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Abstract

Bone has been observed to adapt to the mechanical loading exerted on it. Previous models describing how

bone changes due to stress assume a single mechanical set point that doesn’t account for cellular processes

involved in mechanical adaptation. The ‘osteostat’ model is a new theory of bone mechanobiology that has

a changing set point which optimises for the amount of strain applied over time. A time-dependent model

of bone adaptation has been done in previous work. This model had bone adapt to a stress applied over

years. This project extends that model into the spatial setting. The model was had very little change in

shape at low values of bone volume. Local averages were introduced to allow for the outward and inward

shape change of the bone. The model with the local averaging ran into similar issues due to low bone volume

fractions reaching a steady state too quickly to the strain, making it unable to create more bone beside it.

In future, accounting for changes in the transduced mechanical signal may create a more accurate depiction

of bone growth.

1 Introduction

Bone is a dynamic tissue. It is strong and light so it requires a constant renewal process to maintain its

mechanical handling abilities over its lifetime (Hartmann et al. 2011). Wolff’s law states that bone adapts to

the level of mechanical loading placed on it (Turner 1998). This can be observed in Huiskes (1997) where an

implanted hip is at risk of coming loose due to loss of bone volume around the site of the implant (Figure 1).

The change in stress caused by the implant’s insertion resulted in bone forming and resorping to keep the bone

mechanically optimal. As a side effect, bone close to the implant wasn’t under as much stress. This lead it to

resorping the bone that wasn’t necessary for the stress optimisation of the bone.

The mechanostat theory describes a potential mechanism for bone adaption (Frost 1987). It works similarly

to a thermostat set at a certain temperature. If the room’s temperature deviates from the set point, an

1



Figure 1: A hip implant changing the surrounding bone due to mechanical loading differences (Huiskes 1997)

appropriate heating/cooling response will bring the room back to the set temperature. For the mechanical

loading of bone, there would be a mechanical set point. When there is additional stress than the set point,

bone-forming cells – osteoblasts – will form more bone until the stress comes back to the set point. Bone-

resorping cells - osteoclasts would resorb bone when the mechanical loading is lower than the set point to

remove bone that is mechanically redundant. Biological factors would determine this set point.

Figure 2: Flow chart depicting the mechanostat model’s negative feedback loop

Incorporating biological processes into a theory of bone mechanical adaptation is important to quantify

and conceptualise what happens when the stress applied to a bone structure is changed. The osteostat model

discussed hereafter will account for biological processes such as the number of osteocytes, the rates of resorption

and formation, and the chemical signal relating mechanical stress information to other cells. This project aims

to use this model to describe bone adaptation to reduced and increased stress in both a time-dependent and

space-dependent framework.
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2024). The time dependent simulations were first done by Dr Buenzli and Dr Yves Pauchard (Pauchard and

Buenzli 2024). Dr Buenzli also wrote the initial MATLAB code for this investigation.

2 Osteostat theory

The osteostat theory works similarly to the mechanostat theory, however, it accounts for the behaviour of

osteocytes. Osteocytes are the cells seemingly responsible for the detection of the deviation from the set point

as well as control of the response (Lerebours and Buenzli 2016).

Figure 3: Osteostat theory

(Lerebours and Buenzli 2016; Pauchard and Buenzli 2024)

In Figure 3a a small segment of bone is shown. The Bone Volume (BV) is represented in grey and the Tissue

Volume (TV) which represents all tissue i.e. BV, blood vessels and bone marrow. On the surface of the BV,

there are bone forming and bone resorping cells – osteoblasts and osteoclasts respectively.

Figure 3b shows how local stress mechanics affects bone response and the set point. When stress is applied

(ψ), the osteocytes sense this stress and then determine the biochemical response. If the local stress exceeds

the current set point, this will trigger the osteoblasts to form bone and if the stress is less than the set point,

this will trigger the osteoclasts to resorb bone. This feedback is then incorporated into the set point through

osteoclasts removing the osteocytes with the previous set point and new bone (and the associated osteocytes)

formed by the osteoblasts being associated with a new set point. This makes it a moving target problem. The

set point is always moving towards the mechanical strain to reach a steady state, while at the same time bone

is created/removed so that mechanical strain reaches the set point.

Figure 3c shows the mechanotransduction of the chemical signals, µ. It is a chemical signal produced by

osteocytes to communicate the mechanical loading placed on the bone. Osteocytes diffuse this signal out of the
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bone through the osteocyte network, where it instructs osteoblasts and osteoclasts to execute their respective

functions. (Lerebours and Buenzli 2016)

3 Mathematical Model

The mathematical model used was based on Pauchard and Buenzli (2024). It describes the osteostat model

using various ordinary differential equations (ODEs) and dependent equations. These ODEs are solved for using

Heun’s Method. The dependant equations include the equations for µ, kfOb and krOc. Equation 1 describes

the transduced mechanical signal, µ.

µ ≈ ψ − ψ0 (1)

Such that: if ψ > ψ0 then µ > 0 and the bone is overloaded with stress. If ψ < ψ0 then µ < 0 and there is

an underload.

Ob is the population of osteoblasts (bone-forming cells) and so kfOb describes the rate at which osteoblasts

are forming bone. kfOb has a baseline value that depends on the transduced mechanical signal, µ, the specific

surface which is described as the bone surface divided by the tissue volume (BS/TV ). SV (f) is a fifth-degree

polynomial dependent on f based on experimental data.

SV (f) = 14.1× f − 10.5× f2 − 17.8× f3 + 43.0× f4 − 28.8× f5 (2)

kfOb also accounts for the biochemical regulation of osteoblasts αOb which is 2 × 10−4mm/day (Pauchard

and Buenzli 2024). SV (f) (1− f) relates to the amount of bone surface available and the vascular space.

When µ > 0, additional osteoblasts are generated due to mechanical overload. Therefore, another term is

required. The additional terms include γ0b denoting the strength of the mechanical regulation for osteoblasts

which is the calculated measurement of 2.08×10−5mm/day also f Ot relating to the average density of osteocytes

in the bone volume.

kfOb =

 αOb SV (f) (1− f), µ ≤ 0

αOb SV (f) (1− f) + γOb SV (f) (1− f) f Ot µ, µ > 0
(3)

(4)

kfOb and krOc are very similar in structure. The differences include the use of αOc which is also 2 ×

10−4mm/day, γOc being the 7.3× 10−6mm/day as well as the value of µ being multiplied by −1.

krOc =

 αOc SV (f) (1− f), µ ≥ 0

αOc SV (f) (1− f) + γOc SV (f) (1− f)× f (Ot) (−µ), µ < 0
(5)

(6)
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The following equations ODEs are used throughout this model. The rate of change in the bone volume

fraction balances of bone formation rate ffOb and bone resorption rate krOc.

df

dt
= kfOb− krOc (7)

The rate of change for the change in set point is dependent on the bone volume fraction and the rate of

bone formation. It also has the term ψ−ψ0 which controls this set point determination process. When the set

point is different from the strain energy density, it will change the set point. However, when they are the same

(i.e. the term is equal to zero) then the set point will reach a steady state.

dψ0

dt
=

1

f
kfOb (ψ − ψ0) (8)

Below is the rate of change for the osteocyte density, Ot. It is dependent on the bone volume fraction, the

rate of bone formation, the rate of cell destruction A, the density of osteocytes, as well as the lacunar density -

density of the small spaces containing osteocytes - in newly formed bone.

dOt

dt
=

1

f
kfOb (Otf −Ot)−A×Ot (9)

The change in lacunar density over time is related the the bone volume fraction and the lacunar density

subtracted from the initial density

dLc

dt
=

1

f
kfOb(Lcf − Lc) (10)

4 Results and Discussion

4.1 Time dependent simulations

In this simulation, there is both a decrease and increase in stress applied to a bone site. From time 0 to time

30 years, there is a 70% decrease in stress applied to bone compared to the initial stress. From 30 years to 75

years, the stress applied is restored back to its initial value. The time dependent simulations were based on

Pauchard and Buenzli (2024).

Figure 4 a shows the bone volume fraction over time. At the initial time point, the bone volume fraction sits

at 0.85. The reduction in strain correlates with a fall in bone volume down to just above 0.5 reaching a steady

state until a larger strain was applied at 30 years. At this time, there is an increase in bone volume up to just

above 0.6 before reaching a new steady state. This is consistent with Wolff’s law. As the mechanical strain

decreases at the initial time, it triggers the osteoclasts that resorb the bone volume. After 30 years, when the

initial stress is restored, osteoblasts then add more bone. It is noticeable that the steady state after 30 years

never reaches the level it started at. This demonstrates set point adaptation
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Variable Definition

f Bone volume fraction - Bone Volume divided by Tissue Volume (BV/TV). Important for

the visualisations of the amount of bone being produced or resorped.

ψ0 Denotes the mechanical stress set point.

ψ Denotes the local strain energy density. This is the product of the mechanical stress and

mechanical strain.

Ot The amount of Osteocytes (sensing and controlling cells for the osteostat process).

Lc Lacunar density. Lcf refers to the initial density.

kfOb The rate of bone formation.

krOc The rate of bone resorption.

Sv(f) Described by a 5th degree polynomial describing the specific surface (Pauchard and Buen-

zli 2024).

µ Transduced mechanical signal

Table 1: Variables used in model (Pauchard and Buenzli 2024)

Figure 4: Variable versus time plots depicting osteostat model
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Figure 4 b shows the mechanical strain applied, ψ, as well as the mechanical set point , ψ0, changing over

time. After the strain decreased at the initial time, it increases slowly until it reaches the set point. The

set point decreases from time zero until it reaches a steady state just under 1e-5 GPa. When the strain was

increased at time 30 years, the strain came back down as the set point increases to meet it at a steady state of

just under 8e-5 GPa. This is what is expected to happen under the osteostat model.

Figure 4 c shows the biological signal µ which is the difference between the strain and the set point accounting

for biological factors. This process creates a bone-forming response when the stress is greater than the set point

and a bone-resorping response when the stress is less than the set point as displayed in Equation 1.

4.2 Space dependent simulations

4.2.1 Without averaging

To make this model space-dependent, each of the time-dependant variables in the ODEs became variables

dependent on both time and space. Using Figure 5 as a guide, the axis ’x’ sits across the long bone cross-

section. The bone volume fraction along that line will be analysed.

Figure 5: Cross-section at the midshaft of a long bone, with the marrow cavity in the middle

To test the range of bone volume fraction, the bone volume fraction is described initially as a modification

of the Gaussian curve with the equation: finitial(x) =
exp(−0.5×(x−10).2)

1.02 where x is the position along the radial

axis. This curve was used as it contained the full breadth of f values (from close to 0 to close to 1). Plotting

this over space for 30 years of unloading and 40 years recovery shows Figure 6

Figure 6, shows the initial f in the purple. As the years go on, the amount of bone volume decreases. This

is consistent with Wolff’s law. For the first 30 years, there was 70% less force applied compared to the initial.

This decrease in f points to a decrease in bone volume and an increase in tissue volume. f is generally the

lowest when the time is 30 years. After that point in time, the values of f increase because the loading is

restored. However, f does not recover to its initial value even though it is under the same amount of stress.

The set point changed given the lack of mechanical stress over the significant amount of time. This is assurance

that this model is demonstrating the osteostat model.
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Figure 6: Bone volume fraction versus time over 70 years

4.2.2 With local averaging

It would be expected in a model reflecting bone adaptation that a bone under more force would grow radially.

Similar to the implant example, the bone under less stress will resorb in - not just get more porous.

Currently, the model cannot grow outwards or inwards because the bone of the model is dependent on the

bone volume fraction. If there is no bone volume fraction, then there cannot be any osteoblasts nor osteoclasts.

To improve the model, small averages from the bone around it would allow bone volume to occur grow into

places it is not previously. In Figure 7, the yellow represents the bone and the pink is the discretised position

next to the bone. In the current model, the bone volume fraction can only change in the yellow area but not the

pink. Take the top row of Figure 7. The pink square surrounded by yellow squares would, if stress was applied

to that area, fill with bone to strengthen that area. This would cause the pink squares to be considered bone.

In this next model, the averaging as per Figure 8 would be utilised however only in one dimension. When

taking an average for a discrete cell and there is bone on both sides of the cell, then the average will contain the

values for all three cells. If the discrete cell contains bone and so does one side, then only the two containing

cells will be a part of the average. If the discrete cell does not contain bone but the one next to it does then

the average is taken of the cell in question and the cell containing bone next to it. ’Not bone’ is anything value

of f < 10−6.

In an area with bone and bone all around it, it will take the average of those cells as well as the cell it’s

averaging for. When some do contain bone and do not contain bone, only the cells containing bone will be

averaged. In one dimension, this only relates to the two discrete sections on either side of it.

The equations also needed to change so that the averages can be incorporated. Changes to Equation 7 result

in Equation 11. The rest of the ODEs will have this averaging incorporated through its inclusion of the bone
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Figure 7: Potential for bone in red (2D) Figure 8: Calculating local averages in 2D

volume fraction in the equation.

df

dt
= ⟨kfOb⟩ − ⟨krOc⟩ (11)

To accomplish this in the model, the method of solving the ODEs was changed from Heun’s Method to

Forward Euler Method. This was to make the code simpler to follow, however, it sacrificed some of the

accuracy.

Figure 9: Bone volume fraction versus time over 70 years with averaging

In Figure 9, We see the effect the averaging has when implemented on Figure 6. The local averaging does

change the bone response when f is above 0.3. It has a larger decrease in f at the upper limit of f with more

significant decreases on either side of that peak in f . Figure 9 generally has a more rounded shape than Figure
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6.

It can be noticed, that when f is close to zero, it has little effect on the amount of growth or decrease of

bone outward from the centre. Knowing that bone changes shape when stress is applied, it is expected that the

bone volume fraction would increase around 5mm and 15mm.

Figure 10: Bone volume fraction (a), kfOb and krOc (b), Osteocyte density (c) as well as µ, set point, and

transduced mechanical strain (d) versus position for the local averages (time: 40 years)

Figure 9 shows variables versus position at 40 years. At this point, 30 years of reduced stress has occurred

and 10 years of the initial stress has been applied. It can be seen in Pane (b) that the rate of formation and

resorption is nearly identical with a slight decrease in krOc around position 10. This translates to a slower rate

of decreasing bone volume.

Figure 9 also shows how the averaging differs from the actual rate. This will determine how the rest of the

model changes with the local averaging. This Figure shows that when local averaging is applied the average

krOc increases very slightly over the rate of increases from the rates of the other variables. This implies that

there is a larger reduction in bone volume there than previously. However, kfOc is smaller than kfOb.

As the previous figures don’t show the reduction or addition of size in the position axis for low values of f ,

testing if it will under larger strain would be beneficial in diagnosing the discrepancy between the model and
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the biological expectation. The results of this can be seen in Figure 11.

Figure 11: Bone volume fraction versus time over 70 years with averaging and only large loading

It was found during the creation of this model that without a set maximum value for f the value of bone

volume fraction exceeded 1. As the proportion of bone volume cannot exceed 1, the maximum value was set to

1 − fmin so that it was symmetrical to the lower limit. In Figure 11, f does not change in the x-axis for the

smaller values of f. This further emphasizes the issue with the model discussed previously.

Figure 12 shows how quickly the bone volume fraction reaches the maximum. Once it reaches this maximum

it doesn’t dissipate in any way. Further, in Panel (d), the ψ and ψ0 never meet once this maximum has been

achieved. Therefore, it does not reach a steady state and doesn’t adapt to and mitigate the strain.

5 Conclusion

Throughout this report, there has been a discussion of the osteostat model, applying that to a mathematical

model to a spatial setting, implementing the model, and then adjusting the model.Some parts of the model do

not reflect what has been found experimentally in bone biology. Namely, the bone only changed porosity (f)

rather than changing wall thickness as expected when stress is applied to bone. This was not fixed by the local

averages as the set points adapted very quickly to the stress close to the bone surfaces. Thus, the larger values

of f lost porosity as it couldn’t spread the strain throughout the bone structure.

Further experimentation of the model and biological theory is required to fully quantify and visualise the

changes that mechanical loading has on a bone sample. Local averaging of the transduced mechanical signal

may be the solution. If signals from the areas with large values of f such as those in Figure 12 where the set

point and strain values never meet, reached the surface of the bone and this would induce the necessary bone

formation. Osteocytes operate on a wide network in the bone. The osteocytes that have not fully adapted

to the stress may send out chemical signals to the osteocyte network. This would cause the osteocytes in the

wider network, which under this model would have already reached a steady state of adaptation, to further
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Figure 12: Bone volume fraction (a), kfOb and krOc (b), Osteocyte density (c) as well as µ, set point, and

transduced mechanical strain (d) vesrus time for a very large strain (position:10mm)

form/resorb to take that stress off the cells that are becoming too dense.

In conclusion, this projected extended the osteostat model into the spatial setting. The model was unable

to reproduce the expected change in the wall thickness of the bone when it was under a changed mechanical

loading. Local averages were employed to address the issue, however, the set point of the low values of the

bone volume fraction adapted too quickly to allow for the outward and inward growth. In future, accounting

for changes in the transduced mechanical signal may allow for the strain to be adapted more evenly and for the

model to reproduce the expected result.
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