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Abstract

The advent of Spatial Transcriptomics (ST) technology enables the measurement of gene or isoform ex-

pressions at pixel resolution, where each pixel contains multiple cells. Hence, the identification of cell types

within the tissue’s spatial organization is hindered. Cell type deconvolution aims to estimate the proportion

of different cell types for each pixel from the ST data. It is an important step for downstream analysis, such

as the interpretation of identified transcript programs from spatial data in cell type context. Existing methods

include the reference-based approach, which uses potentially imperfect cell-type signature genes from single cell

RNA sequencing (scRNA-seq) as assistance; or the reference-free approach, which only uses the ST data for

cell-type proportion estimation. This research project aims to utilise the cell-type signature genes as prior in the

deconvolution process, thus giving ST data power the power to correct it if the scRNA-seq data is inaccurate.

This approach demonstrates greater accuracy in deconvolved cell types when an appropriate prior is given, with

the performance approaching the reference-free result as the prior became less suitable.

1 Introduction

Biological tissues often contain a mixture of different cell types, the spatial structure of which can be used to

identify diseases. The advancement of short-read and long-read sequencing technologies allows the capturing

of gene and isoform expression on various pixels of a tissue sample (Figure 1), hence preserving the spatial

context of gene activity. However, the fact that for each pixel, spatial data comes from multiple cells makes the

discovery of cellular structure difficult.

Figure 1: Spatial Tran-

scriptomics data visualisa-

tion from [1].

Cell type deconvolution endeavours to understand compositions of cell types

within tissue samples, and multiple methods have been developed in this area.

Reference-based methods use cell type signature gene information obtained from

scRNA-seq to help distinguish cell types within pixels. Two examples of this

approach are as follows: Robust Cell Type Decomposition (RCTD) [2] uses mean

signature gene expression profiles to construct a poisson model while SPOTlight

[3] initializes a Non-Negative Matrix Factorisation using single cell reference and

Non-Negative Least Squares to build a pixel-wise cell type proportion profile. The

alternative approach is reference-free, which uses the spatial data directly without

the single cell reference. An example of such method is STdeconvolve [1], which

models the dataset using Latent Dirichlet Allocation (LDA) [4].

However, using single cell reference data has two drawbacks, namely its poten-

tial inaccuracy and unavailability. The true reference dataset may vary between

different tissues or organisms, and is often limited for diseased tissues. The goal

of this research project is to tackle this issue by incorporating the single cell sig-

nature gene dataset as a prior, and thus the deconvolution process does not rely
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completely on the reference.

Statement of Authorship. This research project was completed under the supervision of Dr Heejung

Shim. All mathematical derivations, program implementations and analysis were done with consistent guidance

from my supervisor throughout the duration of this project.

2 Datasets

As described previously, two input datasets are required for deconvolution: the Spatial Transcriptomic data

which captures pixel resolution gene activity, and the single cell reference data which contains cell-type specific

gene expression profiles.

2.1 Spatial Transcriptomic Data

A count matrix (Figure 2) of size D × N , entry with row d, column n represents the count of mRNA copies

corresponding to gene n in pixel d. It will be referred to as ‘spatial data’ in short.

Figure 2: Gene expression profile for each pixel.

2.2 Single Cell Reference Data

A matrix (Figure 3) of size K ×N , entry with row k, column n represents the likelihood of occurrence of gene

n in cell type k. Each row of this matrix should sum to 1 because every entry represents a proportion.

Figure 3: Gene expression profile from scRNA-seq.

Note that this dataset will be used as prior in the inference step and later referred to as η.
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3 Methods

The modelling component of this project is based on the Latent Dirichlet Allocation (LDA) from [1] with

modifications. LDA was first proposed in [4], under the context of Natural Language Processing (NLP). We

will give a brief description of LDA in the original setting and focus on how it is applied and modified in cell

type deconvoluion.

Using notations from the original LDA paper, a word w represents the finest grain of data which comes from

a set of distinct words called the vocabulary, with index {1, 2, ..., V }. Furthermore, each word wn is assumed to

be generated from one single topic zn, which is an unobserved latent variable. Lastly, each document w consists

of a sequence of words (w1, w2, ..., wn) and a corpus M consists of a collection of documents (w1,w2, ...,wm).

Note that order of words and documents are irrelevant, meaning they can be exchanged without affecting the

inference result.

Two key challenges that arise naturally are: what is the topic distribution per document? And how likely

is each word to occur in a particular topic z (i.e, can p (wi|zj) be recovered)? LDA and many other algorithms

such as the Probabilistic Latent Sematic Analysis [5] aim to address these questions.

3.1 Latent Dirichlet Allocation in Cell Type Deconvolution

Notations stated below will be used throughout this report:

• D represents the number of pixels in the spatial dataset.

• K represents the number of cell types in the reference dataset.

• N represents the number of genes in both datasets.

LDA is a generative statsitical model, with the following generative process given in [1] when applied to cell

type deconvolution.

For each pixel d ∈ [1 : D]:

1. Generate θd ∼ Dir(α) (θd is K dimensional)

2. For each molecule m ∈ [1 :Md] from pixel d:

(a) Given θd, assign cell type zd,m ∼ Categorical (θd)

(b) Given zd,m, assign gene wd,m ∼ Categorical
(
βzd,m

)
1

Where Md represents the total gene count per pixel. The modification proposed in this paper in comparison

to the LDA model described originally in [1] is that we fit a prior for β from the single cell reference dataset,

instead of treating it as a parameter to be estimated. Let η denote the single cell reference matrix in section

1Note that β represents the true underlying cell type gene proportions.
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2.2, where ηkn represents the proportion of gene n in cell type k. Then, prior for β is:

p(βk) = Dir (bηk) , for k = 1, 2, ...,K

where ηk represents the kth row of the single cell reference matrix. b is a hyperparameter which controls

the strength of prior in the inference step, it will be tuned as part of the algorithm. Note that for dirichlet

distribution, scaling up the parameter does not change the overall mean, but decreases variance. Hence, if η

is strongly correlated with β, then a high value of b would be suitable. However, if the cell type specific gene

expression profile lacks accuracy, then a low value of b would be adequate.

Figure 4: Generative process of the LDA model [4] applied in Cell Type Deconvolution with prior for β incor-
porated, each box represents replications.

4 Variational Inference

Variational Inference (VI) is used to obtain posterior distributions for the inference goals in Figure 4. A general

introduction to this method will be given below.

In Bayesian statistics, we are often interested in the posterior distribution p(θ|x), where θ is the unknown

parameters and x is the data.

p(θ|x) = p(θ)p(x|θ)
p(x)

=
p(θ)p(x|θ)∫

Θ
p(θ)p(x|θ)dθ

However, with θ being high dimensional in many cases, the integral
∫
Θ
p(θ)p(x|θ)dθ cannot be evaluated

and thus the posterior is intractable (or equivalently, it is only known up to a constant). Variational Inference

approximates this posterior distribution through an optimisation approach and is well known for its speed

comparing to alternative methods such as Markov Chain Monte Carlo (MCMC).
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4.1 Evidence Lower Bound

VI approximates the target posterior p(θ|x) by some member q(θ) from a given family of distributions Q.

The best member q∗(θ) is found by minimizing the Kullback-Leiber(KL) Divergence between the variational

distribution and the target posterior:

q∗(θ) = arg min
q(θ)∈Q

KL (q(θ)||p(θ|x)) = arg min
q(θ)∈Q

∫
Θ

q(θ) log
q(θ)

p(θ|x)
dθ

However, because p(θ|x) exists in the KL Divergence argument, it cannot be computed directly. This issue

is resolved by first defining the Evidence Lower Bound function which can be computed.

ELBO(q(θ)) =

∫
Θ

q(θ) log
p(θ, x)

q(θ)
dθ

Then the KL Divergence can be rewritten as follows,

KL (q(θ)||p(θ|x)) = −ELBO(q(θ)) + log p(x)

Because VI aims to find the best q(θ), the log p(x) term is irrelevant and thus,

q∗(θ) = arg min
q(θ)∈Q

KL (q(θ)||p(θ|x)) = arg max
q(θ)∈Q

ELBO(q(θ))

A quick note that KL Divergence is strictly non-negative (Appendix A.1), we have,

KL (q(θ)||p(θ|x)) ≥ 0

−ELBO(q(θ)) + log p(x) ≥ 0

ELBO(q(θ)) ≤ log p(x)

and hence the name ‘Evidence Lower Bound’.

4.2 Mean Field Variational Family

A famous and widely used variational family is the Mean Field Variational Family, which assumes independence

between variational parameters.

q(θ) =

J∏
j=1

qj(θj)

The benefit of independence is that the integral
∫
Θ
q(θ) log p(θ,x)

q(θ) dθ can be factorized for each θj , thus allowing

the integrals to be computed independently for each variational parameter. Let w represent the count matrix

containing spatial data (Figure 2), and thus the target posterior is p(θ, z, β|w,α)2. Using the mean field

2Note that α is treated as a parameter to be updated in each iteration, thus no variational distribution is assigned.
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variational family yields the following variational distributions,

q (θ, z, β) =

D∏
d=1

q (θd)×
D∏

d=1

Md∏
m=1

q (zd,m)×
K∏

k=1

q (βk)

where Md represents the total number of molecule counts in pixel d. Furthermore, the following variational

distributions were chosen for each parameter[6].

• q(θd) = Dir(γd)

• q(zd,m) = Categorical(ϕd,m)

• q(βk) = Dir(τk)

With the variational distributions specified, the ELBO function can be expressed as follows,

ELBO(γ, ϕ, τ, α|w, η, b) =Eq [log p(β)] + Eq [log p(θ|α)] + Eq [log p(z|θ)] + Eq [log p(w|z, β)]

− Eq [log q(θ)]− Eq [log q(z)]− Eq [log q(β)]

Each expectation term is taken with respect to the underlying variational distribution, detail derivations will

be given in the appendix (Appendix A.2). Parameter updates for γ, ϕ and τ are obtained by setting the partial

derivative of the ELBO function with respect to these parameters to 0 (e.g, setting ∂ELBO
∂γdk

= 0 for pixel d

and cell type k). However, for α, an straight forward update formula cannot be obtained in the same manner,

instead, Newton-Raphson method is used in each iteration to find the optimal α (Appendix A.3).

In terms of model specifications, cell type proportion for each molecule is considered separately. Nevertheless,

in practice, estimated cell type proportions for molecules within the same pixel that have the same gene will have

no difference because their corresponding spatial and reference data are identical. Hence, the space complexity

can be greatly reduced in when constructing the 3D matrix ϕ, where matrix size goes from
∑D

d=1Md ×K to

D ×N ×K.

Note that in the pseudocode, ψ is the digamma function, wdn represents the count of gene n in pixel d,

matrices γ and τ are normalized because they are parameters for dirichlet distributions where proportions are

obtained from (cell type proportion per pixel and gene proportion per cell type respectively).

4.3 Interpretations for parameter update

Interpretations for updates of the three main parameters ϕ, γ and τ are examined because they enhance

credibility of the LDA model, particularly for parameter τ , which is appended from the original deconvolution

model. Because γ and τ are both parameters for dirichlet distributions, they are discussed together.

Interpretations for updates of γ and τ . In the update formulas for both γ and τ , involvements from

both the prior and spatial data can be easily spotted. For τkn, the first term bηkn is the prior parameter (reason

why b controls power of the prior), while the second term
∑D

d=1 ϕdnk ·wdn represents the effective count of cell
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Algorithm 1 Variational Inference Parameter Update for the LDA model

Input: w, b, η, D, K, N , ϵ

1: Initialize αi = 50/K for all i

2: Initialize γdk = 1 for all d, k

3: Initialize ϕdnk = 1/K for all d, n(gene), k

4: Initialize τkn = 1 for all k, n

5: while ∆ELBO > ϵ do

6: Update ϕdnk ∝ exp
{
ψ(γdk)− ψ

(∑K
j=1 γdj

)
+ ψ(τkn)− ψ

(∑N
j=1 τkj

)}
7: Update γdk = αk +

∑N
n=1 ϕdnk · wdn

8: Update τkn = bηkn +
∑D

d=1 ϕdnk · wdn

9: Update α using Newton-Raphson Method.

10: Compute and store current ELBO.

11: end while

12: return α, normalized γ, ϕ, normalized τ

type k assigned to molecules with gene n across all pixels(Figure 5). For γdk, contributions from both prior and

data can be identified. Although αk is not a specified by the user, it can be considered as the overall proportion

of cell type k across all pixels, so it plays the role of a prior. On the other hand,
∑N

n=1 ϕdnk · wdn represents

the effective count of cell type k assigned to pixel d across all molecules in that pixel.

Figure 5: Visual understanding of the update formula for τkn

Interpretations for update of ϕ. Firstly,

the update formula can be rewritten,

ϕdnk ∝ exp {Eq [log θdk] + Eq [log βkn]}

∝ exp {Eq [log θdk]} × exp {Eq [log βkn]}

Although expectation and exponential cannot

be swapped, this formula can still be interpreted

as θdk × βkn - relative proportion of cell type k

in pixel d multiplied by the likelihood for gene n

to appear in cell type k gives the proportion of

cell type k for all molecules with gene n in pixel

d. Hence, instead of updating directly from the

spatial data, convergence result of ϕ relies on

the correctness of both τ and β.

5 Results

Performance of our proposed model is tested against both simulated and test dataset. We first confirm the

validity of our model on data with strong signal, accompanied by an informative prior; then we assess the benefit
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of having informative prior when the data signal is weak. We also evaluate how our model performs when prior

is less informative, with the expectation that it should approach the reference-free method performance. Finally,

we show that our model can also be applied to real dataset.

5.1 Simulated Datasets

For simulation, we started by generating two sets of cell type specific gene expression profiles (η), each having

K = 3 cell types and N = 150 genes. Cell types from strong signal data is characterized by a distinct group of

genes of size 50. While for the weak signal data (Figure 7), differences of gene expressions between cell types is

minor, in particular, cell type 2 and 3 only differ by the middle 10 genes.

Figure 6: Strong signal from gene expression
data for each cell type.

Figure 7: Weak signal from gene expression
data for each cell type.

With the prior η being generated, the ground true β is then generated with βk ∼ Dir(ηk), thus we obtain an

informative prior as η is closely correlated with β (check Appendix B.1 for their correlation plots). Two sets of

spatial data are then generated with the two different β, we fixed number of pixels D = 196, each pixel contains

number of molecules Md ∼ Poisson(2000). When generating pixel-specific cell-type proportion θd ∼ Dir(α),

we used α = (0.4, 0.35, 0.25) for cell types 1, 2 and 3 respectively. The entire simulated dataset follow the

generative process specified by LDA (Figure 4).

Prior constants. For each set of data (spatial and reference), we ran the VI algorithm with prior constant

b = (1, 20, 100, 500, 750, 1000, 1500) and compare performances for each VI run. It is expected that with a very

low prior constant, the performance may be similar to the reference-free method, because the prior contribution

is small in the update formulas, parameter convergence will largely depend on the data. However, drop in

performance is also expected if the prior constant is set to be too large (prior too powerful), because even

though the prior is correlated with ground truth β, it is not perfect and we still want the data to be involved

in identifying the correct posterior.

Result visualisation. In the generative process of the LDA model, no assumptions are being made on

the spatial location of pixels. Hence, deconvolution results will be identical if positions for pixels are randomly
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reassigned. We begin analysis by randomly selecting 10 pixels, and give visual comparison of deconvolved cell

types proportions for every VI run with different prior constants, against the true cell type proportions and the

reference-free (STdeconvolve) result (Figure 8). The visualisation tool is based on the STdeconvolve package[1].

Figure 8: Deconvolved Cell Type proportions from 10 randomly selected pixels for different prior constants.

From figure 8, when the data signal is strong (left), the reference-free method is able to correctly identify

proportions of each cell type, hence incorporating the prior into the model brings little improvements. Never-

theless, we do see that when the prior constant is low, our model may potentially misidentify cell types with

low proportions (e.g. pixel 15, 24). This behavior is gradually corrected as we increase the prior constants.

However, when the data signal is weak, STdeconvolve fails to identify correct cell type proportions, and it

instead predicts approximate uniform distribution for all pixels. When the prior is included, improvements are

evident as it no longer predicts uniform distributions. In the case when a low prior constant (b = 1) is used,

the model still tends to overestimate cell type proportions that are low (e.g. pixel 98). This inaccuracy is

significantly corrected as prior constants are increased. Overall, we observe that as we increase prior constants,

performance changes positively from one similar to STdeconvolve to one almost identical to the ground truth,

which matches our initial expectation.

Numerical comparisons. Instead of sampling 10 pixels at random, now we aim to give an overall numerical

comparison of model performances over all pixels. For each VI run (with different prior constants), we compute

the Root Mean Squared Error(RMSE) for each pixel d:

RMSE(θd, θ̂d) =

√√√√∑K
k=1

(
θdk − θ̂dk

)2
K

where θd represents ground true proportion for each cell type in pixel d and θ̂d represents estimated proportion

for each cell in pixel d. Note that θ̂ is obtained after normalizing variational parameter γ.

With the metric defined, we used boxplot to visualise the distribution of RMSE for each VI run, which

illustrates how performance varies with different data signal and prior constants (Figure 9). The conclusion we

can draw from this diagram is similar to the previous visualisation that, after incorporating the prior, reduction
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in error is much more significant when deconvolving weak signal data. We also confirmed our expectation in this

diagram that as the prior constant becomes closer to 0 (i.e, prior power decreasing), performance approaches

the reference-free method result (two left-most boxplots). Finally, although it is not obvious in the graph, the

optimal prior constant that gives lowest RMSE is 500 instead of 1500. A slight increase in the error can be

observed as the prior constant becomes greater than 500. We again expects this behavior because prior is not

perfect both in simulation and in practice.

Figure 9: Performance comparison for both signals at various prior strength

Figure 10: Mean KL Divergence between
estimated and true β for both signals.

Figure 11: KL Divergence between
estimated and true α for both signals.
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Similar results for other parameters. As a final confirmation, we plotted KL divergences between

estimated β, α to their respective ground truths (Figures 9, 10). It is apparent that previous conclusion can be

applied to other parameters that for weak signal spatial data, it is more difficult for LDA to converge to the

correct posterior, hence significant improvements can be expected from having a suitable prior.

Effects of changing prior informativeness. From the simulated spatial dataset with weak signal, we

investigate effects of changing suitability of the prior by the following method:

1. Fix prior constant to be 20.

2. Mask different proportions of reference data matrix η.

3. Compute RMSE of VI result.

Figure 12: Performance comparison for different proportion of reference data masked away.

Figure 12 shows that as greater amount of prior information are hidden, which represents the prior becoming

less informative, deconvolution performance decreases and approaches the reference-free performance. When

all the information are hidden, the prior becomes uniform, the performance is almost identical to that of

STdeconvolve. This diagram suggests that there is still benefit in utilizing the single cell reference, even if it

lacks accuracy, the prior constant can always be tuned to find the optimal deconvolved proportions.

5.2 Biological Dataset

In this section we test our model performance when applied to real biological dataset. We selected the Visium

Hippocampus ST dataset provided within the RCTD package [2] (the reference dataset was also provided),
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which was originally presented in [7]. For this dataset, there are D = 313 pixels, N = 307 genes and K = 17 cell

types identified in RCTD. We still use RMSE as the comparison metric, employing the RCTD result as ground

truth; performances are compared both visually and numerically between different prior constants, including

the reference-free method.

Figure 13: Deconvolution result by RCTD
on Visium dataset.

Figure 14: Deconvolution result by modified
LDA (our model) on Visium dataset.

In Figures 13 and 14, both methods were able to identify structures that exist in the spatial data of the

Hippocampus dataset. RCTD is more likely to assign pixels to a wider variety of cell types, allowing some to

have low proportions but significantly different from 0. Whereas for our model, most of the pixels are dominated

by 3 to 4 major cell types. To be more specific, when comparing major cell types that occur in both diagrams,

both methods recognize cell types Neurogenesis, Oligodendrocyte, Denate and CA3 in the same locations.

However, our method appears to have identified cell type Interneuron (blue) for Cajal Retzius (yellow) found in

RCTD. Moreover, as a general observation, if a cell type is rare across all pixels (Endothelial Stalk, Microglia

Macrophages etc), the LDA model tends to predict their non-existence (Appendix B.2). This behavior of over

predicting major cell types and neglecting minor ones can be explained by the fact that Variational Inference

inclines to underestimate variance. The KL Divergence can be rewritten as expectation with respect to q, thus

enforcing q to match the peak of p and place less emphasis on regions where p is lowly expressed - cell types

with low overall proportions.

In Figure 15, we used RCTD’s deconvolution result as ground truth and visualized RMSE distribution for

different VI runs with prior constants b = (100, 500, 2500, 5000). The magnitude of prior constants tested is

increased to improve efficiency of running VI algorithm, as every matrix is enlarged. We again observed an

optimal prior constant b = 500 which achieves minimal RMSE, similar to the simulation result. However, the

difference is, we see a sharp increase in RMSE as prior constant is set to b = 5000, signalling too much power
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is given to the prior for its level of accuracy.

Figure 15: RMSE comparison for VI runs with different prior constant including reference-free result.

6 Discussion

In this section, we will address potential improvements that can be made to this model.

Optimal value of b. In simulated data, we have full knowledge of the ground truth and it can be exploited

to obtain the optimal prior constant b. However, it is not the case for real biological dataset, where the accuracy

of the reference is not known exactly. We hypothesize that this optimal value of b is highly relevant to sizes of

the spatial data and the reference, but more investigation is required to make a conclusion.

Spatial data with isoform-resolution. This research project is entirely based on ST dataset with gene-

level information for each pixel. With the advancement of long-read sequencing technology, ST data with

isoform-resolution is more and more popular. It would not be excessively challenging to extend our model to

allow ST data with isoform-resolution, and the expected improvements are on the estimation of ϕ (cell type

proportions for each molecule).

More prior scenarios. So far we only tested the outcome of masking away certain proportions of infor-

mative prior. However, it is possible that in a reference data, some gene expression profiles are suitable for

the tissue sample while others are not. Hence, instead of simply replacing by uniform values, another way of

modifying the prior would be replacing gene expression profile for certain cell types by other similar cell types,

whether our model would have similar performance in this scenario is yet to be confirmed.
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7 Conclusion

In this project, I modified existing reference-free model which uses LDA, by incorporating the single cell reference

data as prior. I also tested the performance of proposed model by applying it on both simulated and real dataset.

Results suggest that incorporating the prior indeed improves performance, particularly when the spatial data

signal is weak. For the Visium data analysis, deconvolution performance indicates that many deconvolved cell

types can be matched, but discrepancies still exist.

Acknowledgement. I would like to thank my supervisor, Dr Heejung Shim, for her consistent support

and guidance throughout the duration of this project. Mathematical derivations, model interpretations, results

analysis and the writing of this report were completed with close assistance from my supervisor.
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Appendix A Derivations

Appendix A.1 Proof KL Divergence is non-negative

−KL(q(θ)||p(θ)) =
∫
q(θ) log

p(θ)

q(θ)

= Eq

[
log

p(θ)

q(θ)

]
≤ log

(
Eq

[
p(θ)

q(θ)

])
by Jensen’s inequality

= log

(∫
p(θ) dθ

)
= 0

Hence, KL(q(θ)||p(θ)) ≥ 0.

Appendix A.2 ELBO derivations

Recall that the ELBO function can be expressed as,

ELBO(γ, ϕ, τ, α|w, η, b) =Eq [log p(β)] + Eq [log p(θ|α)] + Eq [log p(z|θ)] + Eq [log p(w|z, β)]

− Eq [log q(θ)]− Eq [log q(z)]− Eq [log q(β)]

We first note the following:

Let X ∼ Dir(β), X is a k dimensional random vector. We borrow the following result,

EX [logXi] = ψ(βi)− ψ

 k∑
j=1

βj


Where ψ(·) is the digamma function. This result can be proved using the fact that logX is the sufficient statistic

for the dirichlet distribution, which is in the exponential family.

EX [log fX(X)] = EX

log
Γ

(∑k
i=1 βi

)
∏k

i=1 Γ(βi)

k∏
i=1

Xβi−1
i


= log Γ

(
k∑

i=1

βi

)
−

k∑
i=1

log Γ(βi) + E

[
k∑

i=1

(βi − 1) logXi

]

= log Γ

(
k∑

i=1

βi

)
−

k∑
i=1

log Γ(βi) +

k∑
i=1

(βi − 1) ·

ψ(βi)− ψ

 k∑
j=1

βj


In the original ELBO function, given that we are taking expectation w.r.t the variational distribution q,

we have β, θ|α, q(θ) and q(β) all following dirichlet distribution, and so we can use the form from above. In
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particular,

1. p(βi·) ∼ Dir(bηi·), while under expectation q, βi· ∼ Dir(τi·)

2. p(θ|α) ∼ Dir(α), while under expectation q, θi ∼ Dir(γi·)

3. q(θi·) ∼ Dir(γi·)

4. q(βi·) ∼ Dir(τi·)

Note that for 1. and 2., p(βi·) and p(θ|α) represent prior distributions specified in the LDA model, instead of

the variational distribution of β and θ respectively. The four terms can now be identified as follows,

Eq [log p(β)] =

K∑
k=1

log Γ( N∑
n=1

bηkn

)
−

N∑
n=1

log Γ(bηkn)) +

N∑
n=1

(bηkn − 1) ·

ψ(τkn)− ψ

 N∑
j=1

τkj


Eq [log p(θ|α)] =

D∑
d=1

log Γ( K∑
k=1

αk

)
−

K∑
k=1

log Γ(αk)) +

K∑
k=1

(αk − 1) ·

ψ(γdk)− ψ

 K∑
j=1

γdj


Eq [log q(θ)] =

D∑
d=1

log Γ( K∑
k=1

γdk

)
−

K∑
k=1

log Γ(γdk)) +

K∑
k=1

(γdk − 1) ·

ψ(γdk)− ψ

 K∑
j=1

γdj


Eq [log q(β)] =

K∑
k=1

log Γ( N∑
n=1

τkn

)
−

N∑
n=1

log Γ(τkn)) +

N∑
n=1

(τkn − 1) ·

ψ(τkn)− ψ

 N∑
j=1

τkj


For Eq [log p(z|θ)]:

Eq [log p(z|θ)] = Eq

[
log

(
D∏

d=1

Md∏
m=1

K∏
k=1

p(zdm = k|θ)I(zdm=k)

)]

=

D∑
d=1

Md∑
m=1

K∑
k=1

Eq [I(zdm = k) log θdk]

=

D∑
d=1

Md∑
m=1

K∑
k=1

ϕdmk

ψ(γdk)− ψ

 k∑
j=1

γdj

by parameter independence

=

D∑
d=1

N∑
n=1

wdn

K∑
k=1

ϕdnk

ψ(γdk)− ψ

 k∑
j=1

γdj


Where wdn represents the count of gene n in pixel d in spatial data. The reason we can compute the last step

is because there is no difference between two molecules having the same gene in the same pixel. We slightly

abuse the notation here that in the second last line, ϕdmk represents the proportion of mth molecule in pixel d

belonging to cell type k, while ϕdnk in the last line represents the proportion of molecules with gene n in pixel

d belonging to cell type k.
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For Eq [log p(w|z, β)]:

Eq [log p(w|z, β)] = Eq

[
log

(
D∏

d=1

Md∏
m=1

K∏
k=1

N∏
n=1

p(vndm = 1|zdm = k, β)I(zdm=k)vn
dm

)]

=

D∑
d=1

Md∑
m=1

K∑
k=1

N∑
n=1

Eq [I(zdm = k)vndmp(v
n
dm = 1|zdm = k, β)]

=

D∑
d=1

Md∑
m=1

K∑
k=1

N∑
n=1

ϕdmkv
n
dm Eq [βkn] by parameter independence

=

D∑
d=1

Md∑
m=1

K∑
k=1

ϕdmk

N∑
n=1

vndm

ψ(τkn)− ψ

 N∑
j=1

τkj

]


In this equation, vndm is the indicator that pixel d molecule m has gene n, because this is observed data so it

becomes a constant. ϕdmk represents the estimated proportion of molecule m in pixel d belonging to cell type

k. Again, because molecules in the same pixel having same gene are equivalent, we can rewrite the expression

above in terms of ϕdnk, which represents the estimated proportion of molecules with gene n in pixel d belonging

to cell type k, as well as letting wdn represent counts of gene n in pixel d.

Eq [log p(w|z, β)] =
D∑

d=1

N∑
n=1

K∑
k=1

ϕdnkwdn

ψ(τkn)− ψ

 N∑
j=1

τkj


Finally, for Eq [q(z)]:

Eq [q(z)] = Eq

[
log

(
D∏

d=1

Md∏
m=1

K∏
k=1

q(zdm = k)I(zdm=k)

)]

=

D∑
d=1

Md∑
m=1

K∑
k=1

Eq [I(zdm = k) log ϕdmk]

=

D∑
d=1

Md∑
m=1

K∑
k=1

ϕdmk log ϕdmk

=

D∑
d=1

N∑
n=1

K∑
k=1

wdnϕdnk log ϕdnk

Again, note the difference between ϕdmk and ϕdnk. Definition of wdn remain unchanged.

Appendix A.3 Parameter Update

To obtain parameter updates for ϕ, γ and τ . We solve the partial derivative of the ELBO function w.r.t these

parameters equal to 0. For all derivations below, λ represents the Lagrange multiplier.
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For ϕdnk:

ELBO[ϕ] =

D∑
d=1

N∑
n=1

K∑
k=1

{ϕdnkwdn

ψ(τkn)− ψ

 N∑
j=1

τkj

+ wdnϕdnk

ψ(γdk)− ψ

 k∑
j=1

γdj


− wdnϕdnk log ϕdnk}+

N∑
n=1

λdn

(
K∑

k=1

ϕdnk − 1

)

∂ELBO[ϕ]

∂ϕdnk
= wdn

ψ(τkn)− ψ

 N∑
j=1

τkj

+ wdn

ψ(γdk)− ψ

 k∑
j=1

γdj

− wdn(log ϕdnk + 1) + λdn

Solve ∂ELBO[ϕ]
∂ϕdnk

= 0:

log ϕdnk + 1 = ψ(τkn)− ψ

 N∑
j=1

τkj

+ ψ(γdk)− ψ

 k∑
j=1

γdj

+
λdn
wdn

ϕdnk ∝ exp

ψ(τkn)− ψ

 N∑
j=1

τkj

+ ψ(γdk)− ψ

 k∑
j=1

γdj


Note that we normalize such that

∑K
k=1 ϕdnk = 1 and so λdn and wdn are constants that can be safely ignored.

For γdk:

ELBO[γ] =

D∑
d=1

K∑
k=1

(αk − 1) ·

ψ(γdk)− ψ

 K∑
j=1

γdj

+

N∑
n=1

wdnϕdnk

ψ(γdk)− ψ

 K∑
j=1

γdj


−

D∑
d=1

log Γ( K∑
k=1

γdk

)
−

K∑
k=1

log Γ(γdk)) +

K∑
k=1

(γdk − 1) ·

ψ(γdk)− ψ

 K∑
j=1

γdj


∂ELBO[γ]

∂γdk
= (αk − 1)ψ′(γdk)−

K∑
i=1

(αi − 1)ψ′

 K∑
j=1

γdj

+ ψ′(γdk)

N∑
n=1

wdnϕdnk −
K∑
i=1

N∑
n=1

wdnϕdniψ
′

 K∑
j=1

γdj


− ψ

(
K∑
i=1

γdi

)
+ ψ(γdk)− ψ(γdk) + ψ

(
K∑
i=1

γdi

)
− (γdk − 1)ψ′(γdk) +

K∑
i=1

(γdi − 1)ψ′

 K∑
j=1

γdj


= ψ′(γdk)

(
αk +

N∑
n=1

wdnϕdnk − γdk

)
− ψ′

 K∑
j=1

γdj

 K∑
i=1

(
αi +

N∑
n=1

wdnϕdni − γdi

)

Hence, solving ∂ELBO[γ]
∂γdk

= 0 gives

γdk = αk +

N∑
n=1

wdnϕdnk
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For τkn:

ELBO[τ ] =

K∑
k=1

N∑
n=1

(bηkn − 1) ·

ψ(τkn)− ψ

 N∑
j=1

τkj

+

D∑
d=1

wdnϕdnk

ψ(τkn)− ψ

 N∑
j=1

γkj


−

K∑
k=1

log Γ( N∑
n=1

τkn

)
−

N∑
n=1

log Γ(τkn)) +

N∑
n=1

(τkn − 1) ·

ψ(τkn)− ψ

 N∑
j=1

τkj


∂ELBO[τ ]

∂τkn
= (bηkn − 1)ψ′(τkn)−

N∑
i=1

(ηki − 1)ψ′

 N∑
j=1

τkj

+ ψ′(τkn)

D∑
d=1

wdnϕdnk −
N∑
i=1

D∑
d=1

wdiϕdikψ
′

 N∑
j=1

τdj


− ψ

(
N∑
i=1

τki

)
+ ψ(τkn)− ψ(τkn) + ψ

(
N∑
i=1

τki

)
− (τkn − 1)ψ′(τkn) +

N∑
i=1

(τki − 1)ψ′

 N∑
j=1

τkj


= ψ′(τkn)

(
bηkn +

D∑
d=1

wdnϕdnk − τkn

)
− ψ′

 N∑
j=1

τkj

 N∑
i=1

(
bηkn +

D∑
d=1

wdnϕdni − τki

)

Hence, solving ∂ELBO[τ ]
∂τkn

= 0 gives

τkn = bηkn +

D∑
d=1

wdnϕdnk

Newton-Raphson Method. Finally, update for α will be based on Newton-Raphson method as described

in [4]. It is an optimization technique which finds the maximum of a function f(α) by iterating:

αi+1 = αi −H(αi)
−1g(αi)

Where H(αi) and g(αi)) are the Hessian matrix and gradient vector respectively. If the Hessian matrix can be

expressed as H(αi) = diag(h) + 1z1⊤, where diag(h) is a diagonal matrix with the diagonal elements being

vector h, then the update formula can be simplified to:

(H(αi)
−1g(αi))j =

gj − c

hj

where c =

∑K
m=1 gm/hm

z−1 +
∑K

m=1 h
−1
m

In our derivation below, we change the meaning of notation αi to represent the ith component of vector α,
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instead of the ith iteration.

ELBO[α] =

D∑
d=1

log Γ( K∑
k=1

αk

)
−

K∑
k=1

log Γ(αk)) +

K∑
k=1

(αk − 1) ·

ψ(γdk)− ψ

 K∑
j=1

γdj


∂ELBO[α]

∂αi
=

D∑
d=1

ψ( K∑
k=1

αk

)
− ψ(αi) + ψ(γdi)− ψ

 K∑
j=1

γdj


= D

[
ψ

(
K∑

k=1

αk

)
− ψ(αi)

]
+

D∑
d=1

ψ(γdi)− ψ

 K∑
j=1

γdj

 = gi

∂2ELBO[α]

∂αi∂αj
= D

(
ψ′

(
K∑

k=1

αk

)
− I(i = j)ψ′(αi)

)

Hence, the Hessian matrix is of the form required for simplification, with

[z]ij = Dψ′

(
K∑

k=1

αk

)

hi = −Dψ′(αi)

Appendix B Supplementary Figures

Appendix B.1 Correlation between β and η

Figure 16: Comparison of β and η on a
log scale for strong signal data.

Figure 17: Comparison of β and η on a
log scale for weak signal data.

20



Appendix B.2 Visium Dataset cell types comparison.

Visualization tool used in this section is developed in the STdeconvolve paper [1].

Figure 18: Deconvolved proportions for each cell type using RCTD.
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Figure 19: Deconvolved proportions for each cell type using our model with prior constant 500.
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