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Abstract

In this report we study equilibrium macrostates of the Face-Cubic model on the complete graph. Specifically,
we analyse the high temperature case for d = 3 with non-zero field. We derive a function (N;B,h which can be
minimised in order to identify equilibrium macrostates. By bounding the function below by a convex quadratic,
we prove existence of a global minimum point. Through analysis of the partial derivatives of G 8,h we show that

the global minimum is unique and specify bounds for the point.
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1 Introduction

The Ising model is a fundamental model in statistical mechanics. The model consists of spins arranged on
the nodes of a graph, with edges representing an interaction between adjacent spins. An external field h also
interacts with the spins. The spins are discrete random variables taking values in {—1,4+1} and the overall
energy of the system can be described by its Hamiltonian function.

The Ising model can be simplified by using a mean-field approximation, whereby each spin is assumed to
interact with every other spin. Doing so can make it possible to analyse the macroscopic behaviour of a system
through explicit computations [1]. This approximation is known as the Curie-Weiss model, and can be thought
of as the Ising model on the complete graph.

In this study we generalise the Curie-Weiss model to higher dimensional spaces by allowing the spins to take
values in R%. Specifically, we restrict the spin-state space to vectors with precisely one non-zero entry: either

+1 or —1. Formally, this is the set
Qg ={c1e1 + ... + cpeq: ¢; € {—1,0,1} for all ¢ = 1,...,d and precisely one ¢; is non-zero}. (1.1)

We call this the Face-Cubic model as the possible spin states are unit vectors pointing to the faces of a d-
dimensional cube.

To generalise the Curie-Weiss Hamiltonian function to higher dimensions, we replace the product of spins
with a dot product. For a collection of spins o = (071, ...,0,), 0; € Qq for all i = 1, ..., n, inverse temperature

and external magnetic field h € R?, the Curie-Weiss Hamiltonian is defined as

Hyp.n(o ZO‘Z oj—h- Zo, . (1.2)

,j=1

We can then introduce the Gibbs measure, which gives the probability of a system having spin configuration o,

exp(—ﬂHn;ﬁ;h(U))

PP(0) = 1.3
) =" Z.6.0 3

The partition function in the denominator serves as a normalising term and is given by
Zn(B,h) = Z exp(—BH,.5.1(0)) . (1.4)

oeNy

To analyse the global behaviour of a system we introduce a quantity called the magnetisation which can be

thought of as an ‘average’ of the spins in a system,

- % > i (1.5)
i=1

We are interested in where the magnetisation asymptotically converges to as n becomes large. This is well
understood in the d = 1 case with zero external field (see e.g. [1]). At high temperature (8 < f.), the spin-to-
spin interactions are small and the magnetisation converges to zero. Conversely, at low temperature (8 > .)

the spin interactions are stronger and the magnetisation converges with equal probability to either of the two

NAMS|




2 SUMMERRESEARCH

2 SCHOLARSHIPS 2023-24

ground states with all spins equal. Here S, is the inverse critical temperature and 8, = d for d < 3. It has been
shown that m,, (o) satisfies a large deviation principle with respect to P?, with non-negative rate function I

[4]. This leads to the following result
PP (m,, = z) ~ exp(—nI”(z)) . (1.6)

As n goes to infinity, (1.6]) tells us that the probability of a particular magnetisation will become small unless
the rate function is zero. The values of x at which the rate function vanishes are called equilibrium macrostates.

The d = 1 case described above is illustrated in Figure 1.

B <B.: I (m) B> B.: I5%(m)

.

Figure 1: The rate function of the Curie-Weiss model when d = 1 and h = 0. Extracted from Friedli, S &
Velenik, Y 2017 [1].

When considering the general d case in the absence of an external field, finding the equilibrium macrostates is
equivalent to minimising the function Gg [3], which is given by

d
(x, ) — ancosh(ﬁscj) +In(d) ,z € R? . (1.7)

In this report we derive a similar function for non-zero field and identify the equilibrium macrostates for the

high temperature case when d = 3.

1.1 Statement of Authorship

The background and motivation of this report follows closely to work done by Tim Garoni, Aram Perez and
Zongzheng Zhou in [2]. In particular Lemma 2.1 is adapted from Lemma 4.1 in [2], with the difference being
the inclusion of an additional term for external field. The content of Lemmas 2.2 - 2.5 is original work for which
I was responsible. I acknowledge however the direction Tim and Aram gave me in pursuing these ideas and the

suggestions they offered in refining my arguments.

NAMS|




2 SUMMERRESEARCH

2 SCHOLARSHIPS 2023-24

2 Identifying Equilibrium Macrostates with an External Field for
d=3

Lemma 2.1. Let 3 € (0,00), h € R? and r € Re. Define Sy(0) = Y1 0; and Ggp(z) = g(gy,a:) -

In (ijl cosh(B(h; + :EJ))) The moment generating function of S, /n° for the d-dimensional Face-Cubic model

1s given by
X

pl-26 " r>> Jga exp[(r,2) — nGp p ()] dx
28 V" Joa exp[=nGp ()] da

Proof. Let a,, = \/3/n. We have from the definition of the moment generating function

1 exp(4 (Sn, Sn) + B(h, Sn))p(0)
M, (r) = exp | —(r, Sn )
" O'EZQ" b (né < >> <ZO’EQ" exp(Qn (S, Sn) + B(h, Sn>)p((7)>

Zaeﬂn eXp( <T anSn)) eXP(%WHSm anSn)) exp(nan(h, a,Sn))p(o)
ZUEQ” exp(3(anSn, anSn)) exp(nan (b, a,S,))p(o) ’

M, (r) = exp (— (2.1)

where T;,(r) := Y2, cqn €XP( 555 (7, @nSn)) exp(5(anSn, anSn)) exp(nan (b, anSy))p(o). We then apply the iden-
tity exp(3(y,4)) = Gryarm Jpa XP((y, @) — 5(z,2)) dz to Tu(r),

To(r)= Y eXp(

geQm™

sl + (0,0} ) 0) s [ esp (0,008, = o)) d

n

( 27r> Z /Rd exp ( (r,anSy) + nan(h,a,Sy) + (x,an,S,) — %(x,x)) p(o)dz

oenn
1
> +na2h + anz, Sp) — = (x, dr
( 271') Eﬂn/l;deXp< na Gn > 2<-T l‘>>p(0’) x
1\ 1 .
_< /_27r) /Rd XP( >U§Ml_llexp( +naZh + a,z, Uz>>ﬁd$.

Swapping the product and the sum gives

d n d
1 1 1 Tj
T,(r) = (ﬁ) /Rd exp (—§<x, m)) Z1;[1 .221 p cosh (n_JJ +narh; + anxj) dx
1 \¢
= (E) / exp [ (z,z) +nln (g cosh( + na? h; +anxj>) —nlnd] dz .
B

X

We make the substitution x — — (nﬁ —5) and define ¢, (8) = (#)d(%%;)d such that

Zcosh <na h; + ﬂx] >) —nlnd] dz |

§ 3" o (i + 2 ))]

Jj=1

T.(r) = cn(B) /Rd exp —m<ﬁ A —> +nln (

[ 1-26
:cn(ﬂ)/Rdexp (r,x)—n (ryr) — 2ﬂ<n€x5’ ﬂf >+nln(
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Recalling the definition of G5, we have

_nl_% oy Jra expl(r, z) — nGp ()] da
p< v >> Ja exp[—nGp n ()] dx

O

Lemma 2.2. Let f : R? - R, f € C° and a > 0 such that f(z) > a|z|? for all x € R?. Then f has at least one

global minimum point on RY.

Proof. Set M = f(0) > 0 and z* = % Since f is continuous, by the Extreme Value Theorem it has a

minimum on the compact ball B = {x € R% : |z| < 2*}. So there exists o € B such that
flzo) < f(z) for all x € B . (2.2)

In particular,
f@o) < f(0) =M, (2.3)

since 0 € B. Suppose # € R\B = {x € R?: |z| > 2*}. Then using the fact that a > 0,

fl@) > alzf?

> M,
> f(xo) -
Hence, from (2.2) and (2.4), f(x) < f(x) for all x € R%. So f has a global minimum point at z. O

Lemma 2.3. Let 3 € (0,00) and h € RY. Then G p,(u) := Ggn(u — h) has at least one global minimum point

on R,

Proof. Applying the change of variables x = u — h to the function G p(x) gives

o™

ég’h(’u,) = Gg’h<’u, — h) =

d
(u,u) — In (Z cosh(ﬁuj)) — B{u, h) + §<h’ h),

Jj=1

=
—~
o
ot
~

= Gp(u) — Blu,h) +

> Gp(u) — Blu, h) .

§<h7 h> )
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Lemma 6.4.1. from [3] implies Gg(u) > §<u, u) + gz;lzl(uj —2)2 — dB — In(d) for all u € R?. Therefore,

Gpn(u) > g(u,w + gZ(uJ —2)? —dB —In(d) — Blu, h) ,
, ! (2.6)
= 5 {uu) —/B;u,- — In(d) — B{u, h)
Let 1=, e; and c(h) = §(h+1,h+1) +In(d). Then
Ganw) > 2 u,u) — B,k +1) ~ ()
a1 - Zth a4 1) — () |
; 2 (2.7)
Slu=(h+ 1) —c(h),
= C:'g,h[u + (h+1)]+c(h) > §|u|2 )

Since g >0, éﬂ,h[u—i—(h—l—l)] +c(h) has at least one global minimum point on R? by Lemma 2.2. By translation,
this implies the same for Gg . O

Lemma 2.4. Let 5 € (0,8.) and d = 3. For all uy,uz,u3s € R and any i € [d],

B cosh(Bu;) B sinh?(Bu;)

1. 2.8
S cosh(Buy) (20, cosh(Bug))? 29

When 8 = B.,
Beosh(Bu;) Bsinh®(Bu;) <1 (2.9)

i cosh(Buy) (325, cosh(Bu;))?

with equality if and only if u; = ug = uz = 0.

Proof. Let uy,ug,us € R and d = 3. Without loss of generality we set ¢ = 1 and observe the following

B cosh(Bu;) B sinhQ(ﬁui) ﬂ COSh(ﬁul)(Z] L cosh(Buj)) — B sinh?(Buy)
>jorcosh(Buy) (325, cosh(Buy))? (325-1 cosh(Buy))?
_ Blcosh?(Buy) — sinh?(Buy ) + cosh(Buy) cosh(Bus) + cosh(Buy) cosh(Bus)]
(327-1 cosh(Buy))?
_ BL+ cosh(Bus)(cosh(Buz) + cosh(Bus))]
(35—, cosh(Buy))?

)

b

(2.10)
Let « = cosh(Buy) and y = cosh(Buz) + cosh(Bus) so that 2 > 1 and y > 2. Then
8 cosh(Bu;) Bsinh?(Buy) B(1 + zy)
3 - 3 = I (2.11)
Zj:l cosh(Bu;) (Ej:l cosh(Buy))? (z +y)
Recall that 3. = d for d < 3. Hence when S € (0, 8.), we have
Boosh(Bui)  Bsinh*(Bu) _ 3(1+ay) (2.12)

S5y cosh(Bu;) (X5, cosh(Buy))?  (z+y)?
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In the case 5 = ., we have

Beosh(Bu;)) B sinh®(Bu) _ 31 +ay) ) (2.13)

23:1 cosh(Bu;) (Z?zl cosh(Bu;))? (x +y)?

Define ¢(z,y) = (22 — y)> + 3(y? — 4). For all (z,y) € [1,00) x [2,00), we have y> —4 > 0. So ¢(z,y) >
1(0) + 3(0) = 0. Therefore

o~y + 27— 9), ()

3
(42® —day +y )+4(y2—4),

»lle»lklr—n

=22 —ay+y*-3.

Rearranging gives

3zy +3 < 22 4 2zy + 42,

and so
3(1+zy)
(z +y)
for all (z,y) € [1,00) x [2,00). Hence (2.8) follows from (2.12) and (2.9) follows from (2.13). We will now show

<1, (2.14)

that there is equality in (2.9) if and only if u; = us = ug = 0. Let 8 = (. and suppose u; = 0 for all i € [d].

Then
Beosh(Bu;) Bsinh*(Bu;)  3cosh(3(0)) B 3sinh?(3(0))
S5y cosh(Buy) (05— cosh(Buy))? S0 cosh(3(0)) (35, cosh(3(0)))
3 (2.15)
=3
=1.
i inh? (Bu; .. .
Now let 8 = 3. and suppose Z?ﬁ:’i};gz‘élj) - (Z]g:sl C};s}(f Bu)j))z = 1. From (2.13), this implies
sitey) (2.16)
(z +y)?

where & = cosh(Bu;) and y = cosh(fuz) + cosh(Bus), so that > 1 and y > 2. From (*) it follows that

%(yQ —4)=0. (2.17)

1
12— y)* +
This forces y = 2 and = = 1. Therefore u; = us = uz = 0. O]

Lemma 2.5. Let 8 € (0,8.], d = 3 and h = (n1,m2,m3) € R There exists a unique global minimum point
v = (1_11,11_2,1_13) of éﬂ’h(l‘). For each i € [d], V; € (0,1 ‘|’7h') ifn, >0,0, =04 n =0 and v; € (T]i — 1,0) if
n; < 0.

Proof. Let € (0,8.] and d = 3. Recall the definition of ég,h from Lemma 2.3. From Lemma 2.3, é@h has at

least one global minimum point. Note that Gz, € C*°. Then if 7 is a global minimum point of G, it must
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satisfy
0G5 1 (u _ sinh(B7;
S—”'ﬁ(‘ﬁ‘”) -
' i=t J (2.18)
T — Sinh(ﬁl_}i) _
"% cosh(Br;)
for all i € [d].
Fix us and us € R and define the following function
sinh(Su
f(ul) = U — 3& - m, (219)
> j—1 cosh(Buy)
such that 7y satisfies f(91) = 0. Let 1, > 0. Then we observe for fixed choices of uy and ug
f(0)=-m <0, (2.20)
and
sinh(3(1 +
cosh(B(1 +n1)) + cosh(Bus) + cosh(Bus)
>1-—-1,
=0.
Now suppose 71 = 0. Trivially, for any fixed us and ug,
f(0)=0. (2.22)
Finally, suppose 11 < 0. For fixed choices of us and ug, using the fact that sinh is odd we have
sinh(Blm — 1)
1) =—1+ ,
fom =1) cosh(B|m — 1]) + cosh(Buz) + cosh(Bus)
< —1+tanh(B|m — 1)), (2.23)
<-14+1,
and
f(0)y=—-n >0. (2.24)

Since f is a smooth function, we have shown that f has at least one root for any 7, € R. To prove the uniqueness
of this solution, we will show that for any choices of uy and w3 and any m1 € R, f is strictly monotone.

Consider the derivative
B cosh(Buq) B sinh?(Buy)
S cosh(Buy) (o cosh(Bu,))?
When g € (0,5.), Lemma 2.4 tells us that for any fixed choices of us and uz and for all u; € R,
B cosh(Buy) B sinh?(Buy)
Siorcosh(Buy) (-, cosh(Buy))?

fu) =~ +1. (2.25)
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It follows that

B cosh(Buy) N B sinh?(Buy)
> j= cosh(Bug) (525, cosh(Bu;))?
B cosh(Buq) B sinh?(Buy)

! = - + 1>0.
) = s ) T L, cosh(Bu)?

So f is an increasing function of w; for any fixed choices of us and usz when 8 € (0, 5.).

(2.26)

Now consider 8 = .. From Lemma 2.4, (2.26) holds unless u; = ug = uz = 0, in which case f’(u;) = 0. So
for any fixed choices of us and uz where at least one of us and ug is non-zero, f is an increasing function of u;
with a positive derivative. If us = ug = 0, then f is increasing on u; and instantaneously stationary at u; = 0.
In any case f is strictly monotone so its root v; must be unique. From the calculations above, 7, € (0,1 + 1)
when 71 >0, 71 € (91 — 1,0) when 71 < 0. When 1; = 0, 9; = 0. By symmetry, the same arguments hold for
9 and vs.

Since G 5., has at least one global minimum point by Lemma 2.3 and ¥ is the only point satisfying (2.18), ©

is the unique global minimum point of G 8,h-

3 Further Study

In this report we were able to specify the equilibrium macrostate for the case d = 3 and g € (0, 8] with non-
zero field. A natural next step would be to further understand the d = 3 case by identifying the equilibrium
macrostates when 8 € (f.,00) with non-zero field. In the d = 1 case, G, may have up to three stationary
points depending on the magnitude of h when 5 € (8., 00) as shown in Figure 2. The function has a unique

global minimum point when the field is non-zero.

h=0.1 h=0.434 h=08
8 8 , 8
\
6 N 6 \\
\ i

4 \\ / o\ W

\ / \\ / \\

\

\ / \ / N
/ \ / N\
2 \\ 2 \ / 2 e /
f N / N / :
il / :
0 \\,,,/ //f’\\ ¥ / 0 \\ 7 . 0 \\ : /
~ N / ! /
2 2 \\\/ 4 " \\ //
]

Figure 2: Gpg,j, plotted for B = 3 and various values of h.

As such, extending the 8 € (0, 5.] case to d = 3 will likely be less straightforward than the case studied in this

report. Lemmas 2.1 - 2.3 hold in this scenario, meaning that the existence of at least one global minimum point
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of G 8,n is known. We expect the multivariate function to have more than one local minimum which will need
to be accounted for when determining uniqueness of a global minimum and dependence of its position on h.
Furthermore, using the results from this report we may be able to identify the critical exponent § when

d = 3. To understand this exponent we first introduce the specific Gibbs free energy, which is given by
1
W(B.h) = lim —log Z,(B,h) , (3.1)
n—oo N

where Z, (83, h) is the partition function. The Hubbard-Stratonovich transformation and Laplace’s method may

be used to show the following equivalence [2],
(B, h) = inf Ggp(u). (3.2)
u€R4
We then introduce another quantity called the specific magnetisation, which is defined as

M (B, ) = 5 (5.1, (33

As [|h|| = 0, we say that M (B, h) = ||h||?. Since the existence and uniqueness of inf,cps Gg (1) has been
proven in this report when § = ., we may use (2.18) and (3.2) to specify the Gibbs free energy and therefore
deduce the critical exponent 6. In the d = 3 case, we expect that 6 =5 [2].

4 Conclusion

By deriving and minimising a function G 8,h, We were able to prove the existence and uniqueness of an equilibrium
macrostate of the Face-Cubic model when d = 3 and 3 € (0, 8.] with non-zero field. By bounding G’@h below
by a convex quadratic, we were able to show existence of a global minimum point. In order to demonstrate
uniqueness, we analysed the partial derivatives of G’@h. By considering them as functions of one variable,
fixing the other variables to any values in R and demonstrating the strict monotonicity of these functions,
we proved the uniqueness of each component of a global minimum vector for given h. For an external field
h = (n1,m2,m3) € R3, we were able to place bounds on the equilibrium macrostate v = (1, vz, v3). We showed

that for eachi€{1,2,3}, v; € (0,1+’I]i) if77i>0, Ei:0ifni=Oand v; € (’Ih’-l,O) if77¢<0.
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