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Abstract

In this paper we will extend the theory of homology and cohomology of topological spaces to spaces with a

group action. This field of study is called Equivariant Algebraic Topology. We will introduce this theory and

give definitions of Mackey functor homology and cohomology of G − C.W complexes (C.W complexes with G

action) using fixed point functors and give interesting examples of them, backing these examples with intuition.

Finally, we will discuss representation spheres of finite groups, in particular pl−cyclic groups, and prove a

theorem about their G− C.W decomposition. This paper assumes knowledge of ordinary homology of spheres

(Z coefficients) and very preliminary knowledge on categories.
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of the definitions and results were adapted or motivated from the contents of ”Equivariant Stable Homotopy
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0 Introduction

In algebraic topology, we study various homology theories which give invariants to help distinguish between

different spaces. One such theory is the cellular homology theory which gives invariants on cellular spaces, in

particular a class of spaces called C.W-complexes, introduced by Whitehead [1]. A G-C.W complex modifies

the notion of C.W complexes by admitting a (cellular) G− action onto it’s cells. This might seem like a quite

artificial or random extension to the theory, however, considering a G action on spaces reveals quite a large part

of the space. In particular many C.W complexes are not compatible with certain groups, that is there does not

exist a non trivial action preserving its cellular structure.

In classic algebraic topology we study the (cellular) homology of a C.W complex. This theory naturally extends

to equivariant homology originally introduced by Bredon [2], which concerns the homology (and cohomology)

of these spaces. We will discuss equivariant (Co)homology theory slightly differently to how Bredon first intro-

duced it, using what is called a Mackey functor.

In the last section of this report, we will be looking at a particular case of G−C.W complexes which are known

as representation spheres. Let V be a module over R[G] for G a finite group, then we define the representation

sphere as the one point compactification of V . Every finite dimensional orthogonal linear representation sphere

can be given a G− C.W decomposition and we will give explicitly the decomposition in the case that G = Cpl

with p prime and l a positive integer.

1 Preliminaries

Definition 1. Let
A B

C

be a diagram in some category. If there is an object D such that there are morphisms f and g making

A B

C D

f

g
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commute. And furthermore for any another object E with f ′ : B → E and g′ : C → E, there is a morphism

D → E making

A B

C D

E

f

g

g′

f ′

commute. We call D the pushout of the diagram.

We can define the dual notion which is the notion of a pullback

Definition 2. Let
A B

C

be a diagram in some category. If there is an object D such that there are morphisms f and g making

A B

C Dg

f

commute. And furthermore for any other object E with f ′ : E → B and g′ : E → C, there is a morphism

E → D making

A B

C D

E

f

g

f ′

g′

commute. We call D the pullback of the diagram.

Definition 3. Let A ⊂ X be closed and f : A→ Y continuous. Define

X ∪f Y =
X ⊔ Y

∼

where x ∼ f(x).

Pictorially we are ’gluing’ two spaces together via a mapping f which tells us where to glue.
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Definition 4. A morphism f : X → Y between G topological spaces is called equivariant if for all x ∈ X and

g ∈ G, f(g · x) = g · f(x).

Definition 5. Define Dn = {x ∈ Rn : ∥x∥ ≤ 1} and Sn its boundary.

2 G-C.W Complexes

Definition 6. Fix a group G. Start with a set of ”points” of the form G/Hα ×D0 where Hα are subgroups.

Denote this set X0 and call these points 0-cells. We define Xn from Xn−1 inductively. First define equivariant

attaching maps φα : G/Hα × Sn−1 → Xn−1 then Xn is obtained by the pushout diagram

⊔αG/Hα × Sn−1 Xn−1

⊔αG/Hα ×Dn Xn

f=⊔αφα

ι

⌟

Explicitly, we have

Xn = Xn−1 ∪f ⊔αG/Hα ×Dn

Then we call a space of the form X = ∪Xn a G-C.W complex and equip it with the weak topology: U is

closed if and only if U ∩Xn is closed for all n.

In general we call the images of G/Hα×Dn inXn n−cells and call the collection of all n−cells the n−skeleton

of X.

Remark. For X,Y G−spaces, we take diagonal action on X × Y i.e g · (x, y) = (g · x, g · y). Furthermore, take

the convention that G acts trivially on Dn so for some g ∈ G and (g′H,x) ∈ G/H ×Dn we have g · (g′H,x) =

(gg′H,x), this allows us to talk about the notion of an equivariant attaching map G/Hα × Sn−1 → Xn−1.

Example 1. For G = C2 × C2 with generators ϵ, σ and identity denoted e, consider the G − C.W complex

decomposition onto S1 as follows. Let X0 = G/⟨ϵ⟩ ×D0 ∪G/⟨σ⟩ ×D0 where say

x = e⟨σ⟩×D0

z = ϵ⟨σ⟩×D0

y = e⟨ϵ⟩×D0

t = σ⟨ϵ⟩×D0

and consider a single attaching map φ : G/e × S0 → X0 given by (e, 0) → x, (e, 1) → y where the rest of the
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Figure 1: Example 1

map is determined uniquely via equivariance.

(ϵ, 0)→ ϵ · x = z

(ϵ, 1)→ ϵ · y = y

(σ, 0)→ σ · x = x

(σ, 1)→ σ · y = t

(σ ⊗ ϵ, 0)→ σ ⊗ ϵ · x = z

(σ ⊗ ϵ, 1)→ σ ⊗ ϵ · y = t

This is all that’s needed to give S1 a G−C.W complex structure and can be geometrically visualised by figure

1.

3 Mackey Functors

Definition 7. Let C be a category. Let (C)op be the category with the same objects as C but HomC(A,B) =

Hom(C)op(B,A). This is called the opposite category.

Notation. Let FG be the category of finite G−sets with morphisms G equivariant maps. Also let Ab be the

category of abelian groups.

Definition 8. A Mackey functor M for a finite group G is a pair of functors

M∗ : FG → Ab,M∗ : (FG)
op → Ab

such that:
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• finite disjoint unions go to direct sums,

• M∗(T ) = M∗(T ) := M(T ) for T ∈ FG

• for a pullback

R S

T U

α

β

δ

γ

we have M∗(γ)M∗(δ) = M∗(α)M
∗(β).

For subgroups K ⊆ H ⊆ G with projection p : G/K → G/H let

ResHK = M∗(p), T rHK = M∗(p)

.

Definition 9. For X a G−set and H a subgroup of G let

XH := {x ∈ X : h · x = x, for all h ∈ H}

be the fixed point set for the subgroup H.

Definition 10. Let M be a Z[G]−module. Define the fixed point Mackey functor M by M(G/H) = MH .

Note that as any G set can be decomposed into orbits of the form G/H, this definition can be extended to any

G set.

For K ⊆ H ⊆ G define

TrHK : MK →MH

by

TrHK(x) =
∑

γK∈H/K

γK(x)

and define

ResHK(x) = x

.

4 Equivariant Homology

For a G − C.W Complex X define Cn(X) = Hn(X
n, Xn−1) and define boundary operator dn : Cn(X) →

Cn−1(X) by dn = ι◦δ where δ is the connecting homomorphism from the long exact sequence of pair (Xn, Xn−1)

and ι inclusion. Note that we can define (C∗(X), d∗) as the cellular chain complex of X and define homology

accordingly.
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Note that for a C.W − Complex, the homology H∗(X
k, Xk−1) = H∗(X

k/Xk−1, pt) = H̃∗(X
k/Xk−1) be-

cause Xk, Xk−1 is a good pair. And H̃∗(X
k/Xk−1) is very easy to calculate as the space Xk/Xk−1 is just the

wedge of many spheres.

Note that given an equivariant map Cn(X) → Cn−1(X) induces a map dn : Cn(X)H → Cn−1(X)H on fixed

point sets which leads us to the following definition:

Definition 11. For each G/H we can apply the fixed point functor to C∗(X) to obtain a complex:

...→ Cn+1(X)H → Cn(X)H → Cn−1(X)H → ...→ C0(X)H → 0

taking homology we obtain equivariant homology groups

Hn(X)(G/H) =
kerdn
imdn+1

Example 2. For our example of S1 acted on by G = C2 × C2 we have

C0(X) = H0(X
0) = Zx⊕ Zy ⊕ Zz ⊕ Zt

and

C1(X) = H̃1(S
1 ∨ S1 ∨ S1 ∨ S1) = ZX ⊕ ZY ⊕ ZZ ⊕ ZT

with map d1 : C1(X)→ C0(X) given by the following action on generators

X → y − x

Y → y − z

Z → t− z

T → t− x

Now d1 has kernel Z(X−Y +Z−T ) and image Z(y−x)⊕Z(y− z)⊕Z(t− z). Since the fixed point functor

for subgroup 0 is identical to the same complex

0→ ZX ⊕ ZY ⊕ ZZ ⊕ ZT → Zx⊕ Zy ⊕ Zz ⊕ Zt→ 0

we have the following (equivariant) homology groups

H0(S
1)(G) =

kerd0
imd1

=
ker0

imd1

=
Zx⊕ Zy ⊕ Zz ⊕ Zt

Z(y − x)⊕ Z(y − z)⊕ Z(t− z)

=
Z(x)⊕ Z(y − x)⊕ Z(z − y)⊕ Z(t− z)

Z(y − x)⊕ Z(y − z)⊕ Z(t− z)

= Z
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and

H1(S
1)(G) =

kerd1
im0

= kerd1

= Z(X − Y + Z − T )

= Z

Now let’s consider the subgroup ⟨σ⟩ to find H∗(S
1)(⟨σ⟩). We take the chain complex

0→ ZX ⊕ ZY ⊕ ZZ ⊕ ZT → Zx⊕ Zy ⊕ Zz ⊕ Zt→ 0

and apply the fixed point functor on G/⟨σ⟩ to obtain

0→ (ZX ⊕ ZY ⊕ ZZ ⊕ ZT )⟨σ⟩ → (Zx⊕ Zy ⊕ Zz ⊕ Zt)⟨σ⟩ → 0

To compute this, notice that σ · (aX + bY + cZ + dT ) = aT + bZ + cY + dX so (ZX ⊕ ZY ⊕ ZZ ⊕ ZT )⟨σ⟩ is

generated by X +T and Y +Z. Similarly it can be shown that (Zx⊕Zy⊕Zz⊕Zt)⟨σ⟩ is generated by x, z and

y + t so our complex is given by

0→ Z(X + T )⊕ Z(Y + Z)→ Zx⊕ Zz ⊕ Z(y + t)→ 0

. Now the restriction of d1 onto fixed point sets gives maps X + T → t + y − 2x and Y + Z → t + y − 2z so

the kernel is 0 and the image is Z(t+ y− 2x)⊕Z(t+ y− 2z) hence we have the following equivariant homology

groups

H0(S
1)(G/⟨σ⟩) = kerd0

imd1

=
Zx⊕ Zz ⊕ Z(y + t)

Z(t+ y − 2x)⊕ Z(t+ y − 2z)

=
Zx⊕ Zz ⊕ Z(y + t− 2z)

Z(2z − 2x)⊕ Z(t+ y − 2z)

=
Z(x)⊕ Z(z − x)

Z(2(z − x))

= Z⊕ Z/2

and

H1(S
1)(G/⟨σ⟩) = kerd1

= 0

By the symmetry between action σ and ϵ we can say that Hn(S
1)(G/⟨σ⟩) = Hn(S

1)(G/⟨ϵ⟩) for all n.

Now looking at the ⟨σ ⊗ ϵ⟩ invariant chain groups we get complex

0→ Z(Z +X)⊕ Z(Y + T )→ Z(x+ z)⊕ Z(y + t)→ 0
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with constant middle map with image Z(y+ t− (x+z)) and kernel Z(X+Z−Y −T ) so we obtain the following

equivariant homology groups

H0(S1)(G/⟨σ ⊗ ϵ⟩) = (C0(X))⟨σ⊗ϵ⟩

imd1
=

Z(x+ z)⊕ Z(y + t)

Z(y + t− x− z)
= Z

and

H1(S1)(G/⟨σ ⊗ ϵ⟩) = Z(X + Z − Y − T ) = Z.

Now for subgroup G we have that the fixed 0 chains are generated by x+ z and y+ t and the fixed 1 chains are

generated by X + Y + Z + T so the complex is given by

0→ Z(X + Y + Z + T )→ Z(x+ z)⊕ Z(y + t)→ 0

with map X + Y + Z + T → 2y + 2t− 2x− 2t so the kernel is 0 and the image is Z(2y + 2t− 2x− 2z) so the

equivariant homology groups are

H0(S
1)(G/G) =

Z(x+ z)⊕ Z(y + t)

Z(2y + 2t− 2x− 2z)
= Z⊕ Z/2

and

H1(S1)(G/G) = 0.

5 Equivariant Cohomology

Now that we understand the notion of equivariant homology lets define the dual notion Equivariant Coho-

mology. Recall that for a G − C.W complex we have complex (C∗(X), d∗). Dualise this to obtain complex

(C∗(X), d∗):

...← Cn+1(X)← Cn(X)← Cn−1(X)← ...← C0(X)← 0

where Ck(X) = Hom(Ck(X),Z) and for some f ∈ Ck(X) we have dk+1(f) = f ◦ dk.

Definition 12. Applying the fixed point functor to C∗(X) we obtain complex

...← (Cn+1(X))H ← (Cn(X))H ← (Cn−1(X))H ← ...← (C0(X))H ← 0

and define equivariant cohomology groups

Hn(X)(G/H) =
kerdn+1

imdn

Now to aid with computation, suppose that for some G − C.W complex X we have Ck(X) =
⊕

Zvi, then

from a relativley well known isomorphism we have

Ck(X) = Hom(
⊕

Zvi,Z) = ΠHom(Zvi,Z)
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And denote v∗i to be the map vi → 1 and vj → 1 for i ̸= j. Then we can write

Ck(X) = ΠZv∗i

.

Example 3. For the example of G = C2 × C2 acting on X = S1 we have complex (C∗(X), d∗)

0→ ZX ⊕ ZY ⊕ ZZ ⊕ ZT → Zx⊕ Zy ⊕ Zz ⊕ Zt→ 0

with map d1 : X → y − x, Y → y − z, Z → t− z, T → t− x. So when we dualise we have complex (C∗(X), d∗)

0← ZX∗ ⊕ ZY ∗ ⊕ ZZ∗ ⊕ ZT ∗ ← Zx∗ ⊕ Zy∗ ⊕ Zz∗ ⊕ Zt∗ ← 0

Now let’s compute the map d1. It suffices to show what d1 does on x∗, y∗, z∗ and t∗. First let’s compute the

map d1(x∗).

d1(x∗)(X) = (x∗ ◦ d1)(X)

= x∗(y − x)

= −1

d1(x∗)(Y ) = (x∗ ◦ d1)(Y )

= x∗(y − z)

= 0

d1(x∗)(Z) = (x∗ ◦ d1)(Z)

= x∗(t− z)

= 0

d1(x∗)(T ) = (x∗ ◦ d1)(T )

= x∗(t− x)

= −1

Hence we have that d1(x∗) = −X∗ − T ∗. A very similar computation which will be omitted shows that

d1(y∗) = X∗ + Y ∗, d1(z∗) = −Y ∗ − Z∗, d1(t∗) = Z∗ + T ∗
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Hence we can see that the kernel is Z(x∗+y∗+z∗+t∗) and the image is Z(−X∗−T ∗)⊕Z(−Y ∗−Z∗)⊕Z(X∗+Y ∗).

Now can can compute the cohomology as follows

H0(S1)(G) = kerd1 = Z

and

H1(S1)(G) =
ker0

imd1
=

ZX∗ ⊕ ZY ∗ ⊕ ZZ∗ ⊕ ZT ∗

Z(−X∗ − T ∗)⊕ Z(−Y ∗ − Z∗)⊕ Z(X∗ + Y ∗)
= Z

Now to compute the equivariant cohomology groups H∗(X)(G/H) for other subgroups H we will use the

following result.

Proposition 13. For v ∈ Ck(X), g · v∗ = (g−1 · v)∗.

Proof. Note that for some x ∈ Ck(X) we have

(g · v∗)(x) = v∗(g · x)

which is 1 if x = g−1 · v and 0 otherwise which means g · v∗ = (g−1 · v)∗.

So it is easy to see that

C0(X)(G/⟨σ⟩) = (C0(X))⟨σ⟩ = Zx∗ ⊕ Zz∗ ⊕ Z(y∗ + t∗)

and

C1(X)(G/⟨σ⟩) = (C1(X))⟨σ⟩ = Z(X∗ + T ∗)⊕ Z(Y ∗ + Z∗)

and the boundary map d1 : (C0(X))⟨σ⟩ → (C1(X))⟨σ⟩ given by

x∗ → −(X∗ + T ∗), z∗ → −(Y ∗ + Z∗), y∗ + t∗ → X∗ + T ∗ + Y ∗ + Z∗

So the kernel is Z(x∗+y∗+z∗+t∗) and image is Z(X∗+T ∗)⊕Z(Y ∗+Z∗) Hence we have equivariant cohomology

groups

H0(X)(G/⟨σ⟩) = kerd1 = Z

and

H1(X)(G/⟨σ⟩) = (C1(X))⟨σ⟩

imd1
=

Z(X∗ + T ∗)⊕ Z(Y ∗ + Z∗)

Z(X∗ + T ∗)⊕ Z(Y ∗ + Z∗)
= 0

Similar to Homology notice that H∗(X)(G/⟨σ⟩) = H∗(X)(G/⟨ϵ⟩) as both subgroups induce isomorphic actions.

Now looking at the σ ⊗ ϵ invariant chains we get cochain complex

0← Z(X∗ + Z∗)⊕ Z(Y ∗ + T ∗)← Z(x∗ + z∗)⊕ Z(y∗ + t∗)← 0

with middle map x∗ + z∗ → −(X∗ + Y ∗ + Z∗ + T ∗) and y∗ + t∗ → X∗ + Y ∗ + Z∗ + T ∗ so the kernel is

Z(x∗ + y∗ + z∗ + t∗) and image Z(X∗ + Y ∗ + T ∗ + Z∗) so we have equivariant cohomology groups

H0(X)(G/⟨σ ⊗ ϵ⟩) = Z
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and

H1(X)(G/⟨σ ⊗ ϵ⟩) = Z(X∗ + Z∗)⊗ Z(Y ∗ + T ∗)

Z(X∗ + Y ∗ + Z∗ + T ∗)
= Z

Finally we consider G invariant complexes. Note that the G orbit of X∗ is all of C1(X) so (C1(X))G =

Z(X∗ + Y ∗ + Z∗ + T ∗) and for the 0 cells we have orbits on generators {x∗, z∗}, {y∗, t∗} so we have cochain

complex ((C∗(X))G, d∗)

0← Z(X∗ + Y ∗ + Z∗ + T ∗)← Z(x∗ + z∗)⊕ Z(y∗ + t∗)← 0

with map x∗+z∗ → −(X∗+Y ∗+T ∗+Z∗) and y∗+t∗ → X∗+Y ∗+Z∗+T ∗ so the kernel is Z(y∗+y∗−x∗−z∗)

and image is Z(X∗ + Y ∗ + Z∗ + T ∗) hence the equivariant cohomology groups are

H0(S1)(G/G) = kerd1 = Z

and

H1(S1)(G/G) =
Z(X∗ + Y ∗ + Z∗ + T ∗)

Z(X∗ + Y ∗ + Z∗ + T ∗)
= 0

6 Representation Spheres

Definition 14. For a (finite dimensional) orthogonal representation V of a finite group G (or equivalently any

R[G]-module) define SV as its one point compactification.

Define S(V ) := {v ∈ V : |v| = 1} and D(V ) := {v ∈ V : |v| ≤ 1}, then we have SV = D(V )/S(V ) with

cofiber sequence S(V )→ D(V )→ SV .

Proposition 15. Let G = Cpl where p is prime and l is a positive integer. Let Gi denote the subgroup of G

with index pi and define Gi := G/Gi. Let V be a non trivial represnetation of G. Then SV has G − C.W

complex decomposition with

• A single |V G|−cell

• For each m with |V Gi−1 | < m ≤ |V Gi | a m−cell Gi ×Dm

Lemma 16. For G = Cpl as above, a G action on a G-space X induces an action of Gi on XGi

.

Proof. Let X be a G space. Define action on XGi

by Gi = G/Gi by gGi · x = g · x. This is well defined as if

gGi = g′Gi then there exist gi ∈ Gi such that g = gig
′ hence

(gGi) · x = g · x = gig′ · x = g′x = (g′Gi) · x

The rest of the axioms are easy to see.

Now we will prove proposition 13
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Proof. Note that we have fixed point sets

SV G

⊂ SV G1

⊂ SV G2

⊂ ... ⊂ SV Gl−1

⊂ SV Gl

= SV

Now take G/G × D0 be a single point and attach a |V G| cell G/G × D|V G| via constant attaching map

G/G × S|V G|−1 → X0 to get SV G

. Note that if |V G| = 0, the 0−cell will be attached via S−1 → X0

which by convention is the map ∅ → S0 which gives two points (0 ∈ V and the point at infinity).

Now, given a G − C.W structure on SV Gi−1

we inductively put a G − C.W structure on SV Gi

where the

extension is non trivial. First note that we need cells of up to dimension |V Gi |. Suppose that in SV Gi−1

we already have cells of dimension |V Gi−1 |. Then we need to attach cells of the form G/Gk × Dm where

|V Gi−1 | < m ≤ |V Gi |. We want k = i as we need elements fixed by Gi. Thus we have

SV Gi

= SV Gi

∪ (
⋃

|V Gi−1 |<m≤|V Gi |

Gi ×Dm)

and explicitly we have cell decomposition

SV = X0 ∪ (

l⋃
i=1

⋃
|V Gi−1 |<m≤|V Gi |

Gi ×Dm)

with one cell for each dimension. For a fixed i we attach Gi ×Dm+1 to Gi ×Dm in the obvious way.

To attach Gi × Dm to Gi−1 × Dm−1 we can simply attach the Gi−1 ↪→ Gi subgroup in the obvious way

and the rest of the attaching should be clear from equivariance.

Example 4. Take G = C22 . Let V = R2 with representation ρ : G→ GL(V )

0→ idR2

1→

0 −1

1 0


2→

−1 0

0 −1


3→

 0 1

−1 0


Then we have fixed point sets

SV G

⊆ SV G1

⊆ SV

where SV G

= SV G1

= {0,∞}; the south and north poles of SV = S2. And since V G = 0 we attach a single

0-cell to a point. Then since 0 = |SV G1

| < 1, 2 ≤ |SV | = 2 we attach cells G × D1 and G × D2. This gives
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G-C.W complex SV = G/G×D0
0 ∪G/G×D0

1 ∪×G×D1 ∪G×D2.

The attaching map φ1 : G× S0 → X0 = G/G×D0 ∪G/G×D0 is given by

(gi, 0)→ G/G×D0
0

(gi, 1)→ G/G×D0
1

for all i. Now we have X1 = {(0, y, z) ∈ R3 : y2 + z2 = 1} ∪ {(x, 0, z) ∈ R3 : x2 + z2 = 1}. To construct the

attaching map φ2 : G× S1 → X1, we attach e× S1 to X1 by

(e, eit)→




sint

0

−cost

 t ∈ [0, π]


0

sint

−cost

 t ∈ (π, 2π)

which attaches it to e×D1 and g ×D1, the rest follows from equivariance. The picture is given in figure 2.

Figure 2: SV

7 Discussion and Conclusion

In conclusion, we have developed the theories of homology and cohomology in an equivariant setting where we

upgraded our topological spaces to be equip with symmetries of a finite group. This was made computationally

possible by considering such spaces as G−C.W complexes and taking a slight modification to the typical cellular

homology and cohomology used in basic algebraic topology. Another advantage to considering group actions is
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that given a topological space X and group G one cannot always equip X with a non trivial G action hence

even the construction of a G space reveals alot about the underlying (non-equivariant) space.

This subject is quite dense and in my research I have struggled to find many concrete examples and com-

putations without using quite advanced techniques, hence I tried to give examples here which can be easily

followed by one with minimal background in the subject. These examples illustrate the underlying geometric

notions of the subject The major result of this paper is the constructive proof that the representation sphere for

any non trivial representation of Cpl has a G−C.W complex decomposition with a single cell in each dimension.
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