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Abstract

The sun is an incredibly dynamic system that still holds many mysteries still yet to be fully understood

by physicists. One of these mysteries at the focus of this report is the Coronal Heating Problem which posits

the question as to how, and why is the corona of the sun thousands of degrees hotter than the surface?

The partial answer proposed by Parker is the process of magnetic field braiding. We present a summary of

concepts of braid and topological entropy that quantitatively measure how ’chaotic’ a braid or flow is and

how this applies to measuring the energy transported into the solar corona. Additionally we investigate 3

common methods of measuring the topological entropy of 2D flows. These methods are finite-time braiding

exponent (FTBE), Line-Segment Growth, Ensemble Topological Entropy Calculation (E-tec). We find

that for solar magnetogram feature tracking, E-tec is the most promising technique given better estimates

with shorter trajectory time, and fewer total trajectories.
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1 Introduction

The sun is an incredibly dynamic system that is rich with beautiful physics and many mysteries yet to be fully

understood. One such problem at the heart of this report is the coronal heating problem. The coronal heating

problem is that the solar corona (∼ 1, 000, 000K) is approximatly thousands of degrees hotter than the surface

of the sun, with the surface (∼ 5, 000K)[7]. This unexpected spike in temperature is not yet fully explainable

through known processes. However, one leading theory is that the energy is being transported by a process

known as magnetic field braiding [6]. This solution first proposed by Parker [5] states the energy transported

to the corona originates in the complex and dynamic motions of the solar photosphere driven by convection

currents.

Since there is a relationship between the complexity of the underpinning flow and the amount of magnetic

field braiding occurring, having an understanding of how to measure this complexity and the differences and

similarities of the methods in measuring this is important. This work aims to provide an overview of the dif-

ferent measures of complexity for braids and 2D fluid flows through a quantity called topological entropy and

to determine which estimation method would be best applied to photosphere magnetogram trajectory data in

future solar magnetic field braiding investigations.

2 Topological Entropy

In the investigation of a physical flow a natural question to investigate is the complexity of the flow or in other

words, how ’chaotic’ a flow is. A quantity developed by Adler et al is called the ’Topological Entropy ’. We will

now present the basic definitions of topological entropy.

Definition 1 (Newhouse and Pignataro [4])

Let f : X → X be a continuous self-map of a metric-space X with distance function d. Let ϵ > 0, and n ∈ Z+.

An n-orbit is a sequence, f(x), f2(x), ..., fn−1(x) of f -iterates of a point x ∈ X. Two n-orbits f i(x), f i(y) for

0 ≤ i < n are ϵ-distinguishable if there exists a j ∈ [0, n) where d(f j(x), f j(y)) > ϵ. Let r(n, ϵ, f) be the

maximal number of ϵ-distinguishable n-orbits. Further, let r(ϵ, f) = lim supn→∞
1
n log (r(n, ϵ, f)).

Finally, let h(f) = limϵ→0 r(ϵ, f)

where h is our topological entropy. An equivalent intuition on this quantity is that it represents the amount

of information lost per iteration of f . This is possible to be seen in Figure 1, since points that were initially

arbitrarily close after an iteration of f will no longer be associated.
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Figure 1: A diagrammatic representation of what it means for two trajectories in X to be ϵ-distinguishable.

3 Braid Entropy

The overall goal of this section is to obtain a lower-bound on the topological entropy of a flow by investigating

the topological entropy of braids. To achieve this we will first introduce the braid group and then investigate a

bound called the Burau Estimation.

3.1 Braid Group

When we refer to the braid group we are really referring to the Artin braid group. We define this groups as:

Definition 2 The braid group Bn is the group generated by the n − 1 generators, σ that follow the braid

relations. σ+1
i is the counter-clockwise interchange of the ith strand with the (i+1)th strand seen in Figure 2a.

Similarly, σ−1
i is a clockwise interchange seen in Figure 2b. The braid relations, as seen in Figure 3 and Figure

4, are given by:

σiσj = σjσi when |i− j| > 1

σiσjσi = σjσiσj when |i− j| = 1
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ith (i+ 1)th

(a) b = σi

ith (i+ 1)th

(b) b = σ−1
i

Figure 2: (a) shows the counter-clockwise rotation of 2 strands in a braid induced by generator σi.

(b) shows the clockwise rotation of 2 strands in a braid induced by the generator σ−1
i .

(a) b = σiσj (b) b = σjσi

Figure 3: Diagram of the 1st braid relation σiσj = σjσi when |i− j| > 1

(a) b = σiσjσi (b) b = σjσiσj

Figure 4: Diagram of the 2nd braid relation σiσjσi = σjσiσj when |i− j| = 1

3.2 Burau Estimation

Definition 3 The Burau Representation of a braid is a map from Bn 7→ GL
(
Z
[
t, t−1

])
Where, σi 7→ Ii−1 ⊕

1− t t

1 0

⊕ In−i−1

Where In is an n× n identity matrix and the operation ⊕ is the direct sum of matrices.

However there also exists another map, Bn 7→ GLn−1

(
Z
[
t, t−1

])
, called the reduced Burau representation.

This can be obtained through a change of basis from the unreduced representation. We will use Thiffeault’s
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definition and interpretation [9].

Definition 4 The reduced Burau Representation of the braid group, Bn, is a map Bn 7→ GLn−1

(
Z
[
t, t−1

])
,

Where, σi 7→ Ii−2 ⊕


1 t 0

0 −t 0

0 1 1

⊕ In−i−2 and interpret the cases i = 1 and i = n− 1 separately as a deletion

of the 1st and last column and row of the respective block.

Example 1 (The Braid Group on 3 Strands, B3) For the braid group, B3, there are 4 possible opera-

tions: σ1, σ2, and their respective inverses, σ−1
1 , and σ−1

2 .

For σ1, we construct the matrix:

σ1 7→ I−1 ⊕


1 t 0

0 −t 0

0 1 1

⊕ I0

and so after deletion, we get,

σ1 7→

−t 0

1 1


Similarly for σ2, whereby after the deletion of the last row and column, we get,

σ2 7→

1 t

0 −t



A natural question that arises is whether this representation of the braid groups are faithful. That is to say

there does not exist a non-trivial element in the kernel of this map? It has been shown that the representation

is unfaithful for n ≥ 5, and faithful for n ≤ 3. The n = 4 case is still an open problem. Now that we can

construct the reduced Burau representation, we now introduce the quantity that provides a lower-bound on the

topological entropy.

Theorem 1 Given a braid β ∈ Bn, the topological entropy of the braid, hbraid, is bounded by:

hbraid ≥ ln sup
|t|=1

(
SR

(
β̂
))

Where, β̂ is the reduced Burau representation of β, and SR, is the spectral radius of a matrix, defined as the

eigenvalue of greatest magnitude.
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An interesting result on this bound is that it is exact for B3 [9]. When equality holds, the estimation is called

‘sharp’ which can be seen in Figure 6. Of particular interest is the braid, β = σ1σ
−1
2 . When n > 3, the

sharpness is not guaranteed and more advanced computational techniques are required such as train-tracks or

the computation technique from Moussafir, 2006 [3].

Example 2 (The Golden/Pigtail Braid)

The braid at the focus of this investigation is commonly referred to as the golden braid or the pigtail braid.

This braid is characterised by the alternating action of a counter-clockwise movement and then a clockwise

movement on 3 strands as seen in Figure 5. This is translated into the braid group B3 through the generators

σ1 and σ−1
2 .

Figure 5: The Golden/Pigtail Braid β = σ1σ
−1
2

Let β = σ1σ
−1
2 , then in the reduced Burau representation we have,

β̂ =

−t 0

1 1

1 t

0 −t

−1

=

−t −t

1 1− t−1


In general, to determine the sup|t|=1, we set t = eiθ and vary θ. This gives

β̂ =

−eiθ −eiθ

1 1− e−iθ


However, results from Band and Boyland have shown that for B3, this occurs when t = −1 which simplifies

above to,

β̂ =

1 1

1 2
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Which has characteristic polynomial

λ2 − 3λ+ 1 = 0

=⇒ λ =
3±

√
5

2

=⇒ SR(β̂) =
3 +

√
5

2
= φ2

=⇒ hBraid = ln(φ2) ≈ 0.962

Where φ is the golden ratio! Hence why this braid is referred to as the golden braid. In fact, it is a result from

D’Alessandro et al. (1999) that this braid has the maximum entropy per generator.

Figure 6: Sharpness of Burau Estimation for β = σ1σ
−1
2 . The black curve is the SR

(
β̂
)
, Red lines are located at ±π,

and the blue line is exact hBraid.

The ability to place a lower-bound on topological entropy will be valuable in determining the nature of future

topological estimation methods for the 2D flow that emulates the braiding of magnetic fields on the sun.
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4 Estimating Topological Entropy

Before we investigate the various methods used to estimate the topological entropy of flows we will introduce

the 2D flow that was used to investigate the differences between these methods. We will do this by investigating

the methods separately before comparing them all together.

4.1 The 2D Flow

The 2D flow we have investigated has previously been used in works to understand the effect of magnetic field

braiding on the temperature of the solar corona [2]. It is an Aref blinking flow model given by:

ϕt = ±x0κ
√
2π exp

[
− (xt + x0)

2 + (yt + y0)
2

2

](
erf

(
t− tc
2

)
− erf

(
t0 − tc

2

))
xt+1 = −(yt + y0) sin(ϕt) + (xt ± x0) cos(ϕt)− x0

yt+1 = −(xt ± x0) sin(ϕt) + (yt + y0) cos(ϕt)− y0

Where we took x0 = 1, t0 = 0, tc = 4 + 8niterations, y0 = 0. κ is a free parameter that is a measure of how

strongly points are circulated around the center point ±x0. The parity of x0 is positive if t ≤ 8niterations, else

the parity will be negative. This is how we achieve the blinking flow nature. It has been shown that there exists

trajectories with periodic orbits of order 3 within this flow for κ = 1. This allows us to use the lower-bound

provided by the braid entropy of β = σ1σ
−1
2 found in Section 4.
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Figure 7: 3 Iterations of the flow above with points p(x0, y0) = (2.025, 0.15), (0.03,−0.29), (−2.025, 0.269).

Dashed lines are where a trajectory has y ≤ 0.25, else the lines remain solid. A clear braiding action of σ2σ
−1
1

is occurring within the flow. This braid is conjugate to the golden braid and therefore has the same topological

entropy.

4.2 Line Segment Growth

A common approach to estimating the topological entropy is by measuring the length dilation of a curve in the

flow [2] [4], since the length of a curve is related to the topological entropy.

Let γ be a curve and f be the flow.

h(f) ≥ h(f, γ)

ℓ(niterations) ≈ ℓ0 exp (h(f, γ)niterations)

Where ℓ0 is the length of γ under no iterations of f . In this work we have implemented the adaptive algorithm

developed by Candeleresi et al. that allows us to directly measure this line segment growth for the line, y = 0,

x ∈ [−2, 2]. This is done by placing points more specifically where they will be needed (Figure 8). We will now

refer to this specific line segment as γ.

After applying this algorithm while measuring the final length of the line γ for varying κ we find our topological

estimations (Figure 9). For κ = 1 we find an estimate of h = 1.14±0.015 and for κ = 2.5 we find h = 2.49±0.05.

In fact, fitting a line to the data set we find topological entropy scaling of h ∼ κ(0.99 ± 0.03) + (0.11 ± 0.04).

We will find similar linear growth in the alternative methods.
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(a) N = 16859 points uniformly distributed (b) N = 16859 points adaptively distributed

Figure 8: A birds-eye comparison of γ after 5 iterations of f without adaptive algorithm and after. Large

discontinuities in f5γ without the adaptive algorithm are observed in (a), and after the application of the

adaptive algorithm (b), these discontinuities are no longer observed.

Figure 9: Results from applying adaptive algorithm to directly measure the growth rate of the line segment γ

for various κ with linear fit.

4.3 Finite-Time Braiding Exponent

The finite-time braiding exponent (FTBE) estimate developed by Budisic and Thiffeault [1] is a computational

method that provides a lower bound on the topological entropy of a system by measuring how n trajectories

braid around each other. By fixing a projection angle α, one can convert geometric trajectories into a braid

∈ Bn. The quantity being calculated is given in Definition 5 below.
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Definition 5

Let β be a braid corresponding to n strands over a time interval of length, T . The finite-time braiding exponent

is given by:

FTBE(b) =
1

T
log

|βℓE |
|ℓE |

Where ℓE is an initial loop and the length | · | is the number of intersections of the loop with the horizontal axis to the

left of a base-point.

Figure 10: Mean FTBE for varying κ showing a convergent nature with increasing the number of strands (m)

in the sub-braid agreeing with previous studies.

The advantage to FTBE is the fact that it does not require full knowledge of the underpinning flow. All it

requires is the relative motion between trajectories and a projection angle. All FTBE calculations were com-

puted within the MATLAB braidlabs add-on. From a total N = 2000 trajectories of 60 iterations of σ1σ
−1
2 at

a projection angle of α = 0, we calculated the mean FTBE of 10 uniformly randomly sampled m trajectories

where m < n.

The convergent nature of the FTBE is still not completely understood. However, with this flow, the con-

vergence does appear to be observed (Figure 10). Since we do not understand the nature of the convergence we

cannot make any extrapolations in the limit of infinite strands. Thus, the estimate provided by the FTBE is

taken to be the final estimate at m = 1800.
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4.4 Ensemble Topological Entropy Calculation

Similar to FTBE, only requiring relative trajectory movements, a recent method developed by Roberts et al. is

the Ensemble-based Topological Entropy Calculation (E-tec) [8]. It tracks the exponential growth of a ‘rubber

band’ through triangulation. The growth rate of the rubber band provides a lower bound on the topological

entropy. We calculated the topological entropy of n = 2000 trajectories over 60 iterations of σ1σ
−1
2 .

4.5 Comparison of Techniques

Figure 11: All three methods, Adaptive line segment growth (blue), FTBE (orange), and E-tec (green) showing

linear increase in topological entropy estimate.

Comparing the three methods we have computed we find a fairly consistent linear increase in topological

entropy with increasing κ across all techniques. We find that the adaptive line segment growth technique

gives a linear scaling of topological entropy, h ∼ κ(0.99 ± 0.03) + (0.11 ± 0.04), FTBE gives scaling h ∼

κ(0.92 ± 0.03) + (0.15 ± 0.05), and E-tec gives scaling h ∼ κ(0.91 ± 0.03) + (0.04 ± 0.05). Between all three

estimation techniques, we are inclined to believe that the adaptive method provides the closest estimation to the

true topological entropy since by nature it samples many more points. This is corroborated by its consistently

greater value (Figure 11). Focusing on κ = 1, where it has been shown to have a 3-period orbit, we observe that

all three estimates achieve values greater than the lower bound established to be log
(
φ2

)
≈ 0.962 (Figure 12).
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Figure 12: Comparison between adaptive line segment growth (dashed), FTBE (circle), E-tec (blue-solid), and

braid entropy lower bound (grey-solid) of log
(
φ2

)
≈ 0.962.

5 Conclusion

We have investigated three different estimation techniques for finding the topological entropy of a 2D Aref

Blinking Flow. We find that although all three provide consistently similar and great estimations of the true

topological entropy, the adaptive line segment growth provided the best estimate in terms of accuracy. Although

E-tec provides consistently lower topological entropy estimations, its ability to provide estimations without the

need for long observation time, and number of trajectories, we conclude that E-tec is the best candidate for

future studies requiring an estimation of topological entropy without full knowledge of the underlying flow.
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