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Abstract

Data efficient reinforcement learning is important for learning how to interact with an environment when

this interaction is expensive. One approach is to focus on robustness, where with limited data we aim to

learn latent representations of the environment’s state that generalise well to unseen states. Self-predictive

representations (SPR) is a reinforcement learning algorithm that succeeds in doing this, achieving state-

of-the-art performance on the benchmark Atari-100k tasks. Our research has two objectives: (a) simplify

SPR by assessing the necessity of each component and (b) apply masked-reconstruction extensions in the

pixel level to SPR to increase the robustness of the model. We find that that the predictor model in SPR

seems to not be necessary for it to achieve similar performance. We also find that our implementation of

masked-reconstruction hurts the performance of SPR. Our analysis reveals some fundamental issues that

make masked reconstruction difficult to apply successfully in reinforcement learning settings. These include

masking hiding important small objects, and reconstruction reinforcing representations without the small

objects.

1 Introduction

Reinforcement learning (RL) is the task of learning to interact in an unknown environment to maximise an

objective (Sutton and Barto 2018). This has applications in many fields such as learning behaviour for robotics

or learning dynamic treatment regimes in healthcare (Li 2017). Deep reinforcement learning makes useful of

deep artificial neural networks, and have seen successes in complex tasks such as playing Atari games (Badia

et al. 2020). However, they require a lot of environment interactions to learn, which can be a problem for tasks

where this interaction is expensive (Schwarzer et al. 2020).

Data efficient RL aims to undertake this learning with a limited number of environment interactions to learn

from. One way to approach this is to learn representations of the environment from the limited interactions

that is robust to new, unseen interactions. Self-predictive representation (SPR) is a model that succeeds in

learning more robust representations. It aims to make the representations predictive of the representations of

future timesteps. It achieves state-of-the-art performance at the time of release (Schwarzer et al. 2020). Another

method for making representations robust is masked reconstruction. It helps encourage the representations of

images to be invariant when parts of the image is hidden. The Masked Autoencoder model (He et al. 2022)

applies this technique and helped achieve state-of-the-art performance on image-classification tasks at the time

of release.

Given these successes, our project has two goals:

• Goal 1: Simplify the SPR model by evaluating the necessity of each component. We do this by performing

an ablation study.

• Goal 2: Apply extensions based on masked reconstruction to SPR.

For the scope of this research, we limit our evaluation of our models to 6 representative games out of 26

Atari 100k benchmark games (Kaiser et al. 2020). This is a common benchmark to evaluate data efficient RL
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algorithms, which limits the number of interactions used to train the algorithm to 100,000. This is about 2

hours of playtime (Kaiser et al. 2020).

We find that one of the components of SPR, the predictor, is not essential for the model to perform just

as well on the chosen games. We also find that our implementations of masked-reconstruction seems to hurt

the model’s performance on Atari games more than it helps. This is likely due to fundamental issues with

masking hiding important objects that are small and reconstruction encouraging learning representations with

these objects not incorporated.

The remainder of this report is structured as follows. Section 2 will cover related work on masked-

reconstruction and other representational learning techniques in RL. Section 3 will go over how the RL problems

and algorithms are formulated and the methods involved in SPR and masked-reconstruction. Section 4 will give

considerations on evaluating model performance when simplifying or extending the SPR algorithm. Section 5

will show the ablation experiments to simplify SPR. Section 6 will cover the methods and results from applying

masked reconstruction to SPR. Finally, Section 7 will discuss the implications of the results obtained.

Statement of Authorship

We used the implementation of the SPR algorithm by Schwarzer et al. (2020) as a foundation for our investiga-

tions. Joel Woodfield extended the code for the ablation experiments and the masked-reconstruction extensions,

and performed analyses and diagnostic experiments on the results. Dr. Nan Ye contributed the idea for this

research and gave guidance and feedback on all aspects of this research.

2 Related Work

There have been some previous work done on applying masked reconstruction for RL tasks. Yu et al. (2022)

applies large amount of masking on space-time cubes, and performs reconstruction in the latent-space. A

sequence of latent representations is used to reconstruct each latent representation. Seo et al. (2023) applies the

masked autoencoder algorithm on the latent convolutional outputs of the inputs. By masking and reconstructing

the convolutional outputs, it can avoid completely hiding small objects. Our research differs from these methods

by focusing on smaller masking proportions and performing reconstruction in the pixel-space rather than the

latent space.

There have also been other techniques for learning robust representations for RL. Contrastive unsupervised

representations (Srinivas, Laskin, and Abbeel 2020) aims to make the representations invariant to augmentations

while keeping representations of different inputs different. Data-regularized Q (Kostrikov, Yarats, and Fergus

2021) makes use of multiple image augmentations to generate new examples for the models to learn from,

making the representations more robust.
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3 Background

Markov Decision Processes (MDPs) are a general class of mathematical models for describing how an agent

interacts with the environment, and existing RL works focus on this. Q-learning algorithms are commonly used

to learn to make optimal decisions within MDPs. SPR, the algorithm of our focus, builds upon the Q-learning

algorithm called Rainbow. In this section, we will introduce each of these ideas along with a description on

SPR and the inspiration for masked-reconstruction.

3.1 Markov Decision Process

MDP is a framework that can model the dynamics of the environment interaction in RL (Sutton and Barto

2018). Formally, an MDP is specified by the tuple (st, at, rt, st+1) for each timestep t ≥ 0, where st is the

complete state of the environment from the set of possible states S, at is the action taken from the set of

possible actions A, rt ∈ R is the reward obtained, and st+1 ∈ S is the state at the next timestep.

These tuples are generated sequentially using a few dynamics functions. We start with an initial state s0

sampled from an initial state distribution p0. Given the current state and action st and at, every succeeding

state st+1 is sampled from the transition distribution T (s|st, at). From each state st, we choose action at by

sampling from the agent’s policy distribution π(a|st). The reward rt is associated with each state and the action

taken from that state by the reward function R(st, at).

As explained by Mnih et al. (2015), the 6 Atari games that we use for performance evaluation can each be

formulated as an MDP. 4 consecutive frames of each game in grayscale contains enough information to know

the positions of all the objects and how they are moving. Thus, we consider every 4 frames of the game as the

state. The actions, which the agent takes every 4 frames, are the game’s buttons. The reward is the points

obtained or lost during the game.

3.2 Reinforcement Learning by Q-Learning

How the game is played is determined by the policy distribution π, and this can be automatically learned by the

RL algorithm called Q-learning. As explained by Sutton and Barto (2018), from each state s ∈ S, Q-learning

predicts the expected sum of future discounted rewards for each action a ∈ A you could take from s. This is

done by building a model for the function Qπ(s, a) = E (
∑∞

t=0 γ
trt|s0 = s, a0 = a, π). The goal for our policy is

to maximise Qπ over all π : S → A, which we can define as Q∗

Q∗(s, a) = max
π

E

( ∞∑
t=0

γtrt|s0 = s, a0 = a, π

)

Our policy would then be to choose actions that maximise Q∗.

Bellman’s optimality equation can be used to build the model for Q∗. This equation relates the value of Q∗

at neighbouring timesteps.

Q∗(st, at) = E
(
R(st, at) + γmax

a
Q∗(st+1, a)

)

3



If we define an operator H(Q) = E (R(st, at) + γmaxa Q(st+1, a)), and have a randomly intialised function

Q : S× A → R, it has been shown that Q converges to Q∗ if we iteratively update Q for all i > 0 by

Qi+1 = H(Qi) (1)

We can iteratively collect the states, actions, and rewards from the environment and solve Equation 1 for all

i > 0. We collect these objects from the MDP’s dynamics functions and store it in a buffer B (see Algorithm 1).

We try to solve Equation 1 by sampling a tuple (sk, ak, rk, sk+1) randomly from B, and then updating our

model to minimise the Q-loss function

LQ = (R(sk, ak) + γmax
a

Q(sk+1, a)−Q(sk, ak))
2

We switch between collecting experiences from the environment and updating Q in a way shown in Algorithm 2

(Mnih et al. 2015).

Algorithm 1: CollectExperience

Input: Starting timestep t, state st, policy π, transition model T , reward function R, experience buffer

B, number of timesteps to collect Nc

Output: Last collected timestep t, experience buffer B

1 for i in 1 : Nc do

2 at ∼ π(a|st)

3 rt = R(st, at)

4 st+1 ∼ T (s|st, at)

5 Insert(B, (st, at, rt, st+1))

6 t = t+ 1

7 end

3.3 Deep Reinforcement Learning

Deep reinforcement learning parameterises Q using a neural network Qθ (Mnih et al. 2015). Qθ can be learned

to approximate Q∗ by minimizing LQ iteratively using gradient descent based methods. A simple form updates

the parameters in the opposite direction to a semi-gradient of LQ at each iteration

θi+1 = θi − α(R(st, at) + γmax
a

Qθi(st+1, a)−Qθi(st, at))∇θQθi , α ∈ R

For our model, we use the Adam method (Kingma and Ba 2014), which is based on this gradient descent.

For image-based problems, one way to structure the neural network as done by Schwarzer et al. (2020) is to

split Qθ into a combination of two functions h and f .

Qθ(st, at) = h(f(st), at)
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Algorithm 2: Q-Learning

Input: Initial state s0, Q-function Q0, policy π0 (dependent on Q0), transition model T , reward

function R, experience buffer B, number of training steps Nt, number of timesteps to collect

per training step Nc, number of times to update per training step Nu

Output: trained policy πi

1 t = 0

2 i = 0

3 for j in 1 : Nt do

4 t, B = CollectExperience(t, st, πi, T,R,B,Nc)

5 for k in 1 : Nu do

/* Sample tuple randomly from B */

6 (sk, ak, rk, sk+1) ∼ B

7 LQi
= (R(sk, ak) + γmaxa Qi(sk+1, a)−Qi(sk, ak))

2

8 Qi+1 = Update(Qi, LQi)

9 i = i+ 1

10 end

11 end

where st and at are the state and action at timestep t. We consider f : S → Z to be the encoder, which maps

the state to a latent representation from the set of latent representations Z. We consider h : Z → R to be the

head, which maps the latent representation and action taken to the expected sum of future discounted rewards.

By splitting Qθ as so, we separate the tasks of getting useful features from the state and predicting the future

rewards. We can also visualize the function composition in a flowchart diagram (see Figure 1).

Figure 1: Flow chart diagram for Qθ. For each time step t, the game’s frame st gets input into the encoder and outputs

the latent representation of the game’s state zt. Both the action at and representation zt is input into the head to output

the Q function value.
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Figure 2: Flow chart diagram for the SPR model. It builds on top of the model in Figure 1. The latent representation

zt gets also input into the Transition model along with actions at, . . . , at+k−1 to produce the prediction ẑt+k. We also

obtain the true state st+k in the future and get zt+k. Both zt+k and ẑt+k are projected into a lower dimensional space,

with the prediction going through an additional predictor function. The normalised mean square error between the two

projections ŷt+k and yt+k are minimised.

3.4 Rainbow Deep Q Network

Rainbow Deep Q Network developed by Hessel et al. (2017) is one of the most effective Q-learning algorithms.

It combines many techniques that has been found to help learn a more optimal Q function. One important

component is the use of convolutional neural networks. Because Atari games are image-based, Qθ has to process

images. Convolutional neural networks are designed to help learn spatially-invariant patterns in the data, which

is helpful for analysing images (LeCun, Bengio, et al. 1995).

3.5 Self-Predictive Representations

Self predictive representations (SPR) was developed by Schwarzer et al. (2020). It aims to make the represen-

tations of the input states predictive by adding an additional objective for predicting the representations at

future timesteps. We do this by using a transition model to predict the latent representation ẑt+k ∈ Z k steps

into the future using the current representation zt ∈ Z. We then try to minimize the difference between the

predicted ẑt+k with the actual representation zt+k obtained in the future.

The way SPR minimizes this difference is more complicated and is laid out in Figure 2 with components

summarised in Table 1. The latent representations are projected into a lower dimensional space using the

projector function. The projected prediction is then put through a predictor function. The difference between

the prediction and true outputs are minimised by minimising the normalised mean square error LSPRk
. The

SPR model does this prediction for K successive future steps and minimises a combined objective LSPR.

LSPR =
1

K

k∑
k=1

∣∣∣∣∣∣∣∣ ŷt+k

||ŷt+k||
− yt+k

||yt+k||

∣∣∣∣∣∣∣∣2 (2)

This is then minimised simultaneously with LQ by minimising the weighted sum

Ltotal = LQ + 5LSPR

The motivation for some of these decisions such as using the projector seems to be to prevent representational

collapse, which is where the latent representations for all states to become too similar to each other. This would
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Number Name Description

1 Encoder Outputs latent representation of the input state.

2 Head Outputs expected predicted future sum of rewards.

3 Transition
Predicts future latent representation from the current

latent representations and the actions leading up to it.

4 Projector
Projects both true and predicted latent representations

into a lower dimensional space

5 Predictor
Applies a linear transformation to only the projected

predicted latent representation.

Table 1: Summaries for the components of the SPR model.

help minimise LSPR, but will be unhelpful for using the latent representations to predict the future sum of

rewards.

3.6 Masked Autoencoder

The masked autoencoder model by He et al. (2022) is a neural network model designed to learn better latent

representations of images. Masking hides patches of the input image and aims to learn latent representations

of them that can be used to fill in the masks and reconstruct the original image.

The model is comprised of the encoder and the decoder. The encoder outputs the latent representation

from the masked image, and the decoder tries to reconstruct the original image from the latent representation.

The parameters of both functions are updated to minimise the pixel-based reconstruction loss for the unmasked

pixels

Lr = ||m′(st)−m′(ŝt)||2

where st, ŝt ∈ [0, 1]3D are the input image and reconstructed image respectively, each composed of D pixels each

with 3 values for red green and blue. m′(s) ∈ [0, 1]3U outputs the U unmasked pixels of s ∈ [0, 1]3D. A diagram

for this algorithm is shown in Figure 8 in Appendix C.

The authors use vision transformer neural networks for the encoder and decoder. These are used in many

state-of-the art computer vision models such as OmniVec (Srivastava and Sharma 2023). The authors mask a

large proportion of patches so that masked patches cannot easily be filled in by looking at neighbouring patches

(He et al. 2022).

An intuition on why masked-reconstruction can help produce robust representations is to consider masking

as an image augmentation (Kong and Zhang 2023), and apply intuition on augmentations as explained by

Tarvainen and Valpola (2017). Masking slightly alters the image, but the high-level content of the image, which

can be encoded by the representation, does not change. By applying multiple sets of masking to the same

image, we get multiple new data points with a different image but the same latent representaiton to train our
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model on. This helps produce a more robust representation model when there is limited data to learn from.

4 Performance Evaluation

To evaluate SPR’s agent’s performance on the Atari games, Schwarzer et al. (2020) uses the Human Normalised

Score and aggregate it across the games tested using the mean or the median. For each game g and our agent

A, the human normalized score HNg is defined as

HNg =
Ag −Rg

Hg −Rg

where Ag is our agent’s score on the game, Rg is the score obtained by an agent taking random actions, and

Hg is the score obtained by a human player as collected by Mnih et al. (2015).

However, we find that using either the mean or median of these scores can lead to results that are biased

towards a subset of the games. This is because our models achieve different magnitudes of values for HNg for

different games. The mean would be biased towards scores from games with consistently higher HNg. The

median would be biased towards games with HNg that are consistently middle of the pack. Empirically, we find

that in our ablation experiments in section 5, the median HNg score for all our modifications were the average

of the same two games (the median of an even number of scores).

To mitigate this problem, we instead use a simple modification of the human normalized score where we we

replace the human score with the score that the SPR model achieves. We will call this the SPR normalized

score

SPRNg =
Ag −Rg

SPRg −Rg

where SPRg is the game score obtained by the SPR model.

This alleviates the problem of having different magnitudes of values for HNg for different games, as games

that are harder to beat humans for our agent will also be hard for SPR agent. An additional side effect is

that the score directly measures how much our agent improves over the original SPR. A score of greater than

1 means it is performing better, and a score less than 1 means it is performing worse.

5 Self-Predictive Representations Ablation Study

To determine the necessity of each component, we will analyse the performance of SPR for each component

removed. This has been done already by Schwarzer et al. (2020) for some components, but not all.

The predictor is the first component we will ablate. Although the predictor (number 5 in Table 1) has shown

to be crucial to prevent representational collapse in self-supervised computer vision models (Balestriero et al.

2023), the SPR model is different with the addition of the transition model and LQ, so it may not be needed.

Another component is the projector (number 4 in Table 1). Although Schwarzer et al. (2020) has tried

removing the projector for both the prediction and the true representations, removing the projector for only
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the true representation has not been tested. To make the dimensions match, we make the projector for the

predicted representation project onto the same number of dimensions as the original latent representation.

The projector also shares some parameters with the head model (see Figure 2). The usefulness of this has

yet to be tested, so we will also try having completely separate parameters between these two models.

Finally, there is the fact that for each sampled state st, K more states are used in computing LSPR. This

begs the question of whether the benefit of SPR comes from using each state on average K + 1 times more to

train the model, rather than through the use of the prediction model. Thus, we will also try training the RL

model without the SPR components (numbers 3-5 in Table 1) and update the parameters more aggressively by

updating the model through K + 1 times more every training step. By an unfortunate error, we instead tested

by using each state K times more rather than K + 1, but it is still testing the same idea.

Mean Median

- Predictor 1.23 0.96

- SPR Loss + Aggressive Update 0.80 0.72

- Parameter Sharing 0.96 0.91

- Projector 0.58 0.64

Figure 3 & Table 2: The SPR normalized scores for the 4 modifications on 6 games. The most successful modification

is removing the predictor. It gets a higher score than SPR on 3 out of 6 games, with a much higher score on Up N Down.

It also gets a higher mean and similar median SPR normalized score. Other modifications do worse, especially removing

thhe projector and removing SPR loss and adding aggressive updates.

Figure 3 shows the results of the experiments on the 6 games. Removing the predictor achieves a similar

performance to SPR, having a median SPR normalized score close to 1 and a mean higher than 1. The

higher mean can be attributed to the significantly higher performance on Up N Down. This suggests that the
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predictor is not needed for SPR to achieve similar performance, and may help in certain tasks such as Up N

Down. Removing the parameter sharing also achieves SPR Normalized scores close to 1, but is a bit lower.

The other two modifications show clear signs of performing worse compared to the original SPR, having SPR

normalized scores much less than 1. These features seem to be necessary for SPR to perform well.

6 Masked Reconstruction

To implement masked-reconstruction into SPR, we need to first decide the architecture for the autoencoder to

produce the latent representations and the reconstructions. We also need to determine the amount of masking

to apply. We also consider three different variants in incorporating masking and reconstruction into the SPR

algorithm. We then analyse the results on the 6 Atari games and then perform diagnostic experiments to

understand the results better.

6.1 Autoencoder Architecture

The Masked Autoencoder model uses transformer neural networks, which considers patches of pixels together.

The masking is also applied to these patches. However, we find that we need to mask individual pixels rather

than patches (see subsection 6.2). Using the transformer model for pixel inputs is unfortunately computationally

expensive.

To account for this, we will use the same convolutional neural network from the original SPR model for

the encoder. For the decoder, we use transposed convolutions to project the latent representation back to the

higher-dimensional state space. To train the encoder, we minimimise the reconstruction loss over all D pixels.

Lr = ||st − ŝt||2

where st ∈ [0, 1]D is the true state and ŝt ∈ [0, 1]D is the reconstruction from the latent representation of st.

6.2 Masking Size

We decide to mask individual pixels instead of patches so that the masking does not alter the high level features

(representation) of the game state. If too much masking is applied, it can hide important details of the image,

such as the location of ghosts in Ms Pacman (see Figure 4). We found that by masking out patches of pixels

at a time, it was easy for the mask to completely hide important objects in Ms Pacman. Hiding these objects

will change the way the game should be played, which would mean a different representation.

We also control the proportion of pixels masked to optimise the benefit of masking. We have to balance

maximising this proportion to increase the robustness of our model and not masking too much to hide important

objects. To do this, we train our autoencoder with masking proportions 0, 0.1, 0.2, 0.3, and 0.4 on images from

the 6 games obtained by taking random actions. We evaluate the effectiveness of each proportion by measuring

its reconstruction loss. We find that a proportion of 0.3 has the lowest average reconstruction loss, so we used

this proportion for our masking experiments.
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Figure 4: Ms Pacman with too much masking. The player in the lower left position is completely hidden.

The decision to use a smaller proportion than the masked autoencoder model and to mask pixels rather

than patches goes against the idea He et al. (2022) brought up that reconstruction can be done too easily by

looking at neighbouring pixels. However, the fact that we achieved a lower reconstruction loss by adding the

low masking suggests that our masking at least helps with learning better representations for reconstruction.

6.3 Training Strategies

There are multiple ways to include masked reconstruction into the SPR model. We consider three variants.

Detailed algorithms for each are shown in Appendix B.

6.3.1 Variant 1

For the first variant, we simply add masking to the state before it is input into the model and add the decoder

that takes in the latent representation. The reconstruction loss is computed using the reconstruction, and it is

added to the total loss so that it can be minimized concurrently with LQ and LSPR

Ltotal = LQ + 5LSPR + 10Lr

The decision to multiply Lr by 10 was to make the magnitudes of the reconstruction loss comparable to the

magnitudes of LSPR observed in the initial stages of training on Ms Pacman.

6.3.2 Variant 2

For the second variant, we first pretrain just the encoder and decoder on game images obtained by taking

random actions. We then copy the parameters of the encoder to the encoder of SPR, and train SPR as normal

without masking or reconstructing. Although this uses extra game interactions when pretraining, this method

is similar to how the masked autoencoder is applied to computer vision tasks so we decide to test this.
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6.3.3 Variant 3

For the third variant, we apply masking to the images but we do not add the decoder and the reconstruction.

Unlike the masked autoencoder, our SPR algorithm has two other objectives to minimise, and the representation

learned by minimising these objectives may already be improved just by applying the mask.

6.4 Results

Mean Median

Variant 1 0.56 0.59

Variant 2 0.19 0.12

Variant 3 0.78 0.94

Figure 5 & Table 3: SPR Normalized Scores from the 6 games for the 3 masking variants. All variants have a lower

mean and median scores than the original SPR. Variant 3, which does not have a reconstruction objective, performs

better than the others with higher mean and median scores. It also achieves better results on two out of the six games.

Variant 2 performs much worse for all games.

The results are shown in Figure 5. It shows that for all variants, the performance is worse on the majority of

the 6 games, especially Variant 2. This suggests that the method of masking we implemented, which is used in

all 3 variants, hurts the performance of the SPR model. It also shows that the model performs better without

doing the reconstruction, as seen with higher scores in Variant 3 which does not make use of the reconstruction.

6.5 Diagnostic Tests

To understand why masking does not seems to help, we can look at the features that the encoder detects by

analysing the reconstruction images. To investigate further into why Variant 3 with no reconstruction objective

performed better, we analyse the performance of SPR with different combinations of losses. We also analyse

12



Figure 6: The reconstruction outputs for the three masking variants trained on Ms Pacman. The observation is

the image input into the autoencoders for the three variants. For variant 1, only the background and the pellets are

reconstructed. The same items are reconstructed in variant 2, but it is more clear. For variant 3, the ghosts and player

are reconstructed along with the background.

the variance of the latent representations output by the encoder to check if the reconstruction objective caused

representational collapse.

6.5.1 Reconstruction Images

We will analyse what features of the input images gets incorporated in the latent representation by analysing

the reconstruction images produced by our masked-reconstruction variants trained on the game Ms Pacman.

For variants 1 and 2, we can simply use the trained encoder and decoder. For variant 3, we create a new

autoencoder with the trained encoder, and a randomly initialized decoder. We then train just the decoder to

minimise the reconstruction loss. We use 100,000 sets of 4 frames - the same number used to train the other

variants.

Figure 6 shows the reconstructions. A key insight is that the small, moving objects are not reconstructed

in variants 1 and 2. This suggests, although we can’t be sure, that these objects are hard for variants 1 and

2 to detect. On the other hand, Variant 3 reconstructs the small, moving objects blurrily. This suggests that

Variant 3 does detect these objects.

6.5.2 Loss Compatibility

Loss Combination Mean SPR Normalized Median SPR Normalized

Q + SPR + R 0.56 0.59

Q + SPR 0.78 0.94

Q + R 0.46 0.36

Q 0.64 0.73

Table 4: SPR normalized scores from training SPR on the 6 games with different combinations of Q-loss (Q), SPR loss

(SPR), and reconstruction loss (R).
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Figure 7: Box plot showing the quartiles for the sample variances for each of the 3136 components of the latent

representation of Ms Pacman. Minimums and maximums are not shown. The sample variance is computed over 2000

sets of 4 frames obtained by taking random actions in the game. The middle 50% of the variances are similar for Variant

1 and Variant 3, but significantly smaller for Variant 2.

Table 4 shows the SPR normalized scores from training SPR with masked images with different combinations

of losses. It shows that adding the reconstruction loss hurts the performance both with SPR loss and without.

This suggests that the reconstruction loss is incompatible with minimising the Q-loss when masking is applied.

However, it should be noted that it is possible to get relatively good scores with just Q and SPR losses

(Variant 3), and then separately train the decoder to produce good reconstructions as we have found in subsub-

section 6.5.1. This suggests that it is rather the dynamics of minimising reconstruction loss at the same time

as the Q-loss that makes it incompatible.

6.5.3 Variance of Latent Representation

Figure 7 shows the variances of the 64x7x7 dimensional latent representations produced by the encoders of the

three variants trained on the game Ms Pacman. It shows that Variant 2 has much lower variance, which means

that the latent representations of different states are more similar to each other. Variant 1 and 3 have similar

variances.

7 Discussion and Conclusion

7.1 Necessity of the Predictor

The results of SPR without the predictor performed just as well as with the predictor. This suggests that the

predictor is not needed in the SPR model to obtain the same performance. Although the predictor seems to be

necessary in preventing representational collapse in computer vision pretraining settings, we hypothesise that

adding the additional Q-loss objective and sharing the parameters in the projector and the head can prevent
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representational collapse without the predictor. Testing on more problems is needed to confirm this result.

7.2 Hiding Small Objects

Another important insight is that masking can hide small objects that are crucial to playing the game. Although

the amount of masking can be reduced so that the small objects remain partially visible, it is possible that it

can increase the difficulty to detect these objects too much that it outweighs the benefits of learning more

robust representations of the input. In some games such as Kangaroo, some important objects are so small

such that any amount of masking could hide it in some frames. This may be the reason for the consistently low

performance on Kangaroo. Further research on detecting small, moving objects may be helpful.

7.3 Decoder Reinforcing Bad Representations

Another finding is that adding the reconstruction objective hurts the performance regardless of whether SPR is

used. Because the reconstructions often do not include the small, moving objects, it is possible that this objective

encourages the learning of the representations of bigger, non-moving objects. Because the small, moving objects

are often more important to play the games, this would mean the reconstruction loss is encouraging the detection

of distractions, which may explain the worse performance. This is perhaps further compounded by masking

hiding smaller objects.

Variant 2, where its encoder was only trained using the reconstruction objective, has low variance in the

latent representations. It also had the worst performance on the Atari games out of the three variants. This

supports the idea that the reconstruction objective encourages learning the representations of unmoving objects

rather than the more helpful moving objects.

7.4 Conclusion

Overall, we have found a possible way to simplify the SPR model by removing the predictor, and gained some

insight into how masked-reconstruction strategies can prevent the SPR model from learning good representations

to play Atari games. Some reasons for the unsuccessful results such as the masking hiding objects may not be

applicable to tasks outside of Atari games. It may be worth exploring masking for those tasks. Additionally,

further research into models that could better detect small objects may help learn better representations for

tasks similar to Atari games.

15



References
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A Hyperparameters

For the SPR model, the same hyperparameters from Schwarzer et al. (2020) are used, except for the SPR loss

coefficient, where we use 5 instead of 2. Table 5 shows the SPR hyperparameters. The mask-reconstruction-

specific hyperparameters are shown in Table 6.

Parameter Setting

Gray-scaling True

Observation down-sampling 84x84

Frames stacked 4

Action repetitions 4

Reward clipping [-1, 1]

Terminal on loss of life True

Max frames per episode 108K

Update Distributional Q

Dueling True

Support of Q-distribution 51

Discount factor 0.99

Minibatch size 32

Optimizer Adam

Optimizer: learning rate 0.0001

Optimizer: β1 0.9

Optimizer: β2 0.999

Optimizer: ϵ 0.00015

Max gradient norm 10

Priority exponent 0.5

Priority correction 0.4 → 1

Exploration Noisy nets

Training steps 100K

Evaluation trajectories 100

Min replay size for sampling 2000

Replay period every 1 step

Updates per step 2

Multi-step return length 10

Q network: channels 32, 64, 64

Q network: filter size 8x8, 4x4, 3x3

Continued on next page
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Parameter Setting

Q network: stride 4, 2, 1

Q network: hidden units 256

Non-linearity ReLU

Target network: update period 1

SPR loss coefficient 5

K 5

Data Augmentation Random shifts (± 4 pixels) & Intensity(scale=0.05)

Table 5: Hyperparameters used for the SPR model.

Parameter Setting

Masking proportion 0.3

Masking patch size 1x1x1

Decoder: model Transposed Convolutional Neural Network

Decoder: channels 64, 64, 32

Decoder: filter size 3x3, 4x4, 8x8

Decoder: stride 1, 2, 4

Decoder loss coefficient 10

Variant 2: Number of steps used in pretraining 100,000

Table 6: Hyperparameters used for the masking extensions.
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B Masking Strategies

Algorithm 3: Variant 1 Training

Input: Initial state s0, policy π, transition T , reward R, encoder f , decoder d, network parameters θ,

experience buffer B, random mask function m, SPR augmentation function A, number of

training steps Nt, number of timesteps to collect per training step Nc, number of times to

update per training step Nu

Output: Trained policy π

1 t = 0

2 for j in 1 : Nt do

3 t, B = CollectExperience(t, st, π, T,R,B,Nc)

4 for k in 1 : Nu do

5 Radomly sample sequence of K experiences {st′ , at′ , rt′ , st′+1}i+K
t′=i ∼ B

6 for t′ in (i, . . . , i+K) do

7 st′ = A(st′)

8 end

9 s
(m)
i = m(si)

10 zi = f(s
(m)
i )

11 s′i = d(zi)

12 Lr = ||si − s′i||2

13 LQ = |R(s
(m)
i , ai) + γmax′a Qi(si+1, a

′)−Qi(s
(m)
i , ai)|2

/* Get SPR loss using Figure 2 and Equation 2 */

14 LSPR = SPRLoss(zi, {st′ , at′ , rt′ , st′+1}i+K
t′=i )

15 Ltot = LQ + 5LSPR + 10Lr

16 Update(θ, Ltot)

17 end

18 end
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Algorithm 4: Variant 2 Training

Input: Initial state s0, policy π, transition T , reward R, encoder f with parameters θf , decoder d with

parameters θd, other parameters in the network θ′, experience buffer B, random mask function

m, SPR augmentation function A, number of training steps for autoencoder Nat
, number of

training steps for SPR Nst , number of timesteps to collect to train autoencoder Nac , number of

times to update SPR per training step Nsu

Output: Trained policy π

1 t = 0

/* Collect experiences by choosing actions randomly */

2 t, B = CollectExperience(t, st, π
random, T,R,B,Nc)

/* Train autoencoder */

3 for i in 1 : Nat
do

4 (s, a, r, snext) ∼ B

5 s(m) = m(s)

6 z = f(s(m))

7 s′ = d(z)

8 Lr = ||s− s′||2

9 Update((θe, θd), Lr)

10 end

11 Clear all experiences in B

/* Train SPR with pretrained encoder */

12 for j in 1 : Nst do

13 for k in 1 : Nu do

14 Randomly sample sequence of K experiences (st′ , at′ , rt′ , st′+1)t′=i:i+K ∼ B

15 for t′ in (i, . . . , i+K) do

16 st′ = A(st′)

17 end

18 LQ = |R(si, ai) + γmax′a Qi(si+1, a
′)−Qi(si, ai)|2

/* Get SPR loss using Figure 2 and Equation 2 */

19 LSPR = SPRLoss[zi, (st′ , at′ , rt′ , st′+1)t′=i+1:i+K ]

20 Ltot = LQ + 5LSPR

21 Update(θ′, Ltot)

22 end

23 end
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Algorithm 5: Variant 3 Training

Input: Initial state s0, SPR network parameters θ, policy πθ, transition T , reward R, encoder f ,

decoder d, experience buffer B, random mask function m, SPR augmentation function A,

number of training steps Nt, number of timesteps to collect per training step Nc, number of

times to update per training step Nu

Output: Trained policy πθ

1 t = 0

2 for i in 1 : Nt do

3 t, B = CollectExperience(t, st, πθ, T,R,B,Nc)

4 for i in 1 : Nu do

5 Randomly sample sequence of K experiences {st′ , at′ , rt′ , st′+1}i+K
t′=i ∼ B

6 for t′ in (i, . . . , i+K) do

7 st′ = A(st′)

8 end

9 s
(m)
i = m(si)

10 zi = f(s
(m)
i )

11 LQ = (R(s
(m)
i , ai) + γmax′a Qi(si+1, a

′)−Qi(s
(m)
i , ai))

2

/* Get SPR loss using Figure 2 and Equation 2 */

12 LSPR = SPRLoss(zi, {st′ , at′ , rt′ , st′+1}i+K
t′=i )

13 Ltot = LQ + 5LSPR

14 Update(θ, Ltot)

15 end

16 end
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C Masked Autoencoder Diagram

Figure 8: The masked autoencoder model. The input image is split into patches, and a subset is randomly masked.

The unmasked patches are input into the vision transformer encoder to output the latent representation of the input.

The latent representation is then input into the decoder that reconstructs the original input. Figure taken from (He

et al. 2022).
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