SUMMERRESEARCH SCHOLARSHIPS 2023-24

SET YOUR SIGHTS ON RESEARCH THIS SUMMER

Finding Equilibrium Macrostates of the Face-Cubic Model

Emily Palit

Supervised by A/Prof Tim Garoni Monash University

Abstract

In this report we study equilibrium macrostates of the Face-Cubic model on the complete graph. Specifically, we analyse the high temperature case for d = 3 with non-zero field. We derive a function $\tilde{G}_{\beta,h}$ which can be minimised in order to identify equilibrium macrostates. By bounding the function below by a convex quadratic, we prove existence of a global minimum point. Through analysis of the partial derivatives of $\tilde{G}_{\beta,h}$ we show that the global minimum is unique and specify bounds for the point.

Acknowledgements

I would primarily like to thank my supervisor A/Prof Tim Garoni for his guidance and mentorship throughout this project. I am truly grateful for the time he dedicated to providing insightful feedback and sharing his expertise. Furthermore, I would like to thank Aram Perez for his constructive suggestions and willingness to provide assistance throughout the project. Finally, I would like to thank AMSI for the opportunity to undertake a project over the summer.

Contents

Al	Abstract	
Ac	Acknowledgements	
1	Introduction	1
	1.1 Statement of Authorship	2
2	Identifying Equilibrium Macrostates with an External Field for $d = 3$	3
3	Further Study	8
4	Conclusion	9
Re	References	

1 Introduction

The Ising model is a fundamental model in statistical mechanics. The model consists of spins arranged on the nodes of a graph, with edges representing an interaction between adjacent spins. An external field h also interacts with the spins. The spins are discrete random variables taking values in $\{-1, +1\}$ and the overall energy of the system can be described by its Hamiltonian function.

The Ising model can be simplified by using a mean-field approximation, whereby each spin is assumed to interact with every other spin. Doing so can make it possible to analyse the macroscopic behaviour of a system through explicit computations [1]. This approximation is known as the Curie-Weiss model, and can be thought of as the Ising model on the complete graph.

In this study we generalise the Curie-Weiss model to higher dimensional spaces by allowing the spins to take values in \mathbb{R}^d . Specifically, we restrict the spin-state space to vectors with precisely one non-zero entry: either +1 or -1. Formally, this is the set

$$\Omega_d = \{c_1 \mathbf{e}_1 + \dots + c_n \mathbf{e}_d : c_i \in \{-1, 0, 1\} \text{ for all } i = 1, \dots, d \text{ and precisely one } c_i \text{ is non-zero}\}.$$
 (1.1)

We call this the Face-Cubic model as the possible spin states are unit vectors pointing to the faces of a *d*-dimensional cube.

To generalise the Curie-Weiss Hamiltonian function to higher dimensions, we replace the product of spins with a dot product. For a collection of spins $\sigma = (\sigma_1, ..., \sigma_n), \sigma_i \in \Omega_d$ for all i = 1, ..., n, inverse temperature β and external magnetic field $h \in \mathbb{R}^d$, the Curie-Weiss Hamiltonian is defined as

$$H_{n;\beta;h}(\sigma) := -\frac{d\beta}{n} \sum_{i,j=1}^{n} \sigma_i \cdot \sigma_j - h \cdot \sum_{i=1}^{n} \sigma_i \quad .$$

$$(1.2)$$

We can then introduce the Gibbs measure, which gives the probability of a system having spin configuration σ ,

$$P^{\beta}(\sigma) = \frac{\exp(-\beta H_{n;\beta;h}(\sigma))}{Z_n(\beta,h)} .$$
(1.3)

The partition function in the denominator serves as a normalising term and is given by

$$Z_n(\beta, h) = \sum_{\sigma \in \Omega_d^n} \exp(-\beta H_{n;\beta;h}(\sigma)) .$$
(1.4)

To analyse the global behaviour of a system we introduce a quantity called the magnetisation which can be thought of as an 'average' of the spins in a system,

$$m_n(\sigma) := \frac{1}{n} \sum_{i=1}^n \sigma_i .$$

$$(1.5)$$

We are interested in where the magnetisation asymptotically converges to as n becomes large. This is well understood in the d = 1 case with zero external field (see e.g. [1]). At high temperature ($\beta \leq \beta_c$), the spin-tospin interactions are small and the magnetisation converges to zero. Conversely, at low temperature ($\beta > \beta_c$) the spin interactions are stronger and the magnetisation converges with equal probability to either of the two

ground states with all spins equal. Here β_c is the inverse critical temperature and $\beta_c = d$ for $d \leq 3$. It has been shown that $m_n(\sigma)$ satisfies a large deviation principle with respect to P^{β} , with non-negative rate function I^{β} [4]. This leads to the following result

$$P^{\beta}(m_n = x) \simeq \exp(-nI^{\beta}(x)) . \tag{1.6}$$

As n goes to infinity, (1.6) tells us that the probability of a particular magnetisation will become small unless the rate function is zero. The values of x at which the rate function vanishes are called equilibrium macrostates. The d = 1 case described above is illustrated in Figure 1.

Figure 1: The rate function of the Curie-Weiss model when d = 1 and h = 0. Extracted from Friedli, S & Velenik, Y 2017 [1].

When considering the general d case in the absence of an external field, finding the equilibrium macrostates is equivalent to minimising the function G_{β} [3], which is given by

$$G_{\beta}(x) = \frac{\beta}{2} \langle x, x \rangle - \ln \sum_{j=1}^{d} \cosh(\beta x_j) + \ln(d) , x \in \mathbb{R}^d .$$
(1.7)

In this report we derive a similar function for non-zero field and identify the equilibrium macrostates for the high temperature case when d = 3.

1.1 Statement of Authorship

The background and motivation of this report follows closely to work done by Tim Garoni, Aram Perez and Zongzheng Zhou in [2]. In particular Lemma 2.1 is adapted from Lemma 4.1 in [2], with the difference being the inclusion of an additional term for external field. The content of Lemmas 2.2 - 2.5 is original work for which I was responsible. I acknowledge however the direction Tim and Aram gave me in pursuing these ideas and the suggestions they offered in refining my arguments.

SUMMERRESEARCH SCHOLARSHIPS 2023-24

2 Identifying Equilibrium Macrostates with an External Field for d = 3

Lemma 2.1. Let $\beta \in (0,\infty)$, $h \in \mathbb{R}^d$ and $r \in \mathbb{R}^d$. Define $S_n(\sigma) := \sum_{i=1}^n \sigma_i$ and $G_{\beta,h}(x) := \frac{\beta}{2} \langle x, x \rangle - \ln\left(\sum_{j=1}^d \cosh(\beta(h_j + x_j))\right)$. The moment generating function of S_n/n^{δ} for the d-dimensional Face-Cubic model is given by

$$M_n(r) = \exp\left(-\frac{n^{1-2\delta}}{2\beta}\langle r, r\rangle\right) \frac{\int_{\mathbb{R}^d} \exp[\langle r, x\rangle - nG_{\beta,h}(\frac{x}{n^{1-\delta}})] dx}{\int_{\mathbb{R}^d} \exp[-nG_{\beta,h}(\frac{x}{n^{1-\delta}})] dx} .$$
 (2.1)

Proof. Let $a_n = \sqrt{\beta/n}$. We have from the definition of the moment generating function

$$\begin{split} M_n(r) &= \sum_{\sigma \in \Omega^n} \exp\left(\frac{1}{n^{\delta}} \langle r, S_n \rangle\right) \left(\frac{\exp(\frac{\beta}{2n} \langle S_n, S_n \rangle + \beta \langle h, S_n \rangle) p(\sigma)}{\sum_{\sigma \in \Omega^n} \exp(\frac{\beta}{2n} \langle S_n, S_n \rangle + \beta \langle h, S_n \rangle) p(\sigma)}\right) ,\\ &= \frac{\sum_{\sigma \in \Omega^n} \exp(\frac{1}{a_n n^{\delta}} \langle r, a_n S_n \rangle) \exp(\frac{1}{2} \langle a_n S_n, a_n S_n \rangle) \exp(na_n \langle h, a_n S_n \rangle) p(\sigma)}{\sum_{\sigma \in \Omega^n} \exp(\frac{1}{2} \langle a_n S_n, a_n S_n \rangle) \exp(na_n \langle h, a_n S_n \rangle) p(\sigma)} ,\\ &= \frac{T_n(r)}{T_n(0)} , \end{split}$$

where $T_n(r) := \sum_{\sigma \in \Omega^n} \exp(\frac{1}{a_n n^{\delta}} \langle r, a_n S_n \rangle) \exp(\frac{1}{2} \langle a_n S_n, a_n S_n \rangle) \exp(na_n \langle h, a_n S_n \rangle) p(\sigma)$. We then apply the identity $\exp(\frac{1}{2} \langle y, y \rangle) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \exp(\langle y, x \rangle - \frac{1}{2} \langle x, x \rangle) \, dx$ to $T_n(r)$,

$$\begin{split} T_n(r) &= \sum_{\sigma \in \Omega^n} \exp\left(\frac{1}{a_n n^{\delta}} \langle r, a_n S_n \rangle + n a_n \langle h, a_n S_n \rangle\right) p(\sigma) \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \exp\left(\langle x, a_n S_n \rangle - \frac{1}{2} \langle x, x \rangle\right) \, dx \\ &= \left(\frac{1}{\sqrt{2\pi}}\right)^d \sum_{\sigma \in \Omega^n} \int_{\mathbb{R}^d} \exp\left(\frac{1}{n^{\delta} a_n} \langle r, a_n S_n \rangle + n a_n \langle h, a_n S_n \rangle + \langle x, a_n S_n \rangle - \frac{1}{2} \langle x, x \rangle\right) p(\sigma) \, dx , \\ &= \left(\frac{1}{\sqrt{2\pi}}\right)^d \sum_{\sigma \in \Omega^n} \int_{\mathbb{R}^d} \exp\left(\langle \frac{r}{n^{\delta}} + n a_n^2 h + a_n x, S_n \rangle - \frac{1}{2} \langle x, x \rangle\right) p(\sigma) \, dx , \\ &= \left(\frac{1}{\sqrt{2\pi}}\right)^d \int_{\mathbb{R}^d} \exp\left(-\frac{1}{2} \langle x, x \rangle\right) \sum_{\sigma \in \Omega^n} \prod_{i=1}^n \exp\left(\langle \frac{r}{n^{\delta}} + n a_n^2 h + a_n x, \sigma_i \rangle\right) \frac{1}{2d} \, dx . \end{split}$$

Swapping the product and the sum gives

$$\begin{split} T_n(r) &= \left(\frac{1}{\sqrt{2\pi}}\right)^d \int_{\mathbb{R}^d} \exp\left(-\frac{1}{2}\langle x, x \rangle\right) \prod_{i=1}^n \sum_{j=1}^d \frac{1}{d} \cosh\left(\frac{r_j}{n^\delta} + na_n^2 h_j + a_n x_j\right) \, dx \;, \\ &= \left(\frac{1}{\sqrt{2\pi}}\right)^d \int_{\mathbb{R}^d} \exp\left[-\frac{1}{2}\langle x, x \rangle + n \ln\left(\sum_{j=1}^d \cosh\left(\frac{r_j}{n^\delta} + na_n^2 h_j + a_n x_j\right)\right) - n \ln d\right] \, dx \;. \end{split}$$

We make the substitution $x \to \frac{1}{a_n} (\frac{\beta x}{n^{1-\delta}} - \frac{r}{n^{\delta}})$ and define $c_n(\beta) = (\frac{1}{\sqrt{2\pi}})^d (\frac{\beta}{a_n n^{1-\delta}})^d$ such that

$$T_n(r) = c_n(\beta) \int_{\mathbb{R}^d} \exp\left[-\frac{1}{2a_n^2} \langle \frac{\beta x}{n^{1-\delta}} - \frac{r}{n^\delta}, \frac{\beta x}{n^{1-\delta}} - \frac{r}{n^\delta} \rangle + n \ln\left(\sum_{j=1}^d \cosh\left(na_n^2h_j + \frac{\beta x_j}{n^{1-\delta}}\right)\right) - n \ln d\right] dx ,$$
$$= c_n(\beta) \int_{\mathbb{R}^d} \exp\left[\langle r, x \rangle - \frac{n^{1-2\delta}}{2\beta} \langle r, r \rangle - \frac{n}{2\beta} \langle \frac{\beta x}{n^{1-\delta}}, \frac{\beta x}{n^{1-\delta}} \rangle + n \ln\left(\sum_{j=1}^d \cosh\left(na_n^2h_j + \frac{\beta x_j}{n^{1-\delta}}\right)\right) - n \ln d\right] dx ,$$

SUMMERRESEARCH SCHOLARSHIPS 2023–24

Recalling the definition of $G_{\beta,h}$ we have

$$\begin{split} M_n(r) &= \frac{T_n(r)}{T_n(0)} , \\ &= \exp\left(-\frac{n^{1-2\delta}}{2\beta} \langle r, r \rangle\right) \frac{\int_{\mathbb{R}^d} \exp[\langle r, x \rangle - nG_{\beta,h}(\frac{x}{n^{1-\delta}})] \, dx}{\int_{\mathbb{R}^d} \exp[-nG_{\beta,h}(\frac{x}{n^{1-\delta}})] \, dx} \quad . \end{split}$$

Lemma 2.2. Let $f : \mathbb{R}^d \to \mathbb{R}$, $f \in C^0$ and a > 0 such that $f(x) \ge a|x|^2$ for all $x \in \mathbb{R}^d$. Then f has at least one global minimum point on \mathbb{R}^d .

Proof. Set $M = f(0) \ge 0$ and $x^* = \sqrt{\frac{M+1}{a}}$. Since f is continuous, by the Extreme Value Theorem it has a minimum on the compact ball $B = \{x \in \mathbb{R}^d : |x| \le x^*\}$. So there exists $x_0 \in B$ such that

$$f(x_0) \le f(x)$$
 for all $x \in B$. (2.2)

In particular,

$$f(x_0) \le f(0) = M$$
, (2.3)

since $0 \in B$. Suppose $x \in \mathbb{R} \setminus B = \{x \in \mathbb{R}^d : |x| > x^*\}$. Then using the fact that a > 0,

$$f(x) \ge a|x|^{2},$$

$$> ax^{*2},$$

$$= a\left(\sqrt{\frac{M+1}{a}}\right)^{2},$$

$$= M+1,$$

$$> M,$$

$$\ge f(x_{0}).$$

$$(2.4)$$

Hence, from (2.2) and (2.4), $f(x_0) \leq f(x)$ for all $x \in \mathbb{R}^d$. So f has a global minimum point at x_0 .

Lemma 2.3. Let $\beta \in (0,\infty)$ and $h \in \mathbb{R}^d$. Then $\tilde{G}_{\beta,h}(u) := G_{\beta,h}(u-h)$ has at least one global minimum point on \mathbb{R}^d .

Proof. Applying the change of variables x = u - h to the function $G_{\beta,h}(x)$ gives

$$\tilde{G}_{\beta,h}(u) := G_{\beta,h}(u-h) = \frac{\beta}{2} \langle u, u \rangle - \ln\left(\sum_{j=1}^{d} \cosh(\beta u_j)\right) - \beta \langle u, h \rangle + \frac{\beta}{2} \langle h, h \rangle ,$$

$$= G_{\beta}(u) - \beta \langle u, h \rangle + \frac{\beta}{2} \langle h, h \rangle ,$$

$$\geq G_{\beta}(u) - \beta \langle u, h \rangle .$$
(2.5)

Lemma 6.4.1. from [3] implies $G_{\beta}(u) \geq \frac{\beta}{4} \langle u, u \rangle + \frac{\beta}{4} \sum_{j=1}^{d} (u_j - 2)^2 - d\beta - \ln(d)$ for all $u \in \mathbb{R}^d$. Therefore,

$$\tilde{G}_{\beta,h}(u) \ge \frac{\beta}{4} \langle u, u \rangle + \frac{\beta}{4} \sum_{j=1}^{d} (u_j - 2)^2 - d\beta - \ln(d) - \beta \langle u, h \rangle ,$$

$$= \frac{\beta}{2} \langle u, u \rangle - \beta \sum_{j=1}^{d} u_j - \ln(d) - \beta \langle u, h \rangle .$$
(2.6)

Let $\mathbf{1} = \sum_{j=1}^{d} \mathbf{e}_j$ and $c(h) = \frac{\beta}{2} \langle h + \mathbf{1}, h + \mathbf{1} \rangle + \ln(d)$. Then

$$\tilde{G}_{\beta,h}(u) \geq \frac{\beta}{2} \langle u, u \rangle - \beta \langle u, h + \mathbf{1} \rangle - \ln(d) ,$$

$$= \frac{\beta}{2} \langle u - (h + \mathbf{1}), u - (h + \mathbf{1}) \rangle - \frac{\beta}{2} \langle h + \mathbf{1}, h + \mathbf{1} \rangle - \ln(d) ,$$

$$= \frac{\beta}{2} |u - (h + \mathbf{1})|^2 - c(h) ,$$

$$\tilde{G}_{\beta,h}[u + (h + \mathbf{1})] + c(h) \geq \frac{\beta}{2} |u|^2 .$$
(2.7)

Since $\frac{\beta}{2} > 0$, $\tilde{G}_{\beta,h}[u+(h+1)]+c(h)$ has at least one global minimum point on \mathbb{R}^d by Lemma 2.2. By translation, this implies the same for $\tilde{G}_{\beta,h}$.

Lemma 2.4. Let $\beta \in (0, \beta_c)$ and d = 3. For all $u_1, u_2, u_3 \in \mathbb{R}$ and any $i \in [d]$,

$$\frac{\beta \cosh(\beta u_i)}{\sum_{j=1}^3 \cosh(\beta u_j)} - \frac{\beta \sinh^2(\beta u_i)}{(\sum_{j=1}^3 \cosh(\beta u_j))^2} < 1.$$

$$(2.8)$$

When $\beta = \beta_c$,

 \Rightarrow

$$\frac{\beta \cosh(\beta u_i)}{\sum_{j=1}^3 \cosh(\beta u_j)} - \frac{\beta \sinh^2(\beta u_i)}{(\sum_{j=1}^3 \cosh(\beta u_j))^2} \le 1 , \qquad (2.9)$$

with equality if and only if $u_1 = u_2 = u_3 = 0$.

Proof. Let $u_1, u_2, u_3 \in \mathbb{R}$ and d = 3. Without loss of generality we set i = 1 and observe the following

$$\frac{\beta \cosh(\beta u_i)}{\sum_{j=1}^3 \cosh(\beta u_j)} - \frac{\beta \sinh^2(\beta u_i)}{(\sum_{j=1}^3 \cosh(\beta u_j))^2} = \frac{\beta \cosh(\beta u_1)(\sum_{j=1}^3 \cosh(\beta u_j)) - \beta \sinh^2(\beta u_1)}{(\sum_{j=1}^3 \cosh(\beta u_j))^2}, \\ = \frac{\beta [\cosh^2(\beta u_1) - \sinh^2(\beta u_1) + \cosh(\beta u_1) \cosh(\beta u_2) + \cosh(\beta u_1) \cosh(\beta u_3)]}{(\sum_{j=1}^3 \cosh(\beta u_j))^2} \\ = \frac{\beta [1 + \cosh(\beta u_1)(\cosh(\beta u_2) + \cosh(\beta u_3))]}{(\sum_{j=1}^3 \cosh(\beta u_j))^2}.$$

(2.10)

Let $x = \cosh(\beta u_1)$ and $y = \cosh(\beta u_2) + \cosh(\beta u_3)$ so that $x \ge 1$ and $y \ge 2$. Then

$$\frac{\beta \cosh(\beta u_i)}{\sum_{j=1}^3 \cosh(\beta u_j)} - \frac{\beta \sinh^2(\beta u_i)}{(\sum_{j=1}^3 \cosh(\beta u_j))^2} = \frac{\beta(1+xy)}{(x+y)^2} \,. \tag{2.11}$$

Recall that $\beta_c = d$ for $d \leq 3$. Hence when $\beta \in (0, \beta_c)$, we have

$$\frac{\beta \cosh(\beta u_i)}{\sum_{j=1}^3 \cosh(\beta u_j)} - \frac{\beta \sinh^2(\beta u_i)}{(\sum_{j=1}^3 \cosh(\beta u_j))^2} < \frac{3(1+xy)}{(x+y)^2} .$$
(2.12)

SUMMERRESEARCH SCHOLARSHIPS 2023-24

In the case $\beta = \beta_c$, we have

$$\frac{\beta \cosh(\beta u_i)}{\sum_{j=1}^3 \cosh(\beta u_j)} - \frac{\beta \sinh^2(\beta u_i)}{(\sum_{j=1}^3 \cosh(\beta u_j))^2} = \frac{3(1+xy)}{(x+y)^2} .$$
(2.13)

Define $q(x,y) = \frac{1}{4}(2x-y)^2 + \frac{3}{4}(y^2-4)$. For all $(x,y) \in [1,\infty) \times [2,\infty)$, we have $y^2-4 \ge 0$. So $q(x,y) \ge \frac{1}{4}(0) + \frac{3}{4}(0) = 0$. Therefore

$$0 \leq \frac{1}{4}(2x-y)^2 + \frac{3}{4}(y^2 - 4) , \qquad (\star)$$

= $\frac{1}{4}(4x^2 - 4xy + y^2) + \frac{3}{4}(y^2 - 4) ,$
= $x^2 - xy + y^2 - 3 .$

Rearranging gives

$$3xy + 3 \le x^2 + 2xy + y^2$$
,

and so

$$\frac{3(1+xy)}{(x+y)^2} \le 1 , \qquad (2.14)$$

for all $(x, y) \in [1, \infty) \times [2, \infty)$. Hence (2.8) follows from (2.12) and (2.9) follows from (2.13). We will now show that there is equality in (2.9) if and only if $u_1 = u_2 = u_3 = 0$. Let $\beta = \beta_c$ and suppose $u_i = 0$ for all $i \in [d]$. Then

$$\frac{\beta \cosh(\beta u_i)}{\sum_{j=1}^3 \cosh(\beta u_j)} - \frac{\beta \sinh^2(\beta u_i)}{(\sum_{j=1}^3 \cosh(\beta u_j))^2} = \frac{3 \cosh(3(0))}{\sum_{j=1}^3 \cosh(3(0))} - \frac{3 \sinh^2(3(0))}{(\sum_{j=1}^3 \cosh(3(0)))^2} ,$$

$$= \frac{3}{3} ,$$

$$= 1 .$$
 (2.15)

Now let $\beta = \beta_c$ and suppose $\frac{\beta \cosh(\beta u_i)}{\sum_{j=1}^3 \cosh(\beta u_j)} - \frac{\beta \sinh^2(\beta u_i)}{(\sum_{j=1}^3 \cosh(\beta u_j))^2} = 1$. From (2.13), this implies $\frac{3(1+xy)}{(x+y)^2} = 1$, (2.16)

where $x = \cosh(\beta u_1)$ and $y = \cosh(\beta u_2) + \cosh(\beta u_3)$, so that $x \ge 1$ and $y \ge 2$. From (\star) it follows that

$$\frac{1}{4}(2x-y)^2 + \frac{3}{4}(y^2-4) = 0.$$
(2.17)

This forces y = 2 and x = 1. Therefore $u_1 = u_2 = u_3 = 0$.

Lemma 2.5. Let $\beta \in (0, \beta_c]$, d = 3 and $h = (\eta_1, \eta_2, \eta_3) \in \mathbb{R}^d$. There exists a unique global minimum point $\bar{v} = (\bar{v}_1, \bar{v}_2, \bar{v}_3)$ of $\tilde{G}_{\beta,h}(x)$. For each $i \in [d]$, $\bar{v}_i \in (0, 1 + \eta_i)$ if $\eta_i > 0$, $\bar{v}_i = 0$ if $\eta_i = 0$ and $\bar{v}_i \in (\eta_i - 1, 0)$ if $\eta_i < 0$.

Proof. Let $\beta \in (0, \beta_c]$ and d = 3. Recall the definition of $\tilde{G}_{\beta,h}$ from Lemma 2.3. From Lemma 2.3, $\tilde{G}_{\beta,h}$ has at least one global minimum point. Note that $\tilde{G}_{\beta,h} \in C^{\infty}$. Then if \bar{v} is a global minimum point of $\tilde{G}_{\beta,h}$ it must

satisfy

$$\frac{\partial \tilde{G}_{\beta,h}(u)}{\partial u_i}|_{u=\bar{v}} = \beta \left(\bar{v}_i - \frac{\sinh(\beta \bar{v}_i)}{\sum_{j=1}^3 \cosh(\beta \bar{v}_j)} - \eta_i \right) = 0,
\Rightarrow \bar{v}_i - \frac{\sinh(\beta \bar{v}_i)}{\sum_{j=1}^3 \cosh(\beta \bar{v}_j)} - \eta_i = 0,$$
(2.18)

for all $i \in [d]$.

Fix u_2 and $u_3 \in \mathbb{R}$ and define the following function

$$f(u_1) := u_1 - \frac{\sinh(\beta u_1)}{\sum_{j=1}^3 \cosh(\beta u_j)} - \eta_1 , \qquad (2.19)$$

such that \bar{v}_1 satisfies $f(\bar{v}_1) = 0$. Let $\eta_1 > 0$. Then we observe for fixed choices of u_2 and u_3

$$f(0) = -\eta_1 < 0 , \qquad (2.20)$$

and

$$f(1 + \eta_1) = 1 - \frac{\sinh(\beta(1 + \eta_1))}{\cosh(\beta(1 + \eta_1)) + \cosh(\beta u_2) + \cosh(\beta u_3)},$$

> 1 - tanh(\beta(1 + \eta_1)),
> 1 - 1,
= 0. (2.21)

Now suppose $\eta_1 = 0$. Trivially, for any fixed u_2 and u_3 ,

$$f(0) = 0. (2.22)$$

Finally, suppose $\eta_1 < 0$. For fixed choices of u_2 and u_3 , using the fact that sinh is odd we have

$$f(\eta_1 - 1) = -1 + \frac{\sinh(\beta |\eta_1 - 1|)}{\cosh(\beta |\eta_1 - 1|) + \cosh(\beta u_2) + \cosh(\beta u_3)},$$

$$< -1 + \tanh(\beta |\eta_1 - 1|),$$

$$< -1 + 1,$$

$$= 0,$$

(2.23)

and

$$f(0) = -\eta_1 > 0 . (2.24)$$

Since f is a smooth function, we have shown that f has at least one root for any $\eta_1 \in \mathbb{R}$. To prove the uniqueness of this solution, we will show that for any choices of u_2 and u_3 and any $\eta_1 \in \mathbb{R}$, f is strictly monotone.

Consider the derivative

$$f'(u_1) = -\frac{\beta \cosh(\beta u_1)}{\sum_{j=1}^3 \cosh(\beta u_j)} + \frac{\beta \sinh^2(\beta u_1)}{(\sum_{j=1}^3 \cosh(\beta u_j))^2} + 1.$$
(2.25)

When $\beta \in (0, \beta_c)$, Lemma 2.4 tells us that for any fixed choices of u_2 and u_3 and for all $u_1 \in \mathbb{R}$,

$$\frac{\beta \cosh(\beta u_1)}{\sum_{j=1}^3 \cosh(\beta u_j)} - \frac{\beta \sinh^2(\beta u_1)}{(\sum_{j=1}^3 \cosh(\beta u_j))^2} < 1.$$

7

SUMMERRESEARCH

It follows that

$$-\frac{\beta \cosh(\beta u_1)}{\sum_{j=1}^3 \cosh(\beta u_j)} + \frac{\beta \sinh^2(\beta u_1)}{(\sum_{j=1}^3 \cosh(\beta u_j))^2} > -1 ,$$

$$f'(u_1) = -\frac{\beta \cosh(\beta u_1)}{\sum_{j=1}^3 \cosh(\beta u_j)} + \frac{\beta \sinh^2(\beta u_1)}{(\sum_{j=1}^3 \cosh(\beta u_j))^2} + 1 > 0 .$$
 (2.26)

So f is an increasing function of u_1 for any fixed choices of u_2 and u_3 when $\beta \in (0, \beta_c)$.

Now consider $\beta = \beta_c$. From Lemma 2.4, (2.26) holds unless $u_1 = u_2 = u_3 = 0$, in which case $f'(u_1) = 0$. So for any fixed choices of u_2 and u_3 where at least one of u_2 and u_3 is non-zero, f is an increasing function of u_1 with a positive derivative. If $u_2 = u_3 = 0$, then f is increasing on u_1 and instantaneously stationary at $u_1 = 0$. In any case f is strictly monotone so its root v_1 must be unique. From the calculations above, $\bar{v}_1 \in (0, 1 + \eta_1)$ when $\eta_1 > 0$, $\bar{v}_1 \in (\eta_1 - 1, 0)$ when $\eta_1 < 0$. When $\eta_1 = 0$, $\bar{v}_1 = 0$. By symmetry, the same arguments hold for \bar{v}_2 and \bar{v}_3 .

Since $\tilde{G}_{\beta,h}$ has at least one global minimum point by Lemma 2.3 and \bar{v} is the only point satisfying (2.18), \bar{v} is the unique global minimum point of $\tilde{G}_{\beta,h}$.

3 Further Study

In this report we were able to specify the equilibrium macrostate for the case d = 3 and $\beta \in (0, \beta_c]$ with nonzero field. A natural next step would be to further understand the d = 3 case by identifying the equilibrium macrostates when $\beta \in (\beta_c, \infty)$ with non-zero field. In the d = 1 case, $G_{\beta,h}$ may have up to three stationary points depending on the magnitude of h when $\beta \in (\beta_c, \infty)$ as shown in Figure 2. The function has a unique global minimum point when the field is non-zero.

Figure 2: $G_{\beta,h}$ plotted for $\beta = 3$ and various values of h.

As such, extending the $\beta \in (0, \beta_c]$ case to d = 3 will likely be less straightforward than the case studied in this report. Lemmas 2.1 - 2.3 hold in this scenario, meaning that the existence of at least one global minimum point

of $\tilde{G}_{\beta,h}$ is known. We expect the multivariate function to have more than one local minimum which will need to be accounted for when determining uniqueness of a global minimum and dependence of its position on h.

Furthermore, using the results from this report we may be able to identify the critical exponent δ when d = 3. To understand this exponent we first introduce the specific Gibbs free energy, which is given by

$$\psi(\beta,h) := \lim_{n \to \infty} \frac{1}{n} \log Z_n(\beta,h) , \qquad (3.1)$$

where $Z_n(\beta, h)$ is the partition function. The Hubbard-Stratonovich transformation and Laplace's method may be used to show the following equivalence [2],

$$\psi(\beta,h) = \inf_{u \in \mathbb{R}^d} \tilde{G}_{\beta,h}(u).$$
(3.2)

We then introduce another quantity called the specific magnetisation, which is defined as

$$M(\beta,h) := \frac{\partial}{\partial h} \psi(\beta,h). \tag{3.3}$$

As $||h|| \to 0$, we say that $M(\beta_c, h) \simeq ||h||^{\frac{1}{\delta}}$. Since the existence and uniqueness of $\inf_{u \in \mathbb{R}^d} \tilde{G}_{\beta,h}(u)$ has been proven in this report when $\beta = \beta_c$, we may use (2.18) and (3.2) to specify the Gibbs free energy and therefore deduce the critical exponent δ . In the d = 3 case, we expect that $\delta = 5$ [2].

4 Conclusion

By deriving and minimising a function $\tilde{G}_{\beta,h}$, we were able to prove the existence and uniqueness of an equilibrium macrostate of the Face-Cubic model when d = 3 and $\beta \in (0, \beta_c]$ with non-zero field. By bounding $\tilde{G}_{\beta,h}$ below by a convex quadratic, we were able to show existence of a global minimum point. In order to demonstrate uniqueness, we analysed the partial derivatives of $\tilde{G}_{\beta,h}$. By considering them as functions of one variable, fixing the other variables to any values in \mathbb{R} and demonstrating the strict monotonicity of these functions, we proved the uniqueness of each component of a global minimum vector for given h. For an external field $h = (\eta_1, \eta_2, \eta_3) \in \mathbb{R}^3$, we were able to place bounds on the equilibrium macrostate $\bar{v} = (\bar{v}_1, \bar{v}_2, \bar{v}_3)$. We showed that for each $i \in \{1, 2, 3\}, \ \bar{v}_i \in (0, 1 + \eta_i)$ if $\eta_i > 0, \ \bar{v}_i = 0$ if $\eta_i = 0$ and $\ \bar{v}_i \in (\eta_i - 1, 0)$ if $\eta_i < 0$.

References

[1] Friedli, S & Velenik, Y 2017, 'Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction', *Cambridge University Press*, pp. 57-77.

[2] Garoni, T, Perez, A & Zhou, Z 2024, 'The face-cubic model on the complete graph'. *Manuscript in preparation, Monash University.*

[3] Zhou, Z 2017, 'Phase transitions of some discrete models in statistical mechanics', *Monash University*, pp. 119-165.

[4] Dembo, A Zeitouni, O 2009, 'Large Deviations Techniques and Applications', Springer, pp. 36.

[5] Ellis, R & Wang, K 1990, 'Limit theorems for the empirical vector of the Curie-Weiss-Potts model', Stochastic Processes and their Applications, vol. 35.

