ◦ π3)⟩ ◦ ⟨γV , (γE , γV ◦ s, γV ◦ t)⟩

= ⟨βV ◦ γV , (βE ◦ γE , βV ◦ γV ◦ s, βV ◦ γV ◦ t)⟩.

Together imply tp(β ◦ γ) = R(β) ◦ tp(γ). Next, we have

tp∗⟨δV ◦ αV , δE ◦ αE⟩ = ⟨δV ◦ αV , π1 ◦ δE ◦ αE⟩

= ⟨δV , π1 ◦ δE⟩ ◦ ⟨αV , αE⟩

= tp∗⟨δV , δE⟩ ◦ U⟨αV , αE⟩

which shown tp∗(δ ◦ α) = tp∗(δ) ◦ U(α).

10

Does R itself has a right adjoint? The answer is no.

Theorem 3.18. R does not have a right adjoint.

Proof. Assume otherwise R has a right adjoint S. We fix A = • and show the existence of S(A)

contradicts (3.1), i.e. homDG(R(B), A) ∼= homUG(B,S(A)) for all A ∈ ob(DG) and B ∈ ob(UG) is violated.

Pick 1. B1 = •, we have R(B1) = •. Note #homDG(R(B1), A) = 1 conclude #homUG(B1, S(A)) = 1. This

imply S(A) has exactly one vertex.

Pick 2. B2 = • and thusR(B2) = • . Observe #homDG(R(B2), A) = 2 and hence #homUG(B2, S(A)) =

2. We already know S(A) has one vertex, to obtain two maps for homUG(B2, S(A)), we need two edges.

This completely characterise S(A), in particular, S(A) = • .

Pick 3. B3 = • • , R(B3) = • • . Under explicit counting, we get #homDG(R(B3), A) = 4 but

#homUG(B3, S(A)) = 2. This is a contradiction. Thus, no such functor S exist.

4 Various types of graphs

So far, we have been working on the categories of (un)directed graphs that allow multiple edges and loops.

In practical, there are some alternative definitions of graphs that prohibit multiple edges and/or loops. Those

graphs and their respective graph homomorphisms also form categories. Thus, we can ask the same question,

do the forgetful functor of those categories have an adjoint? It turns out the answer varies very differently when

we adopt different definition for graphs.

4.1 Restricted (un)directed graphs and forgetful functors

Definition 4.1. Let A = (V1, E1, s, t) be a directed graph and B = (V2, E2, u) be an undirected graph. Then,

A is said to have multiple edges if there exist v, w ∈ V1 such that

#{e ∈ E : q
(
s(e), t(e)

)
= [v, w]} > 1.

Similarly, B is said to have multiple edges if there exist [v, w] ∈ V ‡
2 such that

#{e ∈ E : u(e) = [v, w]} > 1.

Definition 4.2. Let A be a category. B is a full subcategory of A if ob(B) is a subset (subclass) of ob(A) and

homB(A1, A2) = homA(A1, A2) for all A1, A2 ∈ ob(B). Then, we define

11

• The category of (un)directed graphs without multiple edges, UG1 and DG1, to be the full subcategory

of (un)directed graphs such that every (un)directed graphs does not have multiple edges.

• The categories of (un)directed graphs without loops, UG∅ and DG∅, to be the full subcategory of

(un)directed graphs such that every (un)directed graphs is loopless.

• The categories of (un)directed graphs without multiple edges and loops, UG1
∅ and DG1

∅, to be the full

subcategory of (un)directed graphs such that every (un)directed graphs does not have multiple edges and

is loopless.

Remark 4.3. 1. The definition of loopless (un)directed graph is given in definition 2.2 and remark 2.15.

2. We use a superscript 1 to indicate at most one edge between any vertices. Next, a visualized notation ∅

is placed in the subscript to represent loops is not allowed.

3. DG1
∅ is a subcategory of DG1 and DG∅. Likewise, UG1

∅ is a subcategory of UG1 and UG∅.

Recall from definition 2.18, the forgetful functor U : DG → UG consists of a function on objects and a

family of functions on morphisms for any pair of objects. In some sense, we can impose a suitable restriction

to U such that it become a functor from a subcategory of directed graphs to the corresponding subcategory of

undirected graphs we defined above. Let us make this idea precise by the following definition.

Definition 4.4. Let F : A → B be a functor. Suppose S is a subcategory of A. Then, restriction of F to S, is

a functor F |S : S → B consists of:

• function on objects:

ob(S) → ob(B), A 7→ F |S(A) = F (A),

• any object A1, A2 ∈ ob(S), a function on morphisms:

homS(A1, A2) → homB(F |S(A1), F |S(A2)) = homB(F (A1), F (A2)), f 7→ F |S(f) = F (f).

Remark 4.5. Continue from the last definition, if we further assume T is a full subcategory of B and F (A) ∈

ob(T) for all A ∈ ob(S). Then for any object A1, A2 ∈ ob(S), homB(F (A1), F (A2)) = homT (F (A1), F (A2)).

Thence, we obtain another functor F |TS : S → T , named as the restriction of F to S and T . Obviously, we

define F |TS (A) = F |S(A) for all A ∈ ob(S) and F |TS (f) = F |S(f) for all f ∈ homS(A1, A2).

Definition 4.6. Recall the forgetful functor U : DG → UG from definition 2.18, it follows immediately from

the definition that U maps loopless directed graph to loopless undirected graph, and maps directed graph

without multiple edges to undirected graph without multiple edges. Therefore, we define

• U1 to be the restriction of U to DG1 and UG1, i.e. U1 : DG1 → UG1.

• U∅ to be the restriction of U to DG∅ and UG∅, i.e. U∅ : DG∅ → UG∅.

12

• U1
∅ to be the restriction of U to DG1

∅ and UG1
∅, i.e. U

1
∅ : DG1

∅ → UG1
∅.

With all the pre-work being done, we are ready to answer the question we asked in the beginning of this

section.

4.2 Forgetful functor theorem of graphs

Theorem 4.7. U∅, U
1 and U1

∅ do not have a left adjoint.

Proof. This follows from the proof of theorem 3.5. Recall we assumed a left adjoint L exist and used B =

• • , A1 = •
v1

•
v2

and A2 = •
v1

•
v2
•
v3

•
v4

e1 e2
to deduce the existence of the L contradicts

(3.1). Because B ∈ ob (UG1
∅), A1, A2 ∈ ob (DG1

∅) and UG1
∅,DG1

∅ are full subcategories, their respective

hom-sets remain unchanged. Consequently, we can use the exact same pick to show the existence of the left

adjoint of U1
∅ will lead to a contradiction. Mutatis mutandis, this argument also apply to U∅ and U1.

Theorem 4.8. U1 does not have a right adjoint.

Proof. Assume otherwise U1 has a right adjoint R1 : UG1 → DG1. Fix B = • • and consider

Pick 1. A1 = • , U1(A1) = • . Note #homUG1(U1(A1), B) = 0 and hence #homDG1(A1, R
1(B)) = 0.

This imply R1(B) is loopless.

Pick 2. A2 = •, U1(A2) = •. Note #homUG1(U1(A2), B) = 2 imply #homDG1(A2, R
1(B)) = 2. Hence R1(B)

has 2 vertices. Since R1(B) ∈ ob(DG1) is not allowed to have multiple edges and we know R1(B) is

loopless, R1(B) can only either be • • or • • .

Pick 3. A3 = • • , U1(A3) = • • . Note #homUG1(U1(A3), B) = 2. However, neither possible

candidate of R1(B) give a correct number of maps,

#homDG1(A3, • •) = 1 ̸= 2

and

#homDG1(A3, • •) = 0 ̸= 2.

This is absurd, no such R1 exist.

Corollary 4.9. U1
∅ does not have a right adjoint.

Proof. Again, assume otherwise U1
∅ has a right adjoint R1

∅ : UG1
∅ → DG1

∅. Fix B = • • , observe

that the first pick A1 in the previous proof is to show R1(B) is loopless. Yet, we cannot do such pick here and

we do not need to do it since R1
∅(B) ∈ obDG1

∅ already imply R1
∅(B) is loopless. In this manner, follow the

second and third pick from the previous proof lead us to the same contradiction because A2, A3 ∈ ob(UG1
∅)

and DG1
∅,UG1

∅ are full subcategories. Therefore, we can draw the same conclusion, no such R1
∅ exist.

13

Lemma 4.10. Let B = (V,E, u) ∈ ob(UG). B is loopless if and only if R(B) is loopless.

Proof. (⇒) : Suppose B is loopless. By definition, #u(e) = 2 for all e ∈ E. Recall a direct graph A = (V,E, s, t)

is loopless if {e ∈ E : s(e) = t(e)} = ∅. Now consider R(B) = (V,E′, π2, π3) and let e′ = (e, v, w) ∈ E′. Since

(v, w) ∈ u(e) and #u(e) = 2, we have v ̸= w. In other words, {e′ ∈ E′ : π2(e
′) = π3(e

′)} = ∅. Thus R(B) is

loopless.

(⇐) : Suppose R(B) is loopless. Then {e′ ∈ E′ : π2(e
′) = π3(e

′)} = ∅, which is π2(e
′) ̸= π3(e

′) for all e′ ∈ E′. In

addition, from the construction of E′, (π2(e
′), π3(e

′)) ∈ u(e) for some e ∈ E if and only if (π3(e
′), π2(e

′)) ∈ u(e).

Together with π2(e
′) ̸= π3(e

′) give #u(e) = 2, this hold for any e ∈ E. As a result, B is loopless.

Theorem 4.11. Let R∅ be the restriction of R to UG∅ and DG∅, then U∅ ⊣ R∅.

Proof. Using the (⇒) direction of lemma 4.10 shows R(B) ∈ ob(DG∅) whenever B ∈ ob(UG∅). This justify

R∅ : UG∅ → DG∅ is well defined. Next, follow everything we did in theorem 3.17 and make necessary change

to the categories yields the claim.

At the end of section 3.3, we asked if R has a right adjoint and the answer is no. Yet, opposite to R, the

functor R∅ has a right adjoint. As always, to show the existence of an adjoint, our procedure will be first

creating the candidate functor, follow by defining a pair of mutually inverse transpose and proof the naturality

axiom is satisfied at last.

Definition 4.12. Let A = (V,E, s, t) ∈ ob(DG) and v, w ∈ V . Define the enhanced edge set

Ev,w = {(e, v, w) ∈ E × V 2 : v = s(e), w = t(e)}. (4.1)

Remark 4.13. 1. If A ∈ ob(DG∅), the set {e ∈ E : s(e) = t(e)} = ∅. Thereby, Ev,v = ∅ for any v ∈ V .

2. This set is call enhanced because it carry more information than a ordinary edge set, note that

E ∼=
⋃

v,w∈V

Ev,w and A ∼= (V,
⋃

v,w∈V

Ev,w, π2, π3)

this hold generally for any directed graph A ∈ ob(DG)

Definition 4.14. Let A = (V,E, s, t) ∈ ob(DG∅) and v, w ∈ V . Define the component of the pairwise edge set

Ê[v,w] =
(
(Ev,w × Ew,v) ∪ (Ew,v × Ev,w)

)/
∼

and define the pairwise edge set

Ê =
⋃

[v,w]∈V ‡

Ê[v,w]. (4.2)

Remark 4.15. 1. Suppose ê ∈ Ê, then ê must have the following form

ê = [(e1, v, w), (e2, w, v)]

for some e1, e2 ∈ E and v, w ∈ V such that v = s(e1) = t(e2) and w = t(e1) = s(e2). The set

[(e1, v, w), (e2, w, v)] is called the equivalence class form of ê.

14

2. Note Ê ⊂ (E × V 2)‡, so ê = [(e1, v, w), (e2, w, v)] is the set
{(

(e1, v, w), (e2, w, v)
)
,
(
(e2, w, v), (e1, v, w)

)}
.

3. If either Ev,w or Ew,v is empty, then Ê[v,w] = ∅. The element of Ê[v,w] can be seen as the product of edge

sets where one set is oriented from v to w and the other set is oriented from w to v. We do not want it to

be an ordered pair for technical reason, thus we use the quotient to make it become an unordered pair.

Definition 4.16. Let S∅ : DG∅ → UG∅ be a functor which contain the following:

• functions on objects:

ob(DG∅) → ob(UG∅), A = (V,E, s, t) 7→ S∅(A) = (V, Ê, π‡
2) (4.3)

• any objects A1, A2 ∈ ob(DG∅), a function on morphisms:

homDG∅(A1, A2) → homUG∅(S∅(A1), S∅(A2)), α = ⟨αV , αE⟩ 7→ S∅(α) = ⟨S∅(α)V , S∅(α)E⟩ (4.4)

where S∅(α)V = αV and S∅(α)E = (αE ◦ π1, αV ◦ π2, αV ◦ π3)
‡.

Remark 4.17. 1. Let A = •
v1

•
v2

(n)

(m)
, where (n) denote the number of edge oriented from v1 to v2 and

(m) denote the number of edge oriented from v2 to v1. Then S∅(A) = •
v1

•
v2

(mn) , meaning that there

are m × n edges connecting [v1, v2]. If m = 0 or n = 0, then mn = 0. This is consistent with remark

4.15.3. In fact, this property of multiplying number of edges motivate how Ê is defined.

2. Suppose ê = [(e1, v, w), (e2, w, v)] ∈ Ê. Note that π‡
2(ê) = [v, w]. At the same time, one may find

π‡
3(ê) = [w, v] = [v, w] = π‡

2(ê). So, S∅(A) can be equally defined as (V, Ê, π‡
3).

3. What will be the composition of S∅(α1) and S∅(α2)? Suppose α1 : A1 → A2, α2 : A2 → A3 and

α1 = ⟨α1V , α1E⟩, α2 = ⟨α2V , α2E⟩, then for the edge part of S∅(α2 ◦ α1),

S∅(α2)E ◦ S∅(α1)E = (α2E ◦ π1, α2V ◦ π2, α2V ◦ π3)
‡ ◦ (α1E ◦ π1, α1V ◦ π2, α1V ◦ π3)

‡

=
(
(α2E ◦ π1, α2V ◦ π2, α2V ◦ π3) ◦ (α1E ◦ π1, α1V ◦ π2, α1V ◦ π3)

)‡
= (α2E ◦ α1E ◦ π1, α2V ◦ α1V ◦ π2, α2V ◦ α1V ◦ π3)

‡

= S∅(α2 ◦ α1)E .

Note the second line uses (−)‡ is a functor, the third line uses the composition rule of n-tuple valued

functions. Together with S∅(α2)V ◦S∅(α1)V = α2V ◦α1V = S∅(α2 ◦ α1)V proves S preserve composition.

In addition, showing S∅ preserve identity is elementary whilst S∅ preserve graphs homomorphism property

is built in into its definition, we did a similar proof for R. These suggest S∅ satisfy axioms of functor.

Let us make a small recap to make sure we are still on the same page. We attempt to show R∅ has a right

adjoint and we have created a candidate functor S∅. Thereby, the next step will be defining a pair of transpose

between hom-sets homDG∅(R∅(B), A) and homUG∅(B,S∅(A)) for all A ∈ ob(DG∅), B ∈ ob(UG∅). Due to

some technical difficulties, instead of writing functional equations for transpose as in section 3, we track the

effect of transpose element-wise to make everything as clear as possible.

15

Definition 4.18. Let A = (V1, E1, s, t) ∈ ob(DG∅) and B = (V2, E2, u) ∈ ob(UG∅). Define

tp : homDG∅(R∅(B), A) → homUG∅(B,S∅(A)), γ = ⟨γV , γE⟩ 7→ tp(γ) = ⟨tp(γ)V , tp(γ)E⟩

by tp(γ)V = γV , whilst the effect on γE is expressed element-wise. Suppose e′ ∈ E′
2, then e′ = (x,w1, w2) for

some x ∈ E2 and [w1, w2] = u(x). Furthermore, we must have (x,w2, w1) ∈ E′
2. The transpose tp on γE is(

γE :
(x,w1, w2) 7→ e1

(x,w2, w1) 7→ e2

)
7−→

(
tp(γ)E : x 7→

[
(e1, γV (w1), γV (w2)), (e2, γV (w2), γV (w1))

])
. (4.5)

Definition 4.19. Let A = (V1, E1, s, t) ∈ ob(DG∅) and B = (V2, E2, u) ∈ ob(UG∅). Define

tp∗ : homUG∅(B,S∅(A)) → homDG∅(R∅(B), A), δ = ⟨δV , δE⟩ 7→ tp(δ) = ⟨tp(δ)V , tp(δ)E⟩

by tp∗(δ)V = δV , whilst the effect on δE is expressed element-wise. Suppose x ∈ E2 and denote u(x) = [w1, w2],

then the transpose tp∗ on δE is(
δE : x 7→ ê :=

[
(e1, δV (w1), δV (w2)), (e2, δV (w2), δV (w1))

])
7−→

(
tp∗(δE) :

(x,w1, w2) 7→ e1

(x,w2, w1) 7→ e2

)
. (4.6)

Remark 4.20. 1. First we have to justify tp and tp∗ are well-defined, in other words, showing what we

claim in (4.5) and (4.6) really exist. For (4.5), given e1, e2 ∈ E1 and γ is a directed graph homomor-

phism, s(e1) = γV (π2(e
′)) = w1 and t(e1) = γV (π3(e

′)) = w2. Likewise, t(e2) = w1 and s(e2) = w2.

Therefore,
[
(e1, γV (w1), γV (w2)), (e2, γV (w2), γV (w1))

]
∈ Ê1 and thus tp(γ)E is well-defined. Using

this argument and invoke the undirected graph homomorphism property explains why we can write

ê =
[
(e1, δV (w1), δV (w2)), (e2, δV (w2), δV (w1)) in (4.6).

2. Once understanding (4.5) and (4.6), it is straight forward that tp and tp∗ are mutually inverse of each

other. There are many layers of maps here, to be specific, we talk through one of it as an example. For any

γ ∈ homDG∅(R∅(B), A), we have tp∗(tp(γ)) = γ. This can be examined by seeing that for all e′ ∈ E2,

tp∗(tp(γ))E applied on e′ is equal to γE(e
′) and for all v ∈ V2, tp

∗(tp(γ))V applied on v is equal to γV (v).

Theorem 4.21. R∅ ⊣ S∅.

Proof. We have to show the pair of transpose tp and tp∗ we defined satisfy naturality axiom. Suppose A1, A2 ∈

ob(DG∅) and B1, B2 ∈ ob(UG∅) and let α = ⟨αV , αE⟩ ∈ homDG∅(A1, A2), β = ⟨βV , βE⟩ ∈ homUG∅(B2, B1),

γ = ⟨γV , γE⟩ ∈ homDG∅(R∅(B1), A1) and δ = ⟨δV , δE⟩ ∈ homUG∅(B1, S∅(A1)). Recall our goal is to proof

tp(α ◦ γ) = S∅(α) ◦ tp(γ) (4.7)

and

tp∗(δ ◦ β) = tp∗(δ) ◦R∅(β). (4.8)

The maps of vertices remain unchanged at the time, so there is nothing to show for maps of vertices. Hence,

we are left with showing the maps of edges satisfy (4.7) and (4.8). To make the things clean, the proof will be

split into two parts, the first part will be proving (4.7) on map of edges.

16

Part 1. To begin with, write B1 = (V,E, u) and thus R∅(B1) = (V,E′, π2, π3). The idea of the proof is to

start with some arbitrary elements and track the effect on them by every map. Let e′ ∈ E′ and express

e′ = (x,w1, w2) for some x ∈ E and [w1, w2] = u(x). At the same time, (x,w2, w1) ∈ E′. Given γE and

αE , we denote (
γE :

(x,w1, w2) 7→ e1

(x,w2, w1) 7→ e2

)
and

(
αE :

e1 7→ αE(e1)

e2 7→ αE(e2)

)
.

Composing them to get (α ◦ γ)E , (
(α ◦ γ)E :

(x,w1, w2) 7→ αE(e1)

(x,w2, w1) 7→ αE(e2)

)
.

According to (4.5), transpose yields(
tp(α ◦ γ)E : x 7→

[(
αE(e1), αV (γV (w1)), αV (γV (w2)

)
,
(
αE(e2), αV (γV (w2)), αV (γV (w1)

)])
.

Meanwhile, on the other side, transposing γE is(
tp(γ)E : x 7→

[
(e1, γV (w1), γV (w2)), (e2, γV (w2), γV (w1))

])

and using S∅(α)E = (αE ◦ π1, αV ◦ π2, αV ◦ π3)
‡ on

[
(e1, γV (w1), γV (w2)), (e2, γV (w2), γV (w1))

]
give(

S∅(α)E :
[(
e1, γV (w1), γV (w2)

)
,
(
e2, γV (w2), γV (w1)

)]
7→
[(
αE(e1), αV (γV (w1)), αV (γV (w2))

)
,
(
αE(e2), αV (γV (w2)), αV (γV (w1))

)])

Therefore,((
S∅(α) ◦ tp(γ)

)
E
: x 7→

[(
αE(e1), αV (γV (w1)), αV (γV (w2))

)
,
(
αE(e2), αV (γV (w2)), αV (γV (w1))

)])
.

This show
(
S∅(α) ◦ tp(γ)

)
E
= tp(α ◦ γ)E for a particular x ∈ E where x depends on the choice of e′ ∈ E′

at the beginning. In fact, from how E′ is constructed, for all x ∈ E, denote u(x) = [w1, w2], there exist

(x,w1, w2) and (x,w2, w1) ∈ E′. In this manner, given any x ∈ E, choose (x,w1, w2), (x,w2, w1) ∈ E′ and

restart the whole argument, we have
(
S∅(α) ◦ tp(γ)

)
E
= tp(α ◦ γ)E , this proves (4.7) on map of edges.

Part 2. We are going to use the same trick. Write B2 = (V2, E2, u2), B1 = (V1, E1, u1) and A1 = (V,E, s, t). So,

S∅(A1) = (V, Ê, π‡
2). Let x ∈ E2 and denote u2(x) = [w1, w2]. Given βE and δE , we have

βE : x 7→ βE(x) and δE : βE(x) 7→ δE(βE(x)).

Since δ : B1 → S∅(A1) is a undirected graph homomorphism, it must obey π‡
2δE = δ‡V u1. Apply this on

βE(x) give

π‡
2

(
δE(βE(x)

)
= δ‡V

(
u1(βE(x))

)
17

and the undirected graph homomorphism property of β : B2 → B1 tell u1(βE(x)) = [βV (w1), βV (w2)].

Therefore, we deduced that

π‡
2

(
δE(βE(x)

)
= δ‡V

(
[βV (w1), βV (w2))]

)
= [δV (βV (w1)), δV (βV (w2)]

and this determine the equivalence class form of δE(βE(x)) ∈ Ê, i.e.

δE(βE(x)) =
[(
e1, δV (βV (w1)), δV (βV (w2))

)
,
(
e2, δV (βV (w2)), δV (βV (w1))

)]
for some suitable e1, e2 ∈ E. So, the map δE is

δE : βE(x) 7→
[(
e1, δV (βV (w1)), δV (βV (w2))

)
,
(
e2, δV (βV (w2)), δV (βV (w1))

)]
whilst

(δ ◦ β)E : x 7→
[(
e1, δV (βV (w1)), δV (βV (w2))

)
,
(
e2, δV (βV (w2)), δV (βV (w1))

)]
.

Invoke (4.6), the transpose is (
tp∗(δ ◦ β)E :

(x,w1, w2) 7→ e1

(x,w2, w1) 7→ e2

)
.

Simultaneously, apply transpose on δE produce(
tp∗(δ)E :

(βE(x), βV (w1), βV (w2)) 7→ e1

(βE(x), βV (w2), βV (w1)) 7→ e2

)
.

Next, apply R∅(β)E = (βE ◦ π1, βV ◦ π2, βV ◦ π3) on (x,w1, w2) and (x,w2, w1) give(
R∅(β)E :

(x,w1, w2) 7→ (βE(x), βV (w1), βV (w2))

(x,w2, w1) 7→ (βE(x), βV (w2), βV (w1))

)

combine the last two result, we arrive at((
tp∗(δ) ◦R∅(β)

)
E
:
(x,w1, w2) 7→ e1

(x,w2, w1) 7→ e2

)
.

Again, this show
(
tp∗(δ)◦R∅(β)

)
E
= tp∗(δ◦β)E for a two particular element (x,w1, w2), (x,w2, w1) ∈ E′

2.

Yet, we can reach every element of e′ ∈ E′
2 by starting with x = π1(e

′) ∈ E2 in this proof. Thus,(
tp∗(δ) ◦R∅(β)

)
E
= tp∗(δ ◦ β)E hold for any e′ ∈ E2 and proves (4.6) on maps of edges.

Theorem 4.22. S∅ does not have a right adjoint.

Proof. Assume otherwise S∅ has a right adjoint T∅. We fix B = • • and show the existence of T∅(B)

violate the bijection between hom-sets homUG∅(S∅(A), B) and homDG∅(A, T∅(B)) for some A ∈ ob(DG∅),

B ∈ ob(UG∅).

18

Pick 1. A1 = • , then S∅(A1) = • . Consider #homUG∅(S∅(A1), B) = 2 and thus #homDG∅(A1, T∅(B)) = 2.

This imply T∅(B) has two vertices.

Pick 2. A2 = • • imply S∅(A2) = • • . Counting the number of maps give #homUG∅(S∅(A2), B) =

4, thence #homDG∅(A2, T∅(B)) = 4. Notice loops are not allowed here, edges can only be connected by

two distinct vertices. To obtain 4 maps from A2 to T∅(B), T∅(B) must have 4 edges. At this stage, we

know T∅(B) will be either of the following:

G1 = • • or G2 = • • or G3 = • • .

Pick 3. A3 = • • and hence S∅(A3) = • • . Note that #homUG∅(S∅(A3), B) = 2 but none of

G1, G2 or G3 give the correct cardinality for the hom-set, homUG∅(A3, T∅(B)). In particular,

#homUG∅(A3, G1) = 0, #homUG∅(A3, G2) = 6 and #homUG∅(A3, G3) = 8.

This is absurd. The right adjoint of S∅ does not exist.

We end this report by summarising all the result we have establish so far into one big theorem.

Theorem 4.23. (forgetful functor theorem of graphs). Let DG be the category of directed graphs, UG be the

category of undirected graphs. Then, the chain of adjunction for the following functor:

1. U : DG → UG is U ⊣ R.

2. U1 : DG1 → UG1 is empty, it has no adjunction on both sides.

3. U1
∅ : DG1

∅ → UG1
∅ is empty, it has no adjunction on both sides.

4. U∅ : DG∅ → UG∅ is U∅ ⊣ R∅ ⊣ S∅.

5 Acknowledgements

This project was sponsored by AMSI Summer Research Scholarships. I extend my heartfelt thanks to my

supervisors, Finnur Lárusson and David Baraglia, for their invaluable guidance and support. Their expertise

and encouragement have greatly contributed to the completion of this report.

References

[1] Leinster, T 2014, Basic Category Theory, Cambridge Studies in Advanced Mathematics, Vol. 143, Cam-

bridge University Press, Cambridge.

19

