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Abstract

Working dogs are highly susceptible to heat stress because they engage in high-intensity activities, while they are bred

to show resilience and ignore discomfort. We attempt to develop a quantitative model to predict the onset of heat stress

in working dogs of the Kelpie breed using ECG, respiratory excursion, and temperature data collected from the dogs as

they exercise throughout the day. We do this by fitting some hidden Markov models to the denoised data. We interpret

the dogs’ underlying behavioural state by matching the estimated state sequence from the hidden Markov model with the

activities the dogs engaged in at that time. We also evaluate the usefulness and tradeoffs of the different sensors for this

analysis.

1 Introduction

1.1 Motivation

Humans rely on working dogs for many tasks, including livestock herding, search and rescue services, and military mis-

sions. These tasks often demand high physical exertion over long durations and may also take place in high-temperature

environments. As a result, dogs performing these tasks are at a high risk of temperature stress, which in serious cases, can

become life-threatening.

In the field, handlers are responsible for assigning tasks to their working dogs (Thomas, 2022). Handlers also mandate

rest periods to keep their dogs safe from overheating and heat stress. Handlers do this by observing behavioural cues: dogs

experiencing heat stress will often pant heavily, seek shade and water, and exhibit an overall reluctance to move (Starling

et al. 2022). However, using these behavioural cues for detecting heat stress in working dogs poses some challenges.

In particular, working dogs are specifically bred for resilience and to ignore discomfort, so they often do not show

these warning signs until the dog is already heat-stressed (Starling et al. 2022). Moreover, some activities, like search and

rescue, necessarily require the dog to work independently and potentially out of sight from their handlers. In these cases,

handlers must plan out their dogs’ working and resting periods by estimating the rate at which their dogs’ internal body

temperature will rise as a function of the type of activity they are doing and current environmental conditions (O’Brien

et al. 2020). This estimation is made more challenging by the variation in fitness levels between different working dogs,

meaning that the rate of body temperature increase in working dogs and their heat stress thresholds can vary considerably

between different dogs and days. Crucially, the margin for error is small: while the typical body temperature for a working

dog is 40.5−41◦C, the body temperature rising above 42◦C can pose fatal dangers (Gordon, 2017).

To overcome the challenges of using qualitative behavioural cues, investigating methods of detecting heat stress in

working dogs using quantitative analysis of sensor data would allow handlers to better protect the physical and mental

well-being of the dogs they deploy.

1.2 Overview of Experiment

Starling et al. (2022) conducted an experiment over the summer of 2022 to collect data on working dogs for building a

model for heat stress. Six working dogs of the Kelpie breed were fitted with a custom harness with sensors recording ECG,
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acceleration, respiratory excursions, and temperature data. Table 1 briefly describes how each data stream is collected.

Data Stream Brief Description of Sensor

ECG Biopotential measurement performed by MAX30003 IC. Conductive gel applied to

the ECG electrodes for better contact.

Respiratory Excursion Constant current source through a piece of fabric (Holland Shielding) that changes

resistance based on stretch. Voltage measured by the ADS1247 ADC.

Harness Temperature Temperature measurement performed by MAX30205 IC.

(Top/Bottom)

Internal Body Temperature Measured by BodyCap temperature pill. Dogs administered pill 48 hours before

experiment.

Integration Harness supplied by Auroth Pets, microcontroller is the CC2640R2F.

Table 1: Overview of data collection devices

The dogs also ingested a BodyCap pill which recorded their internal body temperature. Throughout the day, the dogs

Figure 1: Two working dogs fitted with sensor harness

engaged in four low-intensity exercises and one high-intensity exercise. All activities involved the dog following a chase

vehicle (Starling et al. 2022). They are described below

• Low-intensity Trial A: 5-minute canter

• Low intensity Trial B: 5-minute canter, followed by 10-minute rest, followed by 5-minute canter.

• Low-intensity Trial C: 10-minute canter

• Low-Intensity Trial D: 10-minute canter, followed by 10-minute rest, followed by 10-minute canter.
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• High-intensity sprint exercise.

Each exercise activity would be followed by a 1 hour resting period. If a dog began lagging from the pace of the chase

vehicle or exhibited a reluctance to move, the exercise would be halted, and the dog would be allowed to rest. This way,

the dogs were always kept safe from heat stress.

Data collected from the dog Bobby is shown in Figure 2.

Figure 2: Bobby’s harness sensor data

1.3 HMMs for Animal Behaviour Analysis

To interpret the sensor data, we considered a biological model where the dog transitions between a group of underlying

behavioural states, which can be interpreted as potential levels of stress. While we may not be able to observe the

underlying behavioural state, for example, if the dog is experiencing a high level of potentially dangerous stress, we

can always observe the sensor outputs which are assumed to be a direct result of the dog’s current behavioural state.

We therefore wish to assign each of our recorded data points to these underlying behavioural states and use the activity

timetable to identify states of stress.

This clustering process is most naturally represented by hidden Markov models (HMMs), which are a flexible family

of models for the analysis and clustering of serially correlated time series data (Pohle et al. 2017). They have been

successfully used to develop models for related biological problems like animal hunting movement (Mastrantonio et al.

2019) and whale diving behaviour (DeRuiter et al. 2017).

A hidden Markov model is defined by two sequences: a hidden state sequence, and an observed response sequence.

Assuming that there are N hidden behavioural states, we can model the activity state at time t by the random variable St

with image points St ∈ {1,2, · · · ,N}. We denote a state sequence of length T by the random vector S1:T := (S1, · · · ,ST ),
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and we require the sequence to satisfy the Markov property, so for each t = 2, · · · ,T we have

P(St | S1:(t−1)) = P(St | St−1) .

We also represent the response sequence of length T by a sequence of random variables X1:T = (X1, · · · ,XT ) where Xt

represents the measurement at time t. Importantly Xt may be either a scalar or a random vector. We require, for each

t = 1 · · · ,T , the conditional dependence

f (Xt | S1:t ,X1:t−1) = f (Xt | St) .

Figure 3 represents this conditional structure.

Figure 3: Dependence structure of HMM

HMMs are therefore a natural way to analyse the working dog data because they automatically cluster each data

point into underlying hidden states. For the data collected by the pill, let Xt,pill be the random variable modelling the

internal body temperature at time t. For the data collected by the harness, let Xt,harness be a multivariate random variable

modelling the ECG, respiratory excursion, and temperature observations at time t. Assume that Xt,pill can be modelled

with a univariate Normal distribution, and Xt,harness with a multivariate Normal distribution.

Since the parameters of the normal distributions for Xt,pill and Xt,harness depend on the allocated level of stress for

each data point, observations allocated to the same level of stress by the HMM are more likely to show similar values of

temperature and other measurements, allowing us to make predictions about the stress level of the dog.

1.4 Aims

Our main aim for this report is to fit HMMs to the data collected by Starling et al. (2022). We aim to fit a univariate HMM

to the pill data, and a multivariate HMM to the harness data. We then aim to use the clusters detected by these HMM

models to interpret a “stressed” behavioural state and evaluate the use of HMMs for this application.

We also aim to test the quality of the data collected for this experiment and to understand whether we can interpret the

level of stress of the dog only by looking at the recorded data and without knowing what the dog doing at the time.

1.5 Statement of Authorship

The working dog exercise data analysed in this report was collected from an experiment conducted by Starling et al.

(2022). I performed HMM analysis on the univariate pill data in R (R Core Team 2021) based on the algorithms and

proofs prescribed by Visser and Speekenbrink (2022). I then fitted HMMs to the multivariate harness data in R using the

depmixS4 package (Visser & Speekenbrink 2010). Data cleaning was performed with the signal (Ligges et al. 2023)
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and rwt (Roebuck 2014) packages. This analysis extends upon initial work by my supervisor Dr Clara Grazian. I am very

thankful for her help and supervision over the summer.

2 Methodology

The experimental data also includes a complete list of the dogs’ activities and behaviours with corresponding observation

times. However, we performed our analysis assuming that we did not know what the dog was doing and then interpreted

our model with respect to the true activity sheet.

2.1 Overview of Data

The ECG and respiratory excursion sensors in the harness recorded data at a frequency of 100Hz and the temperature

sensors at a frequency of 1Hz. To fit HMMs to the data, we averaged every 100 ECG and respiratory excursion observa-

tions to reduce their signal frequency to that of the temperature sensors. Since we are working with long time series, this

shortening procedure was not a concern. However, in a future iteration of this experiment, it would be better to sample all

the sensors at a common intermediate frequency like 10Hz.

Since the experiment relied on a custom-manufactured harness and sensor array, there were also some issues with the

data collected. Table 2 summarises the issues found with each dog’s harness.

Dog Harness Faults

Abby No data collected.

Bobby No faults.

Franky Respiratory excursion sensor disconnected after 2 hours. Harness temperature readings do not follow the

same shape.

Toby All data is present. Sometimes the values obtained by the harness sensors are erratic. Possibly a fit issue.

Harness temperature readings do not follow the same shape.

Mallee No data from temperature sensors on top and bottom of the harness.

Ruby All data is present. Sometimes the values obtained by the harness sensors are erratic. Possibly a fit issue.

Table 2: Overview of harness sensor faults afflicting each dog

In the cases of Franky and Toby, the top and bottom temperature measurements from the dogs sometimes did not

follow the same shape. Figure 4 shows this behaviour in Franky’s temperature sensors, where this discrepancy is very

pronounced after 1:45 pm. We considered temperature data with this sort of divergence to be an inaccurate and invalid

measurement of the dog’s true body temperature and did not use it in our analysis.

6



Figure 4: Franky harness measurements diverging

We also observed the BodyCap pill recording significant dips in internal body temperature when the dogs drank water.

Figure 5 shows these dips in Bobby’s temperature pill graph.

Figure 5: Effect of the dog drinking on recorded internal body temperature

Throughout this report, we will focus mainly on the data cleaning and HMM analysis performed on the data collected

by dog Bobby, since the data he generated was the most intact and free of errors. We will occasionally refer to other dogs

when necessary.
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2.2 Data Cleaning

The data collected is very noisy, with the largest contribution being the dog’s movements. The dog’s acceleration would

directly induce noise into sensitive electronics like the ECG monitoring sensor. We could also observe the dog’s movement

causing sporadic loss of contact between the sensors in the dog’s harness and their body. To deal with this, we applied

some standard denoising steps to the data obtained from each sensor.

1. Perform initial data smoothing by applying a wavelet-based denoising method (Chatterjee et al. 2020). We used the

denoise.dwt discrete wavelet denoiser from the rwt package (Roebuck 2014).

2. Apply either a bandpass or lowpass Butterworth filter using the butter and filtfilt functions from the signal

package (Ligges et al. 2023). The cutoff frequencies are described in Table 3.

Data Stream Corner Frequencies

ECG Bandpass filter with corner frequencies 5Hz, 18Hz.

These values were recommended by Jin et al. 2024 for preserving ECG features.

Respiratory Excursion Lowpass filter with corner frequency 5Hz. This value was chosen empirically under the

assumption that a dog does not pant at more than 300 breaths per minute (Becker 2011).

Harness Temperature Lowpass filter with corner frequency 8Hz. This value was chosen empirically.

(Top/Bottom)

Internal Body Temperature Only the wavelet denoiser was applied. The data was considered sufficiently

smooth and did not require further filtering.

Table 3: Overview of filtering frequencies for each data stream

2.3 Parameter Estimation

To characterise the state sequence and response sequence of a hidden Markov model, we need to provide three sets

of parameters. Assuming our HMM has length T and there are N hidden states, we can first decide upon an initial

probabilities vector θ init. ∈ RN where the i-th coefficient is the probability P(S1 = i) for i ∈ {1, · · · ,N}, that is,

θinit. =
[
P(S1 = 1) · · · P(S1 = N)

]
.

We must also estimate the transition probabilities matrix θ trans. ∈ RN×N where the i, j-th coefficient is given by

θtrans.,i, j = P(St = i | St−1 = j)

for i, j ∈ {1, · · · ,N}. Moreover, for each possible state St = i, there is a conditional distribution for the response Xt | St = i.

Under the assumption that the responses are normally distributed, we need to estimate N pairs of mean and variance

values, one pair for each state. Denote these estimated density parameters altogether as θ obs..
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Having observed a sequence of responses x1:T , we can estimate the parameters θinit.,θtrans. and θobs. (collectively

θ := [θinit.,θtrans.,θobs.]), by maximising the likelihood function with respect to the parameter space, defined as

L(θ |x1:T ) =
N

∑
i=1

fX1:T ,ST (x1:T ,ST = i|θ) .

In the case of our experiment, this maximisation can only be done using numerical methods. Since the estimated transition

matrix θtrans. must have columns that sum to 1, and some of the parameters contained in θobs. like the variance of each

normal component must be positive, one may use either a general-purpose optimiser like BFGS-B, that can handle box

constraints (Fletcher 1987), or apply a transformation to these variables so the overall optimisation problem becomes

unconstrained (Zucchini, MacDonald & Langrock 2016). However, the HMM likelihood often contains many local

maxima, hence real-world implementations involve running the optimisation algorithm over a large number of random

starting points.

In the R language, which is an interpreted language with high overhead, attempting to perform direct maximisation on

the likelihood function with multiple random starts proved to be too slow for the size of our dataset. To overcome this,

we used an algorithm called expectation maximisation, which is a type of hill-climbing method that is empirically more

resilient to local minima and is fast for Normal-distributed and Gamma-distributed responses. Our implementation of this

algorithm, adapted from Visser & Speekenbrink (2022), is described in the Appendix.

2.4 Global State Decoding

Having observed a sequence of responses x1:T , and estimated the parameters of the state sequence θinit.,θtrans. and the

response sequence, θobs. with the expectation maximisation algorithm detailed in the Appendix, we can use the Viterbi

Algorithm (Visser & Speekenbrink 2022) to estimate the hidden state sequence s̃1:T that most probably generated the

observed response sequence, or formally,

s̃1:T := argmax
s1:T

P(S1:T = s1:t | x1:t) .

The Viterbi Algorithm relies on two components. The first is a forward pass variable, denoted αt( j) for t = 1, · · · ,T

and j = 1 . . . ,N where

αt( j) := max
s1:(t−1)

f (S1:(t−1) = s1:(t−1),St = j,x1:t) ,

which keeps track of the joint density of the most likely state sequence ending at St = j considering all the observations

x1 to xt . Usefully, we can derive a recursive formula to calculate α quickly (Visser & Speekenbrink 2022), since

f (St+1,S1:t ,xt+1,x1:t) = f (xt+1 | St+1,x1:t ,S1:t)P(St+1 | x1:t ,S1:t) f (x1:t ,S1:t)

= f (xt+1 | St+1)P(St+1 | st) f (x1:t ,S1:t) .

which upon maximisation over all possible sequences s1:t yields

αt+1(i) = f (xt+1 | St+1 = i) ·max
j

P(St+1 = i | St = j)αt( j) .
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The second is a reverse pass variable, denoted βt(i) for t = 1, · · · ,T and i = 1 . . . ,N where

βt(i) := argmax
j

αt−1( j)P(St = i | St−1 = j) .

The variable βt(i) tracks, for each state St = i, the most likely preceding state St−1. We implemented this algorithm by

instead computing the log-densities and log-probabilities for better numerical behaviour, as shown in Algorithm 1.

Algorithm 1 Viterbi Algorithm with Log-probabilities
α1(i)← log(P(S1 = i) f (x1 | S1 = i)) for each i = 1, · · · ,N

β1(i)← 0 for each i = 1, · · · ,N

for t = 2, · · · ,T do

αt(i)← log f (xt | St = i)+max
j
(logP(St = i | St−1 = j)+αt( j)) for each i = 1, · · · ,N

βt(i)← argmax
j

αt−1( j)+ logP(St = i | St−1 = j) for each i = 1, · · · ,N

end for

s̃T ← argmax
i

(αT (i))

for t = T −1, · · · ,1 do

s̃t ← βt+1(s̃t+1)

end for

3 Results

3.1 Model Selection

We were able to fit models of sizes N = 1, . . . ,10, while larger models exhibited numerical stability issues. The AIC/BIC

scores for the univariate and multivariate models are plotted in Figure 6, showing that a global minimum point is not well

defined in both cases.

Figure 6: AIC/BIC plots

One possible reason is that the normal components we are using for our model response are only an approximation of
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the underlying data-generating process behind each observation (Pohle et al. 2017), leading the HMM to add extra states

to account for this difference, even if these extra states do not have any biological meaning.

Figure 7: Truncated AIC/BIC plots

Recognising that AIC/BIC criteria tends to overestimate the number of hidden states, we decided that any model with

more than 5 hidden states was biologically implausible. Truncating our AIC/BIC plots at 5 hidden states, as shown in

Figure 7, we see that models with 3, 4 and 5 hidden states have similarly low AIC and BIC scores, hence we considered

them all as candidate models.

3.2 Univariate Pill Models

In this analysis, the colours are only used as labels and there is no correspondence with the colours between the 3, 4 and

5 state models. Figure 8 shows the HMM fitted on Bobby’s pill data with three hidden states.

Figure 8: HMM fitted on Bobby’s pill data with 3 states

We can see that there is a low activity state in red that appears during the Trial A and Trial B activities, as well as the

resting periods. The dog’s internal body temperature is stable during these times. We also see a higher-intensity exercise

state in blue that appears during the sprint and parts of Trial D. Finally, we see that there is a green state that corresponds
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to sharp dips in temperature, caused by the dog drinking water.

With the addition of a fourth state, plotted in Figure 9, we see that the low activity state of the three-state model has

split into a resting state, shown in green, and a low-intensity exercise state, in purple. Usefully, the model can detect

Figure 9: HMM fitted on Bobby’s pill data with 4 states

that the sprint is a higher-intensity activity and has clustered it in blue compared to the trot exercises in the purple state.

However, we still see a red state allocated to sharp drops in temperature corresponding to the dog drinking water.

Adding the fifth state does not immediately yield a simple interpretation, as shown in Figure 10. It is clear that the

Figure 10: HMM fitted on Bobby’s pill data with 5 states

model is having trouble separating the sharp rises in temperature due to the dog drinking water from the dog performing

high-intensity activities like the sprint exercise.

3.3 Multivariate Harness Models

The multivariate HMMs for the harness data were fitted using the depmixS4 package. The fitted three-state HMM for

Bobby’s harness is shown in Figure 11.
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Figure 11: HMM fitted on Bobby’s harness data with 3 states

We see that the model can identify when the dog is exercising, and has clustered those points in blue. This is char-

acterised by high variance in the recorded ECG and temperature signals, and higher mean in the respiratory band values.

The model also divided the resting periods into a red and green state, with the red state characterised by lower magnitude

ECG signals, and the green state by relatively stable temperature values. Reassuringly, the data collected by the harness

does not seem to be affected by the dog drinking water. However, we still see some sharp dips in temperature, this time

during the activity periods rather than the resting periods, which may be due to the temperature sensor in the harness

losing contact with the dog’s body as it moves around.

Figure 12: HMM fitted on Bobby’s harness data with 4 states

Figure 12 shows the effect of adding a fourth state. While the model clearly identifies when the dog is exercising,

clustering these times in a purple state, it is not able to isolate the sprint as a higher-intensity activity compared to the

lower-intensity trot exercises. Moreover, the addition of a fifth state, as shown in Figure 13, does not improve matters -
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the HMM keeps breaking up the resting periods.

Figure 13: HMM fitted on Bobby’s harness data with 5 states

4 Discussion

4.1 Pill Data Discussion

The four and five-state HMMs fitted to the pill data were able to cluster the sprint exercise separately from the low-

intensity trot exercises. However, the data from the pill showed sharp dips when the dog drank water, indicating that there

are significant trade-offs with using the pill for analysing stress levels. In particular, the times when the dog wants to drink

the most would be when it is performing high-intensity exercises, and that is exactly when we want the best data to make

stress predictions, something the pill can’t guarantee if it’s affected by the dog drinking water.

However, if the dog is working independently of their handler, being able to detect when the dog is drinking water is

still useful, not only because it is information that the handler would not be able to obtain otherwise, but also because the

act of the dog drinking can itself hint to underlying heat stress and discomfort.

4.2 Harness Data Discussion

The harness data was substantially noisier than the pill data. As the dog moved, we could also observe the harness

generating unintelligible data due to the sensors in the harness losing contact with the dog’s body. The poor quality of

this data likely also led to our HMMs’ inability to cluster the higher-intensity sprint separately from the lower-intensity

trot exercises, even with five hidden states. We believe that these disconnections and noise are caused by a poor harness

fit, and unless this is addressed, would present major difficulties in a real-world deployment where a dog may be working

independently and their handler may not be present to adjust their harness if it shifts out of place.
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4.3 Future Directions

From our analysis, we have identified several directions for research and development.

• Improve Harness Fit: The data collected by the harness was not affected by the dog drinking water. Therefore, if

we can develop a new harness that fits more comfortably and provides better contact between the sensors and the

dog’s body, we may be able to collect higher-quality data that allows a multivariate HMM to separate the sprint

state from the low-intensity trot exercises. Possibilities include investigating harnesses from different vendors or

developing a bespoke harness that better integrates the required electronics.

• Adaptive Calibration Algorithms: Since it is unrealistic to expect perfect sensor contact, it would be useful to

investigate methods of correcting for sensor drift over time, possibly including machine learning techniques (Tan et

al. 2010).

• On the Fly Decoding: While we performed our analysis on the full dataset, there are alternative algorithms that

successively classify data points as they are streamed in “on the fly”. It would be useful to investigate the practicality

of these algorithms for real-time detection of heat stress.

5 Conclusion

In this work, we fitted univariate HMMs to internal body temperature data and multivariate HMMs to ECG, respiratory

excursion and external temperature data collected by working dogs as they performed some exercises of varying intensity

throughout the day. We determined that HMMs fitted to the dogs’ internal body temperature were able to cluster the sprint

activity as a higher intensity state compared to the low-intensity trot exercises. However, the temperature-sensing pill

used to collect this data recorded large dips in temperature when the dog drank water.

We also determined that the data collected by the harness was too noisy for the multivariate HMMs to isolate the

sprint activity as separate from the low-intensity trot exercises. Some avenues for future research to improve the data

collected by the harness include exploring methods of improving comfort and adaptive calibration algorithms. We also

believe investigating on-the-fly decoding algorithms would also be useful in validating the real-world practicality of our

approach.

6 Appendices

6.1 The Expectation Maximisation Algorithm

Our implementation for fitting univariate HMMs was adapted from Visser & Speekenbrink (2022). The code is provided

below.
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# (Scaled) Forward Backward Algorithm implementation

fb <- function(tpm, densities, prior.probs, data)

{

# Initialise the variables

nt = length(data); nstates = nrow(tpm); A = tpm; B = densities

beta = alpha = matrix(ncol = nstates, nrow = nt)

ct = vector(length=nt)

alpha[1, ] = prior.probs * B[1, ] # Calculate the forward probabilities

ct[1] = 1/sum(alpha[1,]) # Compute the scaling variables

alpha[1,] = ct[1] * alpha[1,] # Compute the scaled forward probabilities

for (t in 1:(nt - 1)){

# Use recursive structure of forward probabilities to calculate for each t

alpha[t+1,] = (t(A) %*% alpha[t, ]) * B[t + 1, ]

# Compute the scaling variables

ct[t+1] = 1/sum(alpha[t+1,])

# Compute the scaled forward probabilities

alpha[t+1,] = ct[t+1] * alpha[t+1,] }

# Compute the last scaled backwards variable

beta[nt,] = ct[nt]

for(t in (nt-1):1){

# Use recursive structure of scaled backwards probabilities to calculate for each t

for (i in 1:nstates)

beta[t,] = (A%*%(B[t+1,]*beta[t+1,]))*ct[t] }

# Compute the smoothing and filtering probabilities

gamma = matrix(ncol = nstates, nrow = nt)

xi = array(dim = c(nt-1, nstates, nstates))

for (t in 1:nt){

gamma[t,] = alpha[t, ] * beta[t, ] / ct[t] }
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for (t in 1:(nt-1)){

for ( i in 1:nstates){

for ( j in 1:nstates)

xi[t, i, j] = alpha[t,i] * A[i,j] * B[ t+1, j] * beta[t+1, j]}}

# Also calculate the log likelihood.

loglikelis = -1*sum(log(ct))

return(list(gamma = gamma, xi = xi, ct = ct, loglikelis = loglikelis ))

}

# Perform maximisation step for Gaussian components

# Using the filtering and smoothing probabilities

emMax <- function( gamma, xi , data ){

# Initialise our variables

nt = length(data)

nstates = ncol(gamma)

# Maximise with respect to transition probabilities matrix

tpm = matrix(nrow = nstates, ncol = nstates)

f = matrix( nrow = nstates, ncol = nstates )

for (j in 1:nstates){

for (k in 1:nstates){

f[j,k] = sum(xi[,j,k]) }}

for (j in 1:nstates){

for (k in 1:nstates){

tpm[j,k] = f[j,k]/ sum(f[j,]) }}

# Maximise with respect to our state-dependent parameters

sigmas = mus = vector(length = nstates)

for(j in 1:nstates){

mus[j] = sum(gamma[,j]*data)/sum(gamma[,j])

sigmas[j] = sqrt(sum(gamma[,j]*(data - mus[j])^2 )/sum(gamma[,j]))
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}

densities = matrix(nrow = nt , ncol = nstates)

for(i in 1:nstates){

densities[,i] = dnorm(data, mean = mus[i], sd = sigmas[i])

}

# Maximise with respect to our prior probabilities

prior.probs = gamma[1,]

return(list(tpm = tpm, densities = densities,

prior.probs = prior.probs , mus = mus, sigmas = sigmas ))

}

# Perform the expectation maximisation step itself.

em <- function(data, nstates, MAXITER = 100){

# Initialise starting values for EM

nt = length(data)

tpm = matrix(1/nstates, nrow = nstates, ncol = nstates)

densities = matrix(nrow = nt , ncol = nstates)

# Set up some initial values for our numerical solver

for(i in 1:nstates){

densities[,i] = dnorm(data, mean = mean(data), sd = sd(data))

}

v = runif(nstates)

prior.probs = v/sum(v)

# Define our convergence criteria.

EPS = 1e-10

ll = 100

its = 0
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# Calculate our smoothing and filtering probabilities using forward backwards

s = fb(tpm = tpm, densities = densities,

prior.probs = prior.probs, data = data)

t = emMax(s$gamma, s$xi, data)

# Hill climb with the maximisation step and forwards-backwards algorithm until convergence

for (ITER in 1:MAXITER){

its = ITER

s = fb(t$tpm, t$densities,

t$prior.probs, data = data)

t = emMax(s$gamma, s$xi, data = data)

ll_new = s$loglikelis

if( abs(ll_new - ll) < EPS){

s <- paste("Converged in", ITER, "iterations.")

message(s)

break

} else {

ll = ll_new }

}

if(its == MAXITER){

message("Model failed to converge in given iterations")

}

k = nstates*(nstates+2) - 1

aic = 2*k - 2*ll

bic = k*log(nt) - 2*ll

metrics = c(aic, bic, ll, df = k)

names(metrics) = c("aic", "bic", "loglikelis", "df")

return(list( tpm = t$tpm, prior.probs = t$prior.probs,

mus = t$mus, sigmas = t$sigmas, densities = t$densities,

metrics = metrics))

}
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# Implement the Viterbi algorithm described in Section 2.4

viterbi <- function(tpm, densities, prior.probs, data)

{

A = tpm

B = densities

nstates = nrow(tpm)

nt = nrow(densities)

# Initialise variables

delta = psi = matrix(nrow = nt, ncol = nstates)

# Set initial condition

delta[1,] = log(prior.probs * B[1,])

psi[1,] = 0

# Loop:

for( t in 2:nt ){

for( i in 1:nstates){

delta[t,i] = log(B[t,i]) + max( delta[t-1,] + log(A[,i]))

psi[t,i] = which.max( delta[t-1,] + log(A[,i]) )

}}

st_global = vector(length = nt)

st_global[nt] = which.max(delta[nt,])

# Backwards pass

for (t in (nt-1):1){

st_global[t] = psi[t+1, st_global[t+1]]

}

return(st_global)

}
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