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1 Abstract

We study the theory of polynomial functors and its applications to modelling open, compositional dynamical

systems. In particular, we introduce the category Poly and demonstrate that it has two monoidal structures.

Using the theory of Poly, we instantiate some key ideas of dynamical systems including composition, time

dependence and stochasticity.

2 Introduction

Category theory occupies a central position in the modern development of areas of pure mathematics including

algebraic geometry, representation theory, homological algebra and more. In recent years, there is a growing

body of interest in understanding the applications of category theory outside of traditional pure mathematics.

In particular, we would like to understand how category theory can be used to give a unifying account of open,

compositional dynamical systems. One such approach is to use the theory of polynomial functors. Although

these objects have a simple description as the coproduct of representable functors Set → Set, the associated

category Poly has a remarkable amount of structure. In this report, we will first introduce Poly and several

useful results including two ways to realise Poly as a monoidal category. Then we will introduce a definition of

a dynamical system in the language of Poly. Finally, we will see how to instantiate some key ideas of dynamical

systems including compositionality, time dependence and stochasticity.

3 Statement of Authorship

All the results presented in this report are already known and reflect the work of other authors. To establish

the basic theory of polynomial functors in §4 as well as the content in §5.1, §5.2 I have studied [NS23], [Spi20],

[Spi22]. To introduce time dependence and stochasticity in §5.3 and §5.4 I have studied [St 23b] and aspects of [St

23a]. I introduce Dyn (Definition 5.5) as a particular full subcategory of Arr(Poly) to de-emphasise organising

dynamical systems by interface as in [Spi22], [SS23]. Though, I believe this construction would already be

known. Additionally, I introduce some basic examples including the (n, C)-wired system from Example 5.10.

Finally, this report was written by me and looked over by Marcy Robertson, Léo Diaz and Kurt Stoeckl.

4 Polynomial Functors

Before introducing the central definition of this report given in §5, it is necessary to introduce some technical

foundations. In this section, we will define the category Poly and prove several useful results.
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4.1 The category Poly

Definition 4.1. An endofunctor p : Set → Set is a polynomial functor (or simply a polynomial) if there exists

some I ∈ Set considered as a discrete category, a functor p[−] : I → Set and a natural isomorphism

p ∼=
∐
i∈I

Set(p[i],−)

In other words, a polynomial is a coproduct of covariant representable functors. For notation, we will write

Set(A,−) := yA, y{•} := y and SyA :=
∐

s∈S yA.

Remark 4.2. Notice that for any choice of A ∈ Set, Set(A, {•}) ∼= {•}. Hence,
∐

i∈I Set(p[i], {•}) ∼= I. This

gives us a canonical way of writing any polynomial functor. Setting p({•}) := p(1), we may write

p ∼=
∐

i∈p(1)

yp[i]

In this regard, we follow the style of [Spi20] and may refer to p(1) as the position set of p and p[i] the direction

set at position i.

Definition 4.3. We define Poly to be the category with objects as polynomials and

Poly(p, q) := {F : p → q : F ∈ Nat(p, q)}

In other words, the morphisms of Poly are natural transformations.

This definition obscures a natural combinatorial interpretation of morphisms of polynomials. This following

proposition will allow us to work more concretely with Poly.

Proposition 4.4. Let p, q ∈ Poly. Any morphism φ : p → q is uniquely identified by

1. A map of sets φ1 : p(1) → q(1)

2. A natural transformation φ2 : q[φ1(−)] ⇒ p[−]. Equivalently, an i ∈ p(1) indexed set of functions

(φ(i) : q[φ1(i)] → p[i])i∈p(1)

Proof. First, we claim that

Poly(
∐

i∈p(1)

yp[i], q) ∼=
∏

i∈p(1)

Poly(yp[i], q)

We will define a forward map F as follows. Take φ ∈ Poly(
∐

i∈p(1) y
p[i], q) and let i ∈ p(1). Fixing X ∈ Set

and using the canonical inclusion map, we construct a map of sets

Xp[i]
∐

j∈p(1) X
p[j] q(X)

ιi,X φX

Therefore, we have a collection of maps (Xp[i] φX◦ιi,X−−−−−→ q(X))X∈Set. We verify that this collection constitutes

a natural transformation. Let f ∈ Set(X,Y ) be arbitrary. Consider the following diagram

Xp[i]
∐

j∈p(1) X
p[j] q(X)

Y p[i]
∐

j∈p(1) Y
p[j] q(Y )

ιi,X φX

f◦−

ιi,Y φY

q(f)
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By assumption, the rightmost square is commutative and using the universal property of the co-product, we

deduce that the leftmost square is also commutative. Therefore, the collection is a natural transformation and

we can map φ to the following dependent function (see Definition A.7).

φ 7→
F (φ) : (i ∈ p(1)) → Poly

i 7→ (Xp[i] φX◦ιi,X−−−−−→ q(X))X∈Set

Now, we will construct an inverse map G. We identify an arbitrary element ∆ ∈
∏

i∈p(1) Poly(yp[i], q) with a

dependent function ∆ : (i ∈ p(1)) → Poly(yp[i], q). Then for any X ∈ Set, we can simply define∐
i∈p(1)

Xp[i] → q(X)

(i, f : p[i] → X) 7→ ∆(i)X(f)

If we let ∆(−)X refer to the map defined above, then G(∆) := (∆(−)X)X∈Set. To verify that G(∆) ∈

Poly(
∐

i∈p(1) y
p[i], q), let f ∈ Set(X,Y ). Then it suffices to show that for (i, α : p[i] → X) ∈

∐
j∈p(1) X

p[i]

q(f)(∆(i)X)(α) = ∆(i)Y (f ◦ α)

However, this is immediate since (∆(X)i)X∈Set is a natural transformation. By construction, F and G are

mutual inverses. Now, writing q in canonical form and applying the Yoneda lemma, we may write

Poly(
∐

i∈p(1)

yp[i],
∐

j∈q(1)

yq[j]) ∼=
∏

i∈p(1)

∐
j∈q(1)

Set(q[j], p[i])

Therefore, an element φ ∈ Poly(p, q) is identified with a dependent function

φ : (i ∈ p(1) →
∐

j∈q(1)

Set(q[j], p[i]))

i 7→ (j, f : q[j] → p[i])

Then by taking the first and second projections of the image of φ, we precisely recover a function

f1 : p(1) → q(1)

and an i ∈ p(1) indexed collection of functions

(q[f1(i)] → p[i])i∈p(1)

as required.

In view of Proposition 4.4, we will often refer to the data of φ ∈ Poly(p, q) as a pair (φ1, (φ
(s))s∈p(1)).

We will call these maps forward and backwards maps respectively. This result naturally leads to an alternate,

though more abstract, description of Poly which will become important in §5.

Proposition 4.5. There is an equivalence of categories Poly
∼−→

∫
(Set/−)p where (Set/−)p denotes the

contravariant slice functor Setop → Cat taking A ∈ Set 7→ (Set/A)op (see Definitions A.1, A.2, A.3).
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Proof. First, we will describe a functor F : Poly →
∫
(Set/−)p. Extending Remark 4.2, the data of any

polynomial functor p ∈ Poly can be written as a function π :
∐

i∈p(1) p[i] → p(1) where π is the canonical

projection map. In this view, the fibres (preimages) of π determine the data of p[−]. Then

F (p) := (p(1), π :
∐

i∈p(1)

p[i] → p(1))

Let φ : p → q be a morphism of polynomials. A morphism

(p(1),
∐

i∈p(1)

p[i]
πp−→ p(1)) → (q(1),

∐
j∈q(1)

q[j]
πq−→ q(1))

in
∫
(Set/−)p consists precisely of a function f1 : p(1) → q(1) and a choice of function such that the following

diagram commutes. ∐
j∈q(1) q[j]×q(1) p(1)

∐
i∈p(1) p[i]

p(1)

f2

We may rewrite
∐

j∈q(1) q[j]×q(1) p(1) ∼=
∐

i∈p(1) q[f1(i)]. Then the data of the above commutative diagram is

equivalent to demanding that the induced function
∐

i∈p(1) q[f1(i)]
f2−→

∐
i∈p(1) p[i] preserves indexing so that

f2(i, a) = (i, b). This is precisely the data of a functor q[f1(−)] → p[−] and hence, using Proposition 4.4, we can

prescribe F (p)
F (φ)−−−→ F (q). It is clear then that id ∈ Poly(p, p) is mapped to the F (p)

id−→ F (p) since id consists

of the identity p(1) → p(1) and the identity functor p[−] → p[−]. Given φ ∈ Poly(p, q) and ϕ ∈ Poly(q, w),

the composite ϕ ◦ φ : p → w consists of the composite function p(1)
φ1−→ q(1)

ϕ1−→ w(1) and composite functor

w[ϕ ◦ φ(−)] → p[−]. Referring to the definition of composition in Definition A.3, the induced map F (ϕ) ◦ F (φ)

is given by the composite ϕ1 ◦ φ1 and a commuting diagram∐
i∈w(1) w[i]×w(1) p(1)

∐
j∈q(1) q[i]×w(1) q(1)

∐
k∈p(1) p[k]

p(1)

The composite function of the top row is equivalently a function
∐

k∈p(1) w[ϕ1 ◦ φ1(k)] →
∐

k∈p(1) p[k] and

the commutativity of the diagram ensures that it gives the data of a functor w[ϕ1 ◦ φ1(−)] → p[−]. Hence,

F (ϕ◦φ) = F (ϕ)◦F (φ) and we conclude F is a functor. Instead of constructing an inverse functor, we claim that

F is full, faithful and dense. Given (A,B
f−→ A) ∈

∫
(Set/−)p, we can construct a polynomial p by demanding

p(1) := A and for a ∈ A, p[a] := f−1(a). Then F (p) ∼= (A,B
f−→ A) and so F is dense. From our definition of

F (φ) : F (p) → F (q), it follows that F (φ) is uniquely determined by the data of φ consequently, F is faithful.

Moreover, any morphism γ : F (p) → F (q) consists of precisely the same data of a morphism p → q. Therefore,

F is full. We conclude that Poly
∼−→

∫
(Set/−)p.

4.2 Monoidal structures on Poly

In the final part of §4, we will establish some additional structure on Poly. In particular, we define a tensor

product of polynomials which we will call the Dirichlet product. This will induce a monoidal structure. Finally,
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we will see that polynomials are closed under functor composition yielding an additional monoidal structure.

4.2.1 Dirichlet product

Definition 4.6. Let
∐

i∈p(1) y
p[i],

∐
j∈q(1) y

q[j] ∈ Poly. We define the Dirichlet product of two polynomials as∐
i∈p(1)

yp[i] ⊗
∐

j∈q(1)

yq[j] :=
∐

(i,j)∈p(1)×q(1)

yp[i]×q[j]

The Dirichlet product of two polynomials is clearly then a polynomial. Indeed, this can be extended to

define a monoidal structure on Poly.

Lemma 4.7. The Dirichlet product is a bifunctor −⊗− : Poly×Poly → Poly

Proof. From Definition 4.6 we have defined a map on objects. Given (φ, ϕ) ∈ Poly(p, p′)×Poly(q, q′), we must

first define

φ⊗ ϕ :
∐

(i,j)∈p(1)×q(1)

yp[i]×q[j] →
∐

(i,j)∈p′(1)×q′(1)

yp
′[i]×q′[j]

Using the notation of Proposition 4.4, we define (φ⊗ϕ)1 as the product map for φ1×ϕ1 and for (a, b) ∈ p(1)×q(1),

(φ⊗ ϕ)(a,b) as the product map φ(a) × ϕ(b). It then follows that (idp, idq) is mapped to the identity morphism

on p ⊗ q. Let (φ1, ϕ1) ∈ Poly × Poly((p, q), (v, w)), (φ2, ϕ2) ∈ Poly × Poly((v, w), (r, t)). Observing the fact

that × is a bifunctor on Set and the definition of composition in Poly×Poly, we conclude that the following

two maps are equal

(φ2 ◦ φ1)⊗ (ϕ2 ◦ ϕ1) : p⊗ q → r ⊗ t

(φ2 ⊗ ϕ2) ◦ (φ1 ⊗ ϕ1) : p⊗ q → r ⊗ t

and hence −⊗− is a bifunctor.

Proposition 4.8. (Poly,⊗, y) is a symmetric monoidal category.

Let p, q, r, s ∈ Poly. Given p⊗(q⊗r) and (p⊗q)⊗r, we compute the position set to be p(1)×(q(1)×r(1)) and

(p(1)×q(1))×r(1) respectively. Similarly, fixing (i, (j, k)) ∈ p(1)×(q(1)×r(1)) and ((i, j), k) ∈ (p(1)×q(1))×r(1),

the respective direction sets are p[i]×(q[j]×r[k]) and (p[i]×q[j])×r[k]. Therefore, there is an obvious associator

αp,q,r : p⊗ (q ⊗ r)
∼−→ (p⊗ q)⊗ r induced by the associator of (Set,×, {•}). Similarly,

p⊗ y =
∐

(i,j)∈p(1)×{•}

yp[i]×{•} ∼= p

y ⊗ p =
∐

(i,j)∈{•}×p(1)

y{•}×p[j] ∼= p

p⊗ q =
∐

(i,j)∈p(1)×q(1)

yp[i]×q[j] ∼=
∐

(j,i)∈q(1)×p(1)

yq[j]×p[i] = q ⊗ p

induced by the left, right unitors and swap map of Set. One can more precisely check the coherence diagrams

commute by relying on the fact that (Set,×, {•}) is a symmetric monoidal category. Though, we omit this

explicitly here.
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4.2.2 Composition product

Since the underlying objects of Poly are functors Set → Set, we have an associated notion of composition of

functors inherited from the functor category [Set,Set]. We can ask whether the composition of a polynomial

is again a polynomial. Surprisingly, the answer is yes.

Proposition 4.9. Let p, q ∈ Poly. Then p ◦ q ∈ Poly.

Proof. Let X ∈ Set, p, q ∈ Poly and i ∈ p(1). First, we claim there exists a bijection∏
a∈p[i]

∐
j∈q(1)

Set(q[j], X)
∼−→

∐
f∈Set(p[i],q(1))

Set(
∐

a∈p[i]

q[f(a)], X)

An element of
∏

a∈p[i]

∐
j∈q(1) Set(q[j], X) is identified with a dependent function F : (a ∈ p[i]) →

∐
j∈q(1) Set(q[j], X)

sending a ∈ p[1] 7→ (j, f : q[j] → X). Let π1, π2 denote the first and second projection maps. Then

π1 ◦ F : p[1] → q(1)

The second projection map yields a function

q[π1 ◦ F (a)] → X

Hence, (π1 ◦ F,
∐

a∈[i] π2 ◦ F (a)) ∈
∐

f∈Set(p[i],q(1)) Set(
∐

a∈p[i] q[f(a)], X). Going in the reverse direction, an

element of
∐

f∈Set(p[i],q(1)) Set(
∐

a∈p[i] q[f(a)], X) is a pair

(f : p[i] → q(1), g :
∑
a∈p[i]

q[f(a)] → X)

To construct a dependent function F : (a ∈ p[i]) → (j, q[j] → X) we can simply take

a 7→ (f(a), q[f(a)]
ι−→

∑
a∈p[i]

q[f(a)] → X)

These maps are inverse to each other and moreover, natural in choice of X ∈ Set. Next, we use the fact

that for any A ∈ Set, we can write A ∼=
∐

a∈A{•} and adapting some of the ideas of the proof of Proposition

4.4, to write

p ◦ q ∼=
∐

i∈p(1)

∏
a∈p[i]

∐
j∈q(1)

yq[j]

∼=
∐

i∈p(1)

∐
f∈Set(p[i],q(1))

Set(
∐

a∈p[i]

q[f(a)],−)

∼=
∐

(i,f)∈p(1)×Set(p[i],q(1)

y
∐

a∈p[i] q[f(a)]

where in the second line we have used the initial claim.

Corollary 4.10. (Poly, ◦, y) is a (non-symmetric) monoidal category.
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Proof. We already know that the functor category [Set,Set] is monoidal with respect to composition. From

our work above we have established that for p, q ∈ Poly then p ◦ q ∈ Poly. Hence, Poly inherits this monoidal

structure.

Remark 4.11. Let α : p → p′ ∈ Poly(p, p′) and β : q → q′ ∈ Poly(q, q′). It will be useful to describe how to

concretely construct the induced morphism p ◦ q → p′ ◦ q′. In particular, we want to define

α ◦ β :
∐

i∈p(1)

∐
f :p[i]→q(1)

y
∐

a∈p[i] q[f(a)] →
∐

j∈p′(1)

∐
g:p′[j]→q′(1)

y
∐

b∈p′[j] q[g(a)]

using knowledge of α, β. First, we define the forward map. Let (i ∈ p(1), f : p[i] → q(1)) ∈ (p ◦ q)(1). The

corresponding element (p′ ◦ q′)(1) is the pair (α1(i), g : p′[α1(i)]
α2−→ p[i]

f−→ q(1)
β1−→ q′(1)). The corresponding

map on directions is given by the following function∑
x∈p′[α1(i)]

q′[g(x)] →
∑
y∈p[i]

q[f(y)]

(x, a) 7→ (α(i)(x), β(f(y))(a))

5 Dynamical Systems

Now that we have established the relevant foundations in the theory of polynomial functors, we introduce the

central definition of this report.

Definition 5.1. A dynamical system is a choice of S ∈ Set, p ∈ Poly and φ ∈ Poly(SyS , p)

For intuition, we consider polynomials p, q ∈ Poly to be systems with an associated set of states. A

morphism p → q then gives an interaction protocol. Using this interpretation a dynamical system from 5.1 gives

the data of an internal state S, an interface p and then an associated interaction between the internal state and

its interface.

Remark 5.2. In [Spi20], Spivak considers a more general definition of Definition 5.1 where SyS is replaced

with a comonoid C (where composition − ◦ − is taken as the monoidal structure on Poly). We do not pursue

this here. However, we will revisit the usefulness of comonoids later.

Considering the interface polynomial consisting of (p(1) ∈ Set, p[−] : p(1) → Set), the simplest example of

a dynamical system occurs when p[−] is the constant functor. In this instance, we may write p ∼= p(1)yp[1].

Definition 5.3. Let A,B, S ∈ Set. An (A,B)-Moore machine consists of a pair of functions r : S → B and

u : A× S → S.

In this definition we interpret r as the readout function which determines the semantics of the internal state.

The function u is interpreted as an update function encoding the dynamics of a Moore machine.

Proposition 5.4. An (A,B)-Moore machine corresponds to a dynamical system φ : SyS → ByA

8



Proof. First, observe that S{•}S ∼= S,B{•}A ∼= B. Using Proposition 4.4, the data of φ consists precisely of

a function φ1 : S → B and for each s ∈ S, a function φs
2 : A → S. Set r := φ1 and using the adjunction

Set(X × Y,Z) ∼= Set(X,Set(Y,Z)) we can construct u from the backwards component of φ.

The Moore machine gives a concrete way to think of dynamical systems as in Definition 5.1. Consider now

when p is arbitrary. That is, we do not necessarily demand that p[−] is a constant functor. In this instance,

we may still interpret the forward map φ1 : S → p(1) as the readout function determining the semantics of

the internal state. However, the data of our update function (in the context of Proposition 5.4) instead gives a

dependent function

φ(−) : (s ∈ S) → Set(p[φ1(s)], S)

We may interpret this as instantiating mode dependent dynamics. To see how, consider two polynomials p, q.

We can combine them into a new polynomial, which we call p+ q, as (p(1)
∐

q(1), (p+ q)[−]) where

(p+ q)[(i, a)] :=

p[a] i = 1

q[a] i = 2

Consider two interfaces ByA, DyC ∈ Poly. A dynamical system SyS
φ−→ ByA +DyC then gives the data of a

function φ1 : S → B
∐

D and for s ∈ S a function

φ(s) =

f1 : A → S π1(φ1(s)) = π1((i, x)) = 1

f2 : C → S π1(φ1(s)) = π1((i, x)) = 2

Hence, we can think of SyS
φ−→ ByA +DyC , and more generally SyS → p as a generalised Moore machine.

5.1 Composing dynamical systems

Consider two dynamical systems

1. φ1 : S1y
S1 → {•, •, •}y{•}

2. φ2 : S2y
S2 → {•}y{•}

Since the Dirichlet product is a bifunctor on Poly, we can induce a morphism

S1y
S1 ⊗ S2y

S2 ∼= S1 × S2y
S1×S2

φ1⊗φ2−−−−→ {•, •, •}y{•} ⊗ {•}y{•} ∼= {•, •, •} × {•}y{•}×{•}

Observing the proof of Proposition 4.7, the induced morphism φ1 ⊗ φ2 acts to appose each dynamical system.

That is, it acts to put the respective dynamical systems in parallel. Now, for a morphism

ρ : {•, •, •} × {•}y{•}×{•} → {•}y•

consider the dynamical system

S1 × S2y
S1×S2

ρ◦φ1⊗φ2−−−−−−→ {•}y•

This composite morphism acts to first appose the dynamical systems and then wrap them in a choice of common

interface. We would like to collect and formalise this operadic process as a particular morphism in some category.
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Definition 5.5. We define Dyn to be the full subcategory of the arrow category Arr(Poly) where the domain

of any arrow p
φ−→ q is isomorphic to SyS for some S ∈ Set (see Definition A.8). In particular, the objects of

Dyn are dynamical systems and a morphism of Dyn(SyS → p, TyT → q) is a pair (α : SyS → TyT , β : p → q)

such that the following diagram is commutative.

SyS p

TyT q

βα

Remark 5.6. The definition of morphisms in Definition 5.5 has a natural interpretation. Consider a morphism

of dynamical systems (α, β) : (SyS
φ−→ ByA) → (TyT

ϕ−→ DyC). In particular, ϕ ◦ α = β ◦ φ which tells us the

following: First, the respective induced forward maps S
α1−→ T

ϕ1−→ D and S
φ1−→ B

β1−→ D are equal. In the

language of Proposition 5.4, this tells us that translating states from S to T and then interpreting their image

in T is equivalent to interpreting a state in S and mapping it to the semantics of T . In a similar fashion, if we

fix s ∈ S, the induced backwards maps C −→ T −→ S and C −→ A −→ S are equal, telling us that the translation of

states S ↔ T coheres with the respective dynamics of each dynamical system.

Proposition 5.7. Dyn is a symmetric monoidal category with unit y
id−→ y

Proof. From Proposition 4.8, we know (Poly,⊗, y) is a symmetric monoidal category. Observing that ⊗ is a

bifunctor, this induces a monoidal structure on Arr(Poly). It suffices to confirm that Dyn is closed under ⊗.

Indeed, this is immediate from the definition of ⊗ since SyS ⊗ TyT = S × TyS×T .

Consider a tuple of dynamical systems

(Siy
Si

φi−→ pi)
n
i=1

As before, we find that the Dirichlet product acts to put the dynamical systems in parallel. A morphism of

polynomials γ : p1 ⊗ ...⊗ pn → q then defines a new interaction protocol from the collection of interfaces of the

dynamical systems to a new interface, q. This process is precisely a morphism in Dyn of the following form.

⊗n
i=1Siy

Si ⊗n
i=1pi

⊗n
i=1Siy

Si q

⊗n
i=1φi

γ◦⊗n
i=1φi

γ

5.2 Dynamic wiring

In Proposition 4.8, we established that Poly had a monoidal structure where the product was the Dirichlet

product. However, it is possible to say something even stronger. In particular, ⊗ is closed with internal hom

[−,−].

Proposition 5.8. There exists a functor [−,−] : Polyop ×Poly → Poly such that there is a natural isomor-

phism

Poly(p⊗ q, r) ∼= Poly(p, [q, r])
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and an isomorphism [p, q] ∼=
∐

φ∈Poly(p,q) y
∐

i∈p(1)q[φ1(i)].

For brevity, we will not give a proof here. We refer the interested reader to [NS23, Ch 4 §5]. We introduce this

concept because it allows us to instantiate dynamical systems with dynamic organisation patterns as observed

in [Spi22], [SS23]. In particular, consider a dynamical system of the form

SyS
φ−→ [p, q]

Using Proposition 4.4, φ consists of

1. A function ∆ : S → Poly(p, q) which gives for s ∈ S, a choice of morphism p → q.

2. For each s ∈ S, a function
∐

i∈p(1) q[∆(s)1(i)] → S

Importantly, this particular type of dynamical system associates to each each state, a change of interface. To

illustrate these ideas in an example consider the following illustration.

Figure 1: (3, {•, •})-wired system.

To each box, we consider a system roughly in the context of Definition 5.1. In particular, to each box we

associate:

1. An unobserved internal state given by Si ∈ Set

2. An interface given by an element of {•, •}2

3. A mapping Si × {•, •}2 → B for some B ∈ Set giving the semantics.

4. An update map {•, •}2 × {•, •}2 × Si → Si giving the dynamics.

By demanding that the update map depends on a box’s interface as well as the interfaces of two other boxes,

we recover the wiring pattern depicted in the illustration above. We would like to describe a system which can

update its wiring pattern and describe this in the language of Poly.

Definition 5.9. Let n ∈ N, B, C ∈ Set. We define an (n, C)-wired system as a dynamical system of the form

⊗n
i=1Siy

Si → ⊗n
i=1[C2yB , C2ySi×C2

]

Example 5.10. For our purposes, we will define C := {•, •, •}. First, consider a (1, C)-wired system. Applying

the formula from Proposition 5.8, we recover the data of two maps. First, map S → Poly(C2yB , C2yS1×C2

)

and secondly a map C2 × C2 × S1 → S1. We can further break the data of the first map into two respective

maps S1 × C2 → C2 and S2
1 × C2 → B. Together, they give the data of the four dot points described above.

11



However, the interface is described by a map S1 × C2 → C2 Significantly, the interface dynamically changes

depending on the current state and interface. More generally for n > 2, we demand that each box’s dynamics

C2 ×C2 ×Si → Si depends on the interface of two other distinguished boxes. For example, a (5, C)-wired system

is drawn as follows for a fixed wiring pattern.

Figure 2: (5, {•, •, •})-wired system.

The wiring pattern then changes dynamically depending on each box’s own internal dynamics and the connection

a box has with the adjacent boxes.

5.3 Time dependent dynamical systems

Many dynamical systems evolve over time. In particular, we would expect that evolving a dynamical system

some time t1 and then evolving the system again for t2 units of time should be equivalent to evolving the

system for t1 + t2 units of time. Our starting point to incorporating this into our framework is the following.

Fix S, T ∈ Set and consider the dynamical system SyS
φ−→ yT . Using Proposition 4.4, we find that φ is

equivalently the data of a function T × S → S. If T is a monoid, when is the resulting map a monoid action?

Proposition 5.11. Let S ∈ Set, (T,+, 0) be a commutative monoid and consider Poly as a monoidal category

with respect to composition − ◦ −. The set of monoid actions T × S → S is in one-to-one correspondence with

comonoid homomorphisms (See Definitions A.5,A.6) of the form SyS → yT .

Before proving this, we need to understand how to equip SyS and yT with comonoid structures.

Lemma 5.12. Let S ∈ Set. Then SyS can be equipped with a comonoid structure.

Proof. We must first define the erasure and duplicator maps. Any arbitrary morphism SyS → y is equivalent

to a function S × {·} ∼= S → S. In this view, we define ϵ : SyS → y corresponding to idS : S → S. Now, we

calculate

SyS ◦ SyS ∼=
∐
s1∈S

∐
f :S→S

y
∐

s2∈S S

∼= S × Set(S, S)yS×S

12



Consequently, any morphism SyS → SyS ◦ SyS is determined by a choice of f1 : S → S × Set(S, S) and

f2 : S × S × S → S. We define the duplicator to be the morphism δ corresponding to f1(s) = (s, idS) and

f2(s1, s2, s3) = s3. Next, we check that ϵ and δ satisfy the diagrams in Definition A.5. We claim that the

following composite map is an isomorphism.

SyS S × Set(S, S)yS×S ∼= SyS ◦ SyS SyS ◦ y ∼= SySδ id◦ϵ

To prove this claim we rely on the computation in Remark 4.11. On positions the map id ◦ ϵ acts to send

(s, f : S → S) 7→ (s, S → {·}). Since s 7→ (s, idS) under δ, we see that the composite gives an isomorphism

on positions. Next, we consider the backwards maps. Fix (s∗ ∈ S, f : S → S). Then the backwards map of

id ◦ ϵ acts to send s 7→ (s, s∗). Instead, if we fix s′ ∈ S then the backwards map of δ acts to send (s1, s2) 7→ s2.

Therefore, the composition yields id : S → S and the composite map is an isomorphism. Proving the right

co-unit law proceeds similarly so we will omit it. Next, we demonstrate the co-associativity law. Consider

SyS ◦ SyS
δ◦id−−−→ (SyS ◦ SyS) ◦ SyS . On positions, we compute that (s∗, f : S → S) ∈ (SyS ◦ SyS)(1) 7→

((s∗, idS), (s1, s2) ∈ S × S 7→ f(s2)). If we fix (s∗, f : S → S) ∈ (SyS ◦ SyS)(1), then the corresponding

backwards map has form ∐
(s1,s2)∈S×S

S →
∐
s∈S

S

(s1, s2, s3) 7→ (s2, s3)

Now, consider SyS ◦ SyS
id◦δ−−−→ SyS ◦ (SyS ◦ SyS). Similarly, on positions we compute (s∗, f : S → S) ∈

(SyS ◦ SyS)(1) 7→ (s∗, (f(s∗), idS)). The backwards map is then given by∐
(s1,s2)∈S×S

S →
∐
s∈S

S

(s1, s2, s3) 7→ (s1, s3)

It is then clear the composite of the respective backwards maps yields the identity. We conclude that (SyS , ϵ, δ)

is a comonoid.

Lemma 5.13. Let (T,+, 0) be a monoid. Then yT has a canonical comonoid structure.

Proof. Any morphism yT → y is defined by a single choice of t ∈ T . Define the erasure map ϵ to be the morphism

corresponding to the choice of t = 0. We compute that yT ◦ yT ∼= yT×T . Therefore, any map yT → yT ◦ yT

gives the data of a map T ×T → T . We choose this map to correspond to the monoidal operation +. Then the

co-unit laws follow from the fact that 0 is a two sided unit and co-associativity follows directly from the fact

that + is associative.

Now, we may prove Proposition 5.11.

Proof. Throughout we fix S ∈ Set and (T, 0,+) a commutative monoid. We have established that a morphism

SyS → yT is equivalently the data of a function f : T × S → S. Using the observation that the position set of
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yT and y are singletons, we see that the following square is commutative

SyS yT

y y

φ

ϵT

id

ϵS

if and only if for all s ∈ S, ϵ
(s2(0))
T = ϵ

(s)
S (s) = s. Equivalently, if and only if f(0, s) = s for all s ∈ S. Similarly,

we see that the following square is commutative

SyS yT

SyS ◦ SyS yT ◦ yT
δS

φ◦φ

φ

δT

if and only if for all s ∈ S, t1, t2 ∈ S, φs
S ◦φT (t1, t2) = δsS(δ()). Equivalently, if f(t1 + t2, s) = f(t2, f(s, t1)). We

conclude that any monoid action T × S → S is uniquely identified with a comonoid morphism SyS → yT .

To generalise this notion to arbitrary dynamical systems, we introduce the following definition.

Definition 5.14. A time dependent dynamical system is a choice of monoid (T,+, 0), p ∈ Poly and morphism

of polynomials

SyS ⊗ Ty → p

such that for every morphism p → y, the induced morphism SyS → yT is a comonoid homomorphism.

First, we note that using Proposition 5.8, any morphism SyS ⊗Ty
φ−→ p is identified with a morphism of the

form SyS → [Ty, p]. Hence, this definition is a special instance of Definition 5.1. Note that a morphism p → y

is equivalently the choice of i ∈ p(1) and x ∈ p[i]. Hence, the induced morphism SyS → yT is given by the map

sending

(s, t) ∈ S × T 7→ φ(s,t)(x) ∈ S × {•} ∼= S

Example 5.15. Let A,B ∈ Set and consider a time dependent dynamical system when p := ByA. Comparing

with Proposition 5.4, the data consists of

1. A readout function S × T → B

2. A map S × T ×A → S such that for fixed a ∈ A, the resulting map is a monoid action.

5.4 Stochastic dynamical systems

In Proposition 4.5, we exhibited a very different means of constructing Poly. We would like to slightly modify

this construction to instantiate dynamical systems with randomness.

Definition 5.16. Let M : Set → Set be a monad. We define a functor SetM/− : Setop → Cat as follows.

For any A ∈ Set, we define SetM/A to be the category with the same objects as Set/A. However, a morphism

(X,X
q−→ A) → (Y, Y

p−→ A) is an a ∈ A indexed family of functions

αa : q−1(a) → M(p−1(a))a∈A

14



The identity morphism is given by the respective component of the unit of the monad η : id ⇒ M and composition

is given in the Kleisli category of M , Kl(M) (see Definition A.4). Given f ∈ Set(B,A), we induce a functor

SetM/f : SetM/A → SetM/B. On objects, SetM/f acts exactly as Set/f does. That is

(Y, Y → A) 7→ (Y ×A B, Y ×A B → B)

Comparatively, SetM/f acts on morphisms as

(αa : q−1(a) → M(p−1(a)))a∈A 7→ (αf(b) : q
−1(f(b)) → M(p−1(f(b))))b∈B

Definition 5.17. We define PolyM :=
∫
(SetM/−)p.

An object in PolyM precisely gives a choice A,B ∈ Set, and a function B
α−→ A. To recover a polynomial

p ∈ Poly, we may identify p(1) := A and for any i ∈ A, p[i] := α−1(i) ⊂ B. Next, we consider a morphism

p → q. Mirroring the proof of Proposition 4.5, this precisely gives the data of a function f1 : p(1) → q(1) and an

i ∈ p(1) indexed collection of functions (q[f1(i)] → M(p[i]))i∈p(1). This is formally summarised in the following

proposition.

Proposition 5.18. Let p, q ∈ PolyM . Then p, q can be identified with polynomial functors and a morphism

φ ∈ PolyM (p, q) can be identified with the following data

1. A function φ1 : p(1) → q(1)

2. An i ∈ p(1) indexed family of functions

(φ(i) : q[φ1(i)] → M(p[i]))i∈p(1)

If we compare this data to Proposition 4.4 we see that the only difference now is that backwards maps belong

to Kl(M) rather than Set. Now, we will see this give a specific example.

Proposition 5.19. There exists a monad D : Set → Set such that for any X ∈ Set

D(X) = {f ∈ Set(X, [0, 1]) :
∑
x∈X

f(x) = 1 and f(x) ̸= 0 for finitely many x ∈ X}

We call D the discrete distribution monad.

We will not fully describe the implied monad structure of D here. The salient feature of D is that it maps

a set X to the set of finitely supported probability distributions on X. Importantly, D enables us to give an

example of a stochastic dynamical system.

Definition 5.20. Let D be the discrete distribution monad. A stochastic dynamical system is a choice of

S ∈ Set, p ∈ PolyD and φ ∈ PolyD(Sy
S , p).

Example 5.21. Let t ∈ N and consider a trader speculating on the price of a commodity. We let pt ∈ R refer

to the price of the commodity at time step t. The trader predicts pt+1 knowing the historical prince p0, p1, ..., pt
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assigning some (finitely supported) distribution Rt → D(R) to the price at the next time step. Realising the

trade, the trader can determine the associated profit or loss which is a function R → R. This determines the

data of a stochastic dynamical system

RyR → RyR
t

6 Conclusion

In this report, we have introduced the category Poly. Following this, we presented the central definition of a

dynamical system as a particular arrow in Poly and explored an assortment of interesting ideas associated to

dynamical systems that we could instantiate within this formalism. Initially, we had hoped to better explore

Spivak’s special double category Org and the associated definition of dynamical categorical structures outlined

in [SS23]. Though given constraints on time and the report, we were not able to adequately realise these goals.

In the future, we are also interested in understanding Poly for its own sake especially for generalisations to

categories other than Set. A particularly motivating result is the fact that a polynomial comonoid can be

identified with a (small) category.
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A Appendix

Definition A.1. (Slice category) Let C be a small category. Given a choice A ∈ C, we may construct the

category C/A as follows.

1. An object of C/A is a pair (B ∈ C, f ∈ C(A,B)). We can alternatively identify an object by an arrow

A
f−→ B.

2. A morphism (B1, f1) → (B2, f2) is an arrow g : B1 → B2 such that the follow diagram is commutative.

B1 B2

A

g

f1 f2

Composition (B1, f1)
g1−→ (B2, f2)

g2−→ (B3, f3) is simply given by g2 ◦ g1. The identity arrow for any (B, f)

corresponds to idB ∈ C(B,B).

Definition A.2. (Opposite slice functor) We denote (Set/−)p as the slice functor Setop → Cat which sends

A ∈ Set 7→ (Set/A)op. Given an arrow f ∈ Set(A,B), (Set/f)p is a functor Set/B → Set/A (equivalently a

functor between the respective opposite categories) as follows.

1. On objects (C,C
h−→ B) 7→ (C ×B A,C ×B A

π−→ A)

2. On morphisms (C1, C2
h1−→ B)

g−→ (C2, C2
h2−→ B), g is mapped to the induced map

C1 ×B A → C2 ×B A

Definition A.3. (Grothendieck construction) Let Cat be the category of small categories and let C ∈ Cat.

Given a functor F : C → Cat, the Grothendieck construction written
∫
F , is a category consisting of the

following data.

1. An object in
∫
F is a pair (c, x) where c ∈ C and x ∈ F (c).

2. A morphism (c1, x1) → (c2, x2) is an arrow f : c1 → c2 and a choice of arrow g : F (f)(x1) → x2. We

write this morphism as the pair (f, g).
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3. The composition of morphisms (c1, x1)
(f1,g1)−−−−→ (c2, x2)

(f2,g2)−−−−→ (c3, x3) is given by the composite

(f2 ◦ f1, g2 ◦ F (f)(g1))

Definition A.4. (Kleisli category) Let (M,η, µ) be a monad over a category C. The Kleisli category, denoted,

Kl(M) has the same objects as C. An arrow A → B of Kl(M) is an arrow of C(A,M(B)). Identity morphisms

are given by the components of the unit of M , η. Finally, given f ∈ C(X,M(Y )) and g ∈ C(Y,M(Z)) g ◦Kl(M) f

is given by the composite

X
f−→ M(Y )

M(g)−−−→ M2(Z)
µZ−−→ M(Z)

Definition A.5. Let (C,⊗,1) be a monoidal category. A comonoid in C is an object M equipped with a

duplicator morphism δ : M → M ⊗M and an erasure morphism M → 1. The following diagrams (known as

counit and coassociative laws respectively) are required to commute:

1⊗M M M ⊗ 1

M ⊗M

δ
id⊗ϵϵ⊗id

∼
∼

M M ⊗M

M ⊗M M ⊗M ⊗M

δ

id⊗δ

δ⊗id

δ

Definition A.6. Let Let (C,⊗,1) be a monoidal category and (M, ϵM , δM ), (N, ϵN , δN ) be comonoids. A

comonoid homomorphism is a morphism f : M → N such that the following diagrams commute:

M N

1 1

f

ϵM

id

ϵn

M N

M ⊗M N ⊗N

f

δM

f⊗f

δn

Definition A.7. (Dependent function) Let I ∈ Set and consider an i ∈ I indexed collection of sets {Xi}i∈I .

A dependent function is an element of
∏

i∈I Xi. We may denote an element as a mapping

f : (i ∈ I) → Xi

Definition A.8. (Arrow category) Let C be a category. We form the arrow category of C denoted at Arr(C)

as follows.

1. The objects of Arr(C) are arrows A → B for A,B ∈ C
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2. Given two arrows A → B and C → D. A morphism is a pair of arrows (A → C,B → D) such that the

following diagram is commutative.

A B

C D

3. Given an arrow A → B, the identity morphism is the pair (A
idA−−→ A,B

idB−−→ B)

4. Composition of morphism of arrows is given by vertical composition.
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