क्णSUMMERRESEARCH
 SCHOLARSHIPS 2023-24

Finding Equilibrium Macrostates of the Face-Cubic Model

Emily Palit
Supervised by A/Prof Tim Garoni
Monash University

ळ SUMMERRESEARCH
 < SCHOLARSHIPS 2023-24

Abstract

In this report we study equilibrium macrostates of the Face-Cubic model on the complete graph. Specifically, we analyse the high temperature case for $d=3$ with non-zero field. We derive a function $\tilde{G}_{\beta, h}$ which can be minimised in order to identify equilibrium macrostates. By bounding the function below by a convex quadratic, we prove existence of a global minimum point. Through analysis of the partial derivatives of $\tilde{G}_{\beta, h}$ we show that the global minimum is unique and specify bounds for the point.

Acknowledgements

I would primarily like to thank my supervisor A/Prof Tim Garoni for his guidance and mentorship throughout this project. I am truly grateful for the time he dedicated to providing insightful feedback and sharing his expertise. Furthermore, I would like to thank Aram Perez for his constructive suggestions and willingness to provide assistance throughout the project. Finally, I would like to thank AMSI for the opportunity to undertake a project over the summer.

ぁSUMMERRESEARCH
 SCHOLARSHIPS 2023-24

Contents

Abstract i
Acknowledgements i
1 Introduction 1
1.1 Statement of Authorship 2
2 Identifying Equilibrium Macrostates with an External Field for $d=3$ 3
3 Further Study 8
4 Conclusion 9
References 10

1 Introduction

The Ising model is a fundamental model in statistical mechanics. The model consists of spins arranged on the nodes of a graph, with edges representing an interaction between adjacent spins. An external field h also interacts with the spins. The spins are discrete random variables taking values in $\{-1,+1\}$ and the overall energy of the system can be described by its Hamiltonian function.

The Ising model can be simplified by using a mean-field approximation, whereby each spin is assumed to interact with every other spin. Doing so can make it possible to analyse the macroscopic behaviour of a system through explicit computations [1]. This approximation is known as the Curie-Weiss model, and can be thought of as the Ising model on the complete graph.

In this study we generalise the Curie-Weiss model to higher dimensional spaces by allowing the spins to take values in \mathbb{R}^{d}. Specifically, we restrict the spin-state space to vectors with precisely one non-zero entry: either +1 or -1 . Formally, this is the set

$$
\begin{equation*}
\Omega_{d}=\left\{c_{1} \mathbf{e}_{1}+\ldots+c_{n} \mathbf{e}_{d}: c_{i} \in\{-1,0,1\} \text { for all } i=1, \ldots, d \text { and precisely one } c_{i} \text { is non-zero }\right\} \tag{1.1}
\end{equation*}
$$

We call this the Face-Cubic model as the possible spin states are unit vectors pointing to the faces of a d dimensional cube.

To generalise the Curie-Weiss Hamiltonian function to higher dimensions, we replace the product of spins with a dot product. For a collection of spins $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right), \sigma_{i} \in \Omega_{d}$ for all $i=1, \ldots, n$, inverse temperature β and external magnetic field $h \in \mathbb{R}^{d}$, the Curie-Weiss Hamiltonian is defined as

$$
\begin{equation*}
H_{n ; \beta ; h}(\sigma):=-\frac{d \beta}{n} \sum_{i, j=1}^{n} \sigma_{i} \cdot \sigma_{j}-h \cdot \sum_{i=1}^{n} \sigma_{i} . \tag{1.2}
\end{equation*}
$$

We can then introduce the Gibbs measure, which gives the probability of a system having spin configuration σ,

$$
\begin{equation*}
P^{\beta}(\sigma)=\frac{\exp \left(-\beta H_{n ; \beta ; h}(\sigma)\right)}{Z_{n}(\beta, h)} \tag{1.3}
\end{equation*}
$$

The partition function in the denominator serves as a normalising term and is given by

$$
\begin{equation*}
Z_{n}(\beta, h)=\sum_{\sigma \in \Omega_{d}^{n}} \exp \left(-\beta H_{n ; \beta ; h}(\sigma)\right) \tag{1.4}
\end{equation*}
$$

To analyse the global behaviour of a system we introduce a quantity called the magnetisation which can be thought of as an 'average' of the spins in a system,

$$
\begin{equation*}
m_{n}(\sigma):=\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \tag{1.5}
\end{equation*}
$$

We are interested in where the magnetisation asymptotically converges to as n becomes large. This is well understood in the $d=1$ case with zero external field (see e.g. [1]). At high temperature ($\beta \leq \beta_{c}$), the spin-tospin interactions are small and the magnetisation converges to zero. Conversely, at low temperature ($\beta>\beta_{c}$) the spin interactions are stronger and the magnetisation converges with equal probability to either of the two

ぁSUMMERRESEARCH
 §SCHOLARSHIPS 2023-24

ground states with all spins equal. Here β_{c} is the inverse critical temperature and $\beta_{c}=d$ for $d \leq 3$. It has been shown that $m_{n}(\sigma)$ satisfies a large deviation principle with respect to P^{β}, with non-negative rate function I^{β} [4]. This leads to the following result

$$
\begin{equation*}
P^{\beta}\left(m_{n}=x\right) \simeq \exp \left(-n I^{\beta}(x)\right) \tag{1.6}
\end{equation*}
$$

As n goes to infinity, 1.6 tells us that the probability of a particular magnetisation will become small unless the rate function is zero. The values of x at which the rate function vanishes are called equilibrium macrostates. The $d=1$ case described above is illustrated in Figure 1.

Figure 1: The rate function of the Curie-Weiss model when $d=1$ and $h=0$. Extracted from Friedli, S \& Velenik, Y 2017 [1].

When considering the general d case in the absence of an external field, finding the equilibrium macrostates is equivalent to minimising the function G_{β} [3], which is given by

$$
\begin{equation*}
G_{\beta}(x)=\frac{\beta}{2}\langle x, x\rangle-\ln \sum_{j=1}^{d} \cosh \left(\beta x_{j}\right)+\ln (d), x \in \mathbb{R}^{d} . \tag{1.7}
\end{equation*}
$$

In this report we derive a similar function for non-zero field and identify the equilibrium macrostates for the high temperature case when $d=3$.

1.1 Statement of Authorship

The background and motivation of this report follows closely to work done by Tim Garoni, Aram Perez and Zongzheng Zhou in [2]. In particular Lemma 2.1 is adapted from Lemma 4.1 in [2], with the difference being the inclusion of an additional term for external field. The content of Lemmas 2.2-2.5 is original work for which I was responsible. I acknowledge however the direction Tim and Aram gave me in pursuing these ideas and the suggestions they offered in refining my arguments.

2 Identifying Equilibrium Macrostates with an External Field for

$$
d=3
$$

Lemma 2.1. Let $\beta \in(0, \infty), h \in \mathbb{R}^{d}$ and $r \in \mathbb{R}^{d}$. Define $S_{n}(\sigma):=\sum_{i=1}^{n} \sigma_{i}$ and $G_{\beta, h}(x):=\frac{\beta}{2}\langle x, x\rangle-$ $\ln \left(\sum_{j=1}^{d} \cosh \left(\beta\left(h_{j}+x_{j}\right)\right)\right)$. The moment generating function of S_{n} / n^{δ} for the d-dimensional Face-Cubic model is given by

$$
\begin{equation*}
M_{n}(r)=\exp \left(-\frac{n^{1-2 \delta}}{2 \beta}\langle r, r\rangle\right) \frac{\int_{\mathbb{R}^{d}} \exp \left[\langle r, x\rangle-n G_{\beta, h}\left(\frac{x}{n^{-\delta}}\right)\right] d x}{\int_{\mathbb{R}^{d}} \exp \left[-n G_{\beta, h}\left(\frac{x}{n^{1-\delta}}\right)\right] d x} . \tag{2.1}
\end{equation*}
$$

Proof. Let $a_{n}=\sqrt{\beta / n}$. We have from the definition of the moment generating function

$$
\begin{aligned}
M_{n}(r) & =\sum_{\sigma \in \Omega^{n}} \exp \left(\frac{1}{n^{\delta}}\left\langle r, S_{n}\right\rangle\right)\left(\frac{\exp \left(\frac{\beta}{2 n}\left\langle S_{n}, S_{n}\right\rangle+\beta\left\langle h, S_{n}\right\rangle\right) p(\sigma)}{\sum_{\sigma \in \Omega^{n}} \exp \left(\frac{\beta}{2 n}\left\langle S_{n}, S_{n}\right\rangle+\beta\left\langle h, S_{n}\right\rangle\right) p(\sigma)}\right), \\
& =\frac{\sum_{\sigma \in \Omega^{n}} \exp \left(\frac{1}{a_{n} n^{\delta}}\left\langle r, a_{n} S_{n}\right\rangle\right) \exp \left(\frac{1}{2}\left\langle a_{n} S_{n}, a_{n} S_{n}\right\rangle\right) \exp \left(n a_{n}\left\langle h, a_{n} S_{n}\right\rangle\right) p(\sigma)}{\sum_{\sigma \in \Omega^{n}} \exp \left(\frac{1}{2}\left\langle a_{n} S_{n}, a_{n} S_{n}\right\rangle\right) \exp \left(n a_{n}\left\langle h, a_{n} S_{n}\right\rangle\right) p(\sigma)}, \\
& =\frac{T_{n}(r)}{T_{n}(0)},
\end{aligned}
$$

where $T_{n}(r):=\sum_{\sigma \in \Omega^{n}} \exp \left(\frac{1}{a_{n} n^{\delta}}\left\langle r, a_{n} S_{n}\right\rangle\right) \exp \left(\frac{1}{2}\left\langle a_{n} S_{n}, a_{n} S_{n}\right\rangle\right) \exp \left(n a_{n}\left\langle h, a_{n} S_{n}\right\rangle\right) p(\sigma)$. We then apply the identity $\exp \left(\frac{1}{2}\langle y, y\rangle\right)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} \exp \left(\langle y, x\rangle-\frac{1}{2}\langle x, x\rangle\right) d x$ to $T_{n}(r)$,

$$
\begin{aligned}
T_{n}(r) & =\sum_{\sigma \in \Omega^{n}} \exp \left(\frac{1}{a_{n} n^{\delta}}\left\langle r, a_{n} S_{n}\right\rangle+n a_{n}\left\langle h, a_{n} S_{n}\right\rangle\right) p(\sigma) \frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} \exp \left(\left\langle x, a_{n} S_{n}\right\rangle-\frac{1}{2}\langle x, x\rangle\right) d x, \\
& =\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \sum_{\sigma \in \Omega^{n}} \int_{\mathbb{R}^{d}} \exp \left(\frac{1}{n^{\delta} a_{n}}\left\langle r, a_{n} S_{n}\right\rangle+n a_{n}\left\langle h, a_{n} S_{n}\right\rangle+\left\langle x, a_{n} S_{n}\right\rangle-\frac{1}{2}\langle x, x\rangle\right) p(\sigma) d x, \\
& =\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \sum_{\sigma \in \Omega^{n}} \int_{\mathbb{R}^{d}} \exp \left(\left\langle\frac{r}{n^{\delta}}+n a_{n}^{2} h+a_{n} x, S_{n}\right\rangle-\frac{1}{2}\langle x, x\rangle\right) p(\sigma) d x, \\
& =\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{\mathbb{R}^{d}} \exp \left(-\frac{1}{2}\langle x, x\rangle\right) \sum_{\sigma \in \Omega^{n}} \prod_{i=1}^{n} \exp \left(\left\langle\frac{r}{n^{\delta}}+n a_{n}^{2} h+a_{n} x, \sigma_{i}\right\rangle\right) \frac{1}{2 d} d x .
\end{aligned}
$$

Swapping the product and the sum gives

$$
\begin{aligned}
T_{n}(r) & =\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{\mathbb{R}^{d}} \exp \left(-\frac{1}{2}\langle x, x\rangle\right) \prod_{i=1}^{n} \sum_{j=1}^{d} \frac{1}{d} \cosh \left(\frac{r_{j}}{n^{\delta}}+n a_{n}^{2} h_{j}+a_{n} x_{j}\right) d x, \\
& =\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{\mathbb{R}^{d}} \exp \left[-\frac{1}{2}\langle x, x\rangle+n \ln \left(\sum_{j=1}^{d} \cosh \left(\frac{r_{j}}{n^{\delta}}+n a_{n}^{2} h_{j}+a_{n} x_{j}\right)\right)-n \ln d\right] d x .
\end{aligned}
$$

We make the substitution $x \rightarrow \frac{1}{a_{n}}\left(\frac{\beta x}{n^{1-\sigma}}-\frac{r}{n^{\delta}}\right)$ and define $c_{n}(\beta)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{d}\left(\frac{\beta}{a_{n} n^{1-\sigma}}\right)^{d}$ such that

$$
\begin{aligned}
T_{n}(r) & =c_{n}(\beta) \int_{\mathbb{R}^{d}} \exp \left[-\frac{1}{2 a_{n}^{2}}\left\langle\frac{\beta x}{n^{1-\delta}}-\frac{r}{n^{\delta}}, \frac{\beta x}{n^{1-\delta}}-\frac{r}{n^{\delta}}\right\rangle+n \ln \left(\sum_{j=1}^{d} \cosh \left(n a_{n}^{2} h_{j}+\frac{\beta x_{j}}{n^{1-\delta}}\right)\right)-n \ln d\right] d x, \\
& =c_{n}(\beta) \int_{\mathbb{R}^{d}} \exp \left[\langle r, x\rangle-\frac{n^{1-2 \delta}}{2 \beta}\langle r, r\rangle-\frac{n}{2 \beta}\left\langle\frac{\beta x}{n^{1-\delta}}, \frac{\beta x}{n^{1-\delta}}\right\rangle+n \ln \left(\sum_{j=1}^{d} \cosh \left(n a_{n}^{2} h_{j}+\frac{\beta x_{j}}{n^{1-\delta}}\right)\right)-n \ln d\right] d x .
\end{aligned}
$$

ळ SUMMERRESEARCH
 \% SCHOLARSHIPS 2023-24

Recalling the definition of $G_{\beta, h}$ we have

$$
\begin{aligned}
M_{n}(r) & =\frac{T_{n}(r)}{T_{n}(0)} \\
& =\exp \left(-\frac{n^{1-2 \delta}}{2 \beta}\langle r, r\rangle\right) \frac{\int_{\mathbb{R}^{d}} \exp \left[\langle r, x\rangle-n G_{\beta, h}\left(\frac{x}{n^{1-\delta}}\right)\right] d x}{\int_{\mathbb{R}^{d}} \exp \left[-n G_{\beta, h}\left(\frac{x}{n^{1-\delta}}\right)\right] d x} .
\end{aligned}
$$

Lemma 2.2. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f \in C^{0}$ and $a>0$ such that $f(x) \geq a|x|^{2}$ for all $x \in \mathbb{R}^{d}$. Then f has at least one global minimum point on \mathbb{R}^{d}.

Proof. Set $M=f(0) \geq 0$ and $x^{*}=\sqrt{\frac{M+1}{a}}$. Since f is continuous, by the Extreme Value Theorem it has a minimum on the compact ball $B=\left\{x \in \mathbb{R}^{d}:|x| \leq x^{*}\right\}$. So there exists $x_{0} \in B$ such that

$$
\begin{equation*}
f\left(x_{0}\right) \leq f(x) \text { for all } x \in B \tag{2.2}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
f\left(x_{0}\right) \leq f(0)=M \tag{2.3}
\end{equation*}
$$

since $0 \in B$. Suppose $x \in \mathbb{R} \backslash B=\left\{x \in \mathbb{R}^{d}:|x|>x^{*}\right\}$. Then using the fact that $a>0$,

$$
\begin{align*}
f(x) & \geq a|x|^{2} \\
& >a x^{* 2} \\
& =a\left(\sqrt{\frac{M+1}{a}}\right)^{2}, \tag{2.4}\\
& =M+1 \\
& >M \\
& \geq f\left(x_{0}\right)
\end{align*}
$$

Hence, from (2.2) and (2.4), f($\left.x_{0}\right) \leq f(x)$ for all $x \in \mathbb{R}^{d}$. So f has a global minimum point at x_{0}.
Lemma 2.3. Let $\beta \in(0, \infty)$ and $h \in \mathbb{R}^{d}$. Then $\tilde{G}_{\beta, h}(u):=G_{\beta, h}(u-h)$ has at least one global minimum point on \mathbb{R}^{d}.

Proof. Applying the change of variables $x=u-h$ to the function $G_{\beta, h}(x)$ gives

$$
\begin{align*}
\tilde{G}_{\beta, h}(u):=G_{\beta, h}(u-h) & =\frac{\beta}{2}\langle u, u\rangle-\ln \left(\sum_{j=1}^{d} \cosh \left(\beta u_{j}\right)\right)-\beta\langle u, h\rangle+\frac{\beta}{2}\langle h, h\rangle \\
& =G_{\beta}(u)-\beta\langle u, h\rangle+\frac{\beta}{2}\langle h, h\rangle \tag{2.5}\\
& \geq G_{\beta}(u)-\beta\langle u, h\rangle .
\end{align*}
$$

ळ SUMMERRESEARCH
 § SCHOLARSHIPS 2023-24

Lemma 6.4.1. from [3] implies $G_{\beta}(u) \geq \frac{\beta}{4}\langle u, u\rangle+\frac{\beta}{4} \sum_{j=1}^{d}\left(u_{j}-2\right)^{2}-d \beta-\ln (d)$ for all $u \in \mathbb{R}^{d}$. Therefore,

$$
\begin{align*}
\tilde{G}_{\beta, h}(u) & \geq \frac{\beta}{4}\langle u, u\rangle+\frac{\beta}{4} \sum_{j=1}^{d}\left(u_{j}-2\right)^{2}-d \beta-\ln (d)-\beta\langle u, h\rangle \\
& =\frac{\beta}{2}\langle u, u\rangle-\beta \sum_{j=1}^{d} u_{j}-\ln (d)-\beta\langle u, h\rangle . \tag{2.6}
\end{align*}
$$

Let $\mathbf{1}=\sum_{j=1}^{d} \mathbf{e}_{j}$ and $c(h)=\frac{\beta}{2}\langle h+\mathbf{1}, h+\mathbf{1}\rangle+\ln (d)$. Then

$$
\begin{align*}
\tilde{G}_{\beta, h}(u) & \geq \frac{\beta}{2}\langle u, u\rangle-\beta\langle u, h+\mathbf{1}\rangle-\ln (d) \\
& =\frac{\beta}{2}\langle u-(h+\mathbf{1}), u-(h+\mathbf{1})\rangle-\frac{\beta}{2}\langle h+\mathbf{1}, h+\mathbf{1}\rangle-\ln (d), \\
& =\frac{\beta}{2}|u-(h+\mathbf{1})|^{2}-c(h) \tag{2.7}\\
\Rightarrow \tilde{G}_{\beta, h}[u+(h+\mathbf{1})]+c(h) & \geq \frac{\beta}{2}|u|^{2} .
\end{align*}
$$

Since $\frac{\beta}{2}>0, \tilde{G}_{\beta, h}[u+(h+\mathbf{1})]+c(h)$ has at least one global minimum point on \mathbb{R}^{d} by Lemma 2.2. By translation, this implies the same for $\tilde{G}_{\beta, h}$.

Lemma 2.4. Let $\beta \in\left(0, \beta_{c}\right)$ and $d=3$. For all $u_{1}, u_{2}, u_{3} \in \mathbb{R}$ and any $i \in[d]$,

$$
\begin{equation*}
\frac{\beta \cosh \left(\beta u_{i}\right)}{\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)}-\frac{\beta \sinh ^{2}\left(\beta u_{i}\right)}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}}<1 \tag{2.8}
\end{equation*}
$$

When $\beta=\beta_{c}$,

$$
\begin{equation*}
\frac{\beta \cosh \left(\beta u_{i}\right)}{\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)}-\frac{\beta \sinh ^{2}\left(\beta u_{i}\right)}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}} \leq 1 \tag{2.9}
\end{equation*}
$$

with equality if and only if $u_{1}=u_{2}=u_{3}=0$.
Proof. Let $u_{1}, u_{2}, u_{3} \in \mathbb{R}$ and $d=3$. Without loss of generality we set $i=1$ and observe the following

$$
\begin{align*}
\frac{\beta \cosh \left(\beta u_{i}\right)}{\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)}-\frac{\beta \sinh ^{2}\left(\beta u_{i}\right)}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}} & =\frac{\beta \cosh \left(\beta u_{1}\right)\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)-\beta \sinh ^{2}\left(\beta u_{1}\right)}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}} \\
& =\frac{\beta\left[\cosh ^{2}\left(\beta u_{1}\right)-\sinh ^{2}\left(\beta u_{1}\right)+\cosh \left(\beta u_{1}\right) \cosh \left(\beta u_{2}\right)+\cosh \left(\beta u_{1}\right) \cosh \left(\beta u_{3}\right)\right]}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}} \\
& =\frac{\beta\left[1+\cosh \left(\beta u_{1}\right)\left(\cosh \left(\beta u_{2}\right)+\cosh \left(\beta u_{3}\right)\right)\right]}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}} \tag{2.10}
\end{align*}
$$

Let $x=\cosh \left(\beta u_{1}\right)$ and $y=\cosh \left(\beta u_{2}\right)+\cosh \left(\beta u_{3}\right)$ so that $x \geq 1$ and $y \geq 2$. Then

$$
\begin{equation*}
\frac{\beta \cosh \left(\beta u_{i}\right)}{\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)}-\frac{\beta \sinh ^{2}\left(\beta u_{i}\right)}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}}=\frac{\beta(1+x y)}{(x+y)^{2}} \tag{2.11}
\end{equation*}
$$

Recall that $\beta_{c}=d$ for $d \leq 3$. Hence when $\beta \in\left(0, \beta_{c}\right)$, we have

$$
\begin{equation*}
\frac{\beta \cosh \left(\beta u_{i}\right)}{\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)}-\frac{\beta \sinh ^{2}\left(\beta u_{i}\right)}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}}<\frac{3(1+x y)}{(x+y)^{2}} . \tag{2.12}
\end{equation*}
$$

ळ SUMMERRESEARCH
 §SCHOLARSHIPS 2023-24

In the case $\beta=\beta_{c}$, we have

$$
\begin{equation*}
\frac{\beta \cosh \left(\beta u_{i}\right)}{\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)}-\frac{\beta \sinh ^{2}\left(\beta u_{i}\right)}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}}=\frac{3(1+x y)}{(x+y)^{2}} . \tag{2.13}
\end{equation*}
$$

Define $q(x, y)=\frac{1}{4}(2 x-y)^{2}+\frac{3}{4}\left(y^{2}-4\right)$. For all $(x, y) \in[1, \infty) \times[2, \infty)$, we have $y^{2}-4 \geq 0$. So $q(x, y) \geq$ $\frac{1}{4}(0)+\frac{3}{4}(0)=0$. Therefore

$$
\begin{align*}
0 & \leq \frac{1}{4}(2 x-y)^{2}+\frac{3}{4}\left(y^{2}-4\right) \\
& =\frac{1}{4}\left(4 x^{2}-4 x y+y^{2}\right)+\frac{3}{4}\left(y^{2}-4\right) \\
& =x^{2}-x y+y^{2}-3
\end{align*}
$$

Rearranging gives

$$
3 x y+3 \leq x^{2}+2 x y+y^{2}
$$

and so

$$
\begin{equation*}
\frac{3(1+x y)}{(x+y)^{2}} \leq 1 \tag{2.14}
\end{equation*}
$$

for all $(x, y) \in[1, \infty) \times[2, \infty)$. Hence (2.8) follows from (2.12) and (2.9) follows from (2.13). We will now show that there is equality in (2.9) if and only if $u_{1}=u_{2}=u_{3}=0$. Let $\beta=\beta_{c}$ and suppose $u_{i}=0$ for all $i \in[d]$. Then

$$
\begin{align*}
\frac{\beta \cosh \left(\beta u_{i}\right)}{\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)}-\frac{\beta \sinh ^{2}\left(\beta u_{i}\right)}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}} & =\frac{3 \cosh (3(0))}{\sum_{j=1}^{3} \cosh (3(0))}-\frac{3 \sinh ^{2}(3(0))}{\left(\sum_{j=1}^{3} \cosh (3(0))\right)^{2}} \\
& =\frac{3}{3} \tag{2.15}\\
& =1
\end{align*}
$$

Now let $\beta=\beta_{c}$ and suppose $\frac{\beta \cosh \left(\beta u_{i}\right)}{\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)}-\frac{\beta \sinh ^{2}\left(\beta u_{i}\right)}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}}=1$. From (2.13), this implies

$$
\begin{equation*}
\frac{3(1+x y)}{(x+y)^{2}}=1 \tag{2.16}
\end{equation*}
$$

where $x=\cosh \left(\beta u_{1}\right)$ and $y=\cosh \left(\beta u_{2}\right)+\cosh \left(\beta u_{3}\right)$, so that $x \geq 1$ and $y \geq 2$. From ((\star) it follows that

$$
\begin{equation*}
\frac{1}{4}(2 x-y)^{2}+\frac{3}{4}\left(y^{2}-4\right)=0 \tag{2.17}
\end{equation*}
$$

This forces $y=2$ and $x=1$. Therefore $u_{1}=u_{2}=u_{3}=0$.
Lemma 2.5. Let $\beta \in\left(0, \beta_{c}\right]$, $d=3$ and $h=\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in \mathbb{R}^{d}$. There exists a unique global minimum point $\bar{v}=\left(\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right)$ of $\tilde{G}_{\beta, h}(x)$. For each $i \in[d], \bar{v}_{i} \in\left(0,1+\eta_{i}\right)$ if $\eta_{i}>0, \bar{v}_{i}=0$ if $\eta_{i}=0$ and $\bar{v}_{i} \in\left(\eta_{i}-1,0\right)$ if $\eta_{i}<0$.

Proof. Let $\beta \in\left(0, \beta_{c}\right]$ and $d=3$. Recall the definition of $\tilde{G}_{\beta, h}$ from Lemma 2.3. From Lemma 2.3, $\tilde{G}_{\beta, h}$ has at least one global minimum point. Note that $\tilde{G}_{\beta, h} \in C^{\infty}$. Then if \bar{v} is a global minimum point of $\tilde{G}_{\beta, h}$ it must

ळ SUMMERRESEARCH
 < SCHOLARSHIPS 2023-24

satisfy

$$
\begin{align*}
\left.\frac{\partial \tilde{G}_{\beta, h}(u)}{\partial u_{i}}\right|_{u=\bar{v}}=\beta & \left(\bar{v}_{i}-\frac{\sinh \left(\beta \bar{v}_{i}\right)}{\sum_{j=1}^{3} \cosh \left(\beta \bar{v}_{j}\right)}-\eta_{i}\right)=0 \tag{2.18}\\
& \Rightarrow \bar{v}_{i}-\frac{\sinh \left(\beta \bar{v}_{i}\right)}{\sum_{j=1}^{3} \cosh \left(\beta \bar{v}_{j}\right)}-\eta_{i}=0
\end{align*}
$$

for all $i \in[d]$.
Fix u_{2} and $u_{3} \in \mathbb{R}$ and define the following function

$$
\begin{equation*}
f\left(u_{1}\right):=u_{1}-\frac{\sinh \left(\beta u_{1}\right)}{\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)}-\eta_{1} \tag{2.19}
\end{equation*}
$$

such that \bar{v}_{1} satisfies $f\left(\bar{v}_{1}\right)=0$. Let $\eta_{1}>0$. Then we observe for fixed choices of u_{2} and u_{3}

$$
\begin{equation*}
f(0)=-\eta_{1}<0 \tag{2.20}
\end{equation*}
$$

and

$$
\begin{align*}
f\left(1+\eta_{1}\right) & =1-\frac{\sinh \left(\beta\left(1+\eta_{1}\right)\right)}{\cosh \left(\beta\left(1+\eta_{1}\right)\right)+\cosh \left(\beta u_{2}\right)+\cosh \left(\beta u_{3}\right)} \\
& >1-\tanh \left(\beta\left(1+\eta_{1}\right)\right) \tag{2.21}\\
& >1-1 \\
& =0 .
\end{align*}
$$

Now suppose $\eta_{1}=0$. Trivially, for any fixed u_{2} and u_{3},

$$
\begin{equation*}
f(0)=0 . \tag{2.22}
\end{equation*}
$$

Finally, suppose $\eta_{1}<0$. For fixed choices of u_{2} and u_{3}, using the fact that \sinh is odd we have

$$
\begin{align*}
f\left(\eta_{1}-1\right) & =-1+\frac{\sinh \left(\beta\left|\eta_{1}-1\right|\right)}{\cosh \left(\beta\left|\eta_{1}-1\right|\right)+\cosh \left(\beta u_{2}\right)+\cosh \left(\beta u_{3}\right)} \\
& <-1+\tanh \left(\beta\left|\eta_{1}-1\right|\right) \tag{2.23}\\
& <-1+1 \\
& =0
\end{align*}
$$

and

$$
\begin{equation*}
f(0)=-\eta_{1}>0 \tag{2.24}
\end{equation*}
$$

Since f is a smooth function, we have shown that f has at least one root for any $\eta_{1} \in \mathbb{R}$. To prove the uniqueness of this solution, we will show that for any choices of u_{2} and u_{3} and any $\eta_{1} \in \mathbb{R}, f$ is strictly monotone.

Consider the derivative

$$
\begin{equation*}
f^{\prime}\left(u_{1}\right)=-\frac{\beta \cosh \left(\beta u_{1}\right)}{\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)}+\frac{\beta \sinh ^{2}\left(\beta u_{1}\right)}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}}+1 \tag{2.25}
\end{equation*}
$$

When $\beta \in\left(0, \beta_{c}\right)$, Lemma 2.4 tells us that for any fixed choices of u_{2} and u_{3} and for all $u_{1} \in \mathbb{R}$,

$$
\frac{\beta \cosh \left(\beta u_{1}\right)}{\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)}-\frac{\beta \sinh ^{2}\left(\beta u_{1}\right)}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}}<1
$$

ळ SUMMERRESEARCH
 \& SCHOLARSHIPS 2023-24

It follows that

$$
\begin{array}{r}
-\frac{\beta \cosh \left(\beta u_{1}\right)}{\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)}+\frac{\beta \sinh ^{2}\left(\beta u_{1}\right)}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}}>-1, \tag{2.26}\\
f^{\prime}\left(u_{1}\right)=-\frac{\beta \cosh \left(\beta u_{1}\right)}{\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)}+\frac{\beta \sinh ^{2}\left(\beta u_{1}\right)}{\left(\sum_{j=1}^{3} \cosh \left(\beta u_{j}\right)\right)^{2}}+1>0
\end{array}
$$

So f is an increasing function of u_{1} for any fixed choices of u_{2} and u_{3} when $\beta \in\left(0, \beta_{c}\right)$.
Now consider $\beta=\beta_{c}$. From Lemma 2.4, (2.26) holds unless $u_{1}=u_{2}=u_{3}=0$, in which case $f^{\prime}\left(u_{1}\right)=0$. So for any fixed choices of u_{2} and u_{3} where at least one of u_{2} and u_{3} is non-zero, f is an increasing function of u_{1} with a positive derivative. If $u_{2}=u_{3}=0$, then f is increasing on u_{1} and instantaneously stationary at $u_{1}=0$. In any case f is strictly monotone so its root v_{1} must be unique. From the calculations above, $\bar{v}_{1} \in\left(0,1+\eta_{1}\right)$ when $\eta_{1}>0, \bar{v}_{1} \in\left(\eta_{1}-1,0\right)$ when $\eta_{1}<0$. When $\eta_{1}=0, \bar{v}_{1}=0$. By symmetry, the same arguments hold for \bar{v}_{2} and \bar{v}_{3}.

Since $\tilde{G}_{\beta, h}$ has at least one global minimum point by Lemma 2.3 and \bar{v} is the only point satisfying (2.18), \bar{v} is the unique global minimum point of $\tilde{G}_{\beta, h}$.

3 Further Study

In this report we were able to specify the equilibrium macrostate for the case $d=3$ and $\beta \in\left(0, \beta_{c}\right]$ with nonzero field. A natural next step would be to further understand the $d=3$ case by identifying the equilibrium macrostates when $\beta \in\left(\beta_{c}, \infty\right)$ with non-zero field. In the $d=1$ case, $G_{\beta, h}$ may have up to three stationary points depending on the magnitude of h when $\beta \in\left(\beta_{c}, \infty\right)$ as shown in Figure 2. The function has a unique global minimum point when the field is non-zero.

Figure 2: $G_{\beta, h}$ plotted for $\beta=3$ and various values of h.

As such, extending the $\beta \in\left(0, \beta_{c}\right]$ case to $d=3$ will likely be less straightforward than the case studied in this report. Lemmas 2.1-2.3 hold in this scenario, meaning that the existence of at least one global minimum point

ळ SUMMERRESEARCH
 §SCHOLARSHIPS 2023-24

of $\tilde{G}_{\beta, h}$ is known. We expect the multivariate function to have more than one local minimum which will need to be accounted for when determining uniqueness of a global minimum and dependence of its position on h.

Furthermore, using the results from this report we may be able to identify the critical exponent δ when $d=3$. To understand this exponent we first introduce the specific Gibbs free energy, which is given by

$$
\begin{equation*}
\psi(\beta, h):=\lim _{n \rightarrow \infty} \frac{1}{n} \log Z_{n}(\beta, h), \tag{3.1}
\end{equation*}
$$

where $Z_{n}(\beta, h)$ is the partition function. The Hubbard-Stratonovich transformation and Laplace's method may be used to show the following equivalence [2],

$$
\begin{equation*}
\psi(\beta, h)=\inf _{u \in \mathbb{R}^{d}} \tilde{G}_{\beta, h}(u) \tag{3.2}
\end{equation*}
$$

We then introduce another quantity called the specific magnetisation, which is defined as

$$
\begin{equation*}
M(\beta, h):=\frac{\partial}{\partial h} \psi(\beta, h) \tag{3.3}
\end{equation*}
$$

As $\|h\| \rightarrow 0$, we say that $M\left(\beta_{c}, h\right) \asymp\|h\|^{\frac{1}{\delta}}$. Since the existence and uniqueness of $\inf _{u \in \mathbb{R}^{d}} \tilde{G}_{\beta, h}(u)$ has been proven in this report when $\beta=\beta_{c}$, we may use (2.18) and (3.2) to specify the Gibbs free energy and therefore deduce the critical exponent δ. In the $d=3$ case, we expect that $\delta=5[2]$.

4 Conclusion

By deriving and minimising a function $\tilde{G}_{\beta, h}$, we were able to prove the existence and uniqueness of an equilibrium macrostate of the Face-Cubic model when $d=3$ and $\beta \in\left(0, \beta_{c}\right]$ with non-zero field. By bounding $\tilde{G}_{\beta, h}$ below by a convex quadratic, we were able to show existence of a global minimum point. In order to demonstrate uniqueness, we analysed the partial derivatives of $\tilde{G}_{\beta, h}$. By considering them as functions of one variable, fixing the other variables to any values in \mathbb{R} and demonstrating the strict monotonicity of these functions, we proved the uniqueness of each component of a global minimum vector for given h. For an external field $h=\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in \mathbb{R}^{3}$, we were able to place bounds on the equilibrium macrostate $\bar{v}=\left(\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right)$. We showed that for each $i \in\{1,2,3\}, \bar{v}_{i} \in\left(0,1+\eta_{i}\right)$ if $\eta_{i}>0, \bar{v}_{i}=0$ if $\eta_{i}=0$ and $\bar{v}_{i} \in\left(\eta_{i}-1,0\right)$ if $\eta_{i}<0$.

ぁ SUMMERRESEARCH
 <SCHOLARSHIPS 2023-24

References

[1] Friedli, S \& Velenik, Y 2017, 'Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction', Cambridge University Press, pp. 57-77.
[2] Garoni, T, Perez, A \& Zhou, Z 2024, 'The face-cubic model on the complete graph'. Manuscript in preparation, Monash University.
[3] Zhou, Z 2017, 'Phase transitions of some discrete models in statistical mechanics', Monash University, pp. 119-165.
[4] Dembo, A Zeitouni, O 2009, 'Large Deviations Techniques and Applications', Springer, pp. 36.
[5] Ellis, R \& Wang, K 1990, 'Limit theorems for the empirical vector of the Curie-Weiss-Potts model', Stochastic Processes and their Applications, vol. 35.

