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Abstract

Stochastic optimal control and robust filtering is considered from the path-wise perspective. This is done
using the theory of rough paths, and a gentle introduction is given in the first section of this report. Path-
wise optimal control results are developed using this machinery and applications are then given to robust
stochastic filtering, where the filtering problem is transformed into a path-wise one. This path-wise filtering

problem is further transformed into an optimal control problem where the rough path theory is applied.
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1 Introduction

In this report, stochastic optimal control and robust filtering is studied from the path-wise perspective. This is
done most naturally under the theory of rough paths since, for example, the sample trajectories of Brownian
motion are not smooth; that is, Brownian motion is not differentiable. The Brownian sample paths are “rough”
in a precise sense, which will be made clear. Naively applying path-wise optimal control theory to the stochastic
case produces degeneracy issues that must be rectified, and this is done by introducing “cost functions”. Lastly,
“robust” stochastic filtering can be transformed into a path-wise optimal control problem, which lends itself
to the optimal control theory constructed in this paper. A “robust” point estimate can then be obtained by

solving a differential equation and an optimization problem.

1.1 A Note on Proofs

Proofs of the statements contained in this paper are relegated to the appendices, unless stated otherwise.

1.2 Statement of Authorship

The path-wise optimal control and filtering theorems in this paper were discovered by A. L. Allan and S. N.
Cohen [2], with additional lemmas and propositions introduced by J. A. Mavroforas. Moreover, the work was

reviewed by A. H. Dooley.

2 Rough Path Preliminaries

Some general results about rough path theory will be developed in this section. For a comprehensive overview

of the subject, the reader is referred to [5].

2.1 General Integration Theory

In the following, J will denote the closed interval [0,7] and |- | will denote the Euclidean norm on R™. We

begin with some standard definitions.

Definition 2.1. Suppose that X: J >R, t —» X; and 0 < s <t <T.

Apg={(st) € J?: 0<s <t <T} (2.1)
Xs,t = Xt — Xs (22)
Xl = fsup 3 ) 23

where D = (t;)I, denotes a partition of J = [0,T]. To be explicit, the supremum in (2.3) is being taken over

all partitions D of [a, b].
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Let us now denote the space of all continuous paths X : J — R™ with finite p-variation (2.3) by VPVar(J,R"™).
Furthermore, let VOP¥a(J R™) denote its closure with respect to the p-variation seminorm || - ||, ;. Finally,
define for p € [2,3) the set €P(J,R™) consisting of all %—Hélder rough paths ¢ = (¢, ¢®); that is, the set of all
¢ satisfying:

C:J > R" (2.4)
(@: Ay = RYQRY, (s,8) = (&) (2.5)
(2 =@+ + G ® G (2.6)
1 P — . (2) .
|||C|||5—H01- ||C||%—H01+||C ||%—Hol 27)
< +00
where
IClly e = sup ot 2.8)
s#ted |t — s|
and
[sxd
||C(2)||%—H61 = (2.9)

s#ted |t — s| »
The tensor product in (2.5) and (2.6) is the Cartesian tensor product. We also assume that (2.6) holds for all
r such that 0 < s < r <t < T. Equation (2.6) is called Chen’s relation and () is called the lift (or lift) of C.
Moreover, we sometimes call ¢ = (¢, () the lift of . The tensor product in (2.5) and (2.6) is the Cartesian
tensor product. We also assume that (2.6) holds for all » such that 0 < s <r <t <T. Equation (2.6) is called
Chen’s relation and ¢ is called the lift of .

The variation of a rough path ¢ = (¢, ¢®) can now be defined.

Definition 2.2. Suppose that ¢ = (¢,¢?) € €7(J,R™). We define the variation of ¢(? and then the variation
of ¢:

o

1E[g.y = [supz o, ’2’} (2.10)
1l = N1l + 162 12 @.11)

where the supremum in (2.10) is taken over all partitions D of .J.

An immediate consequence of Definition 2.2 is that rough paths have finite p-variation for p € [2,3):
Proposition 2.1. If ¢ = ((,(®) € €P(J,R™), then |[|¢]|]p.s < +o0.

We turn €7 (J,R™) into a metric space by:

Definition 2.3 (Rough Path Metrics). Suppose that ¢ = (¢, (), n = (5,7®) are two rough paths. The

;—)-Hélder and p-variation metrics over the interval J are defined to be

Q%-Hél,J(Cvn) =€ — "7||%-H61,J + HC(Z) -1 (2.12)

2 1
E—HO],J

0 (C) = 11C =l +][¢® =0 (2.13)

P
50
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Remark 2.1 (Canonical Lift). Smooth paths (; can be lifted in a canonical way:

st.—/csre@dg

“Control” in the next definition is not to be confused with its meaning in optimal control theory. Our usage

of the word will be clear from the context.

Definition 2.4 (Controlled Rough Paths [6]). Let ¢ € ¥P(J,R?) be a rough path. The space of controlled
rough paths (with respect to ¢) 2 (J,R™) is the set of all

(X, X') € VP (J,R™) x VP (], L(RE,R™))

such that the remainder term

th = Xst — X;CS,t
has finite £-variation. X' is called the Gubinelli derivative with respect to ¢.
Remark 2.2 (Norm on 2P). @g(J, R™) equipped with the norm
(X, X")] = | Xo| + 1 X5] + |1 X[[p.s + [R5,

turns it into a Banach space.

The existence and uniqueness of rough integrals is given by the next result. The reader is referred to [6] for

a proof as it is beyond the scope of this paper.

Theorem 2.2 (Rough Integration). Recall that J = [0,T]. Suppose p € [2,3), ¢ = ((,¢?) € €P(J,R?Y) and
(X, X") € Z¢(J, L(RY,R™)). Then

T
— T 1 ~(2)
/0 XpdGr =, Il)ﬂo; (Xt Gt + X065 (2.14)
exists and is unique, and is called the rough integral of X against (. Furthermore,

(2.15)

/Xdcr XoCor — X1

< C (IR Ilg el <l + 11X s 1S 101

where 0 < s <t <T and C depends only on p.

2.2 Integration Theory for Optimal Control

In the stochastic optimal control setting, one typically encounters differential equations of the form
dXs = b(Xs,vs)dt + o(Xs,vs)dBs

where 7 is a control process and B, is a standard Brownian motion. Naively applying path-wise optimal control

in the rough differential equation (RDE) setting, however, leads to degeneracy issues, as observed by Diehl, Friz
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and Gassiat [7] and Allan and Cohen [2]. These issues will be discussed and rectified in the next section, but

first we aim to make sense of RDEs taking the form
dX, = b(Xsa 'Ys)ds + /\(Xsa 'Ys)dCs
which take us out of the standard setting.

Definition 2.5 (Rough Differential Equations). Suppose that p € [2,3), ¢ € €7(J,R?) and v € Vg"’"“(J, R¥).
We will consider rough differential equations (RDEs) of the form

dXs = b(Xs,7vs)ds + M Xs,vs)dCs (2.16)
with X = xo, where the integration A(Xj,~s)d(s is interpreted in the sense of theorem 2.2.

Remark 2.3 (Gubinelli Derivative). Suppose that (X, X’) € DP and A € C2. Then A(X,~) has the Gubinelli
derivative A(X, )" = 0, A\(X,~v)X’, where 9, is the Fréchet derivative [8] in the first variable defined by

. Mz + h,y) — Mz,v) — Ah
hmmmo' ( 7) |h|( ) o

for some linear transformation A.

Mirroring the proof of proposition 2.1, we have
Proposition 2.3. a-Hdélder continuous paths have finite %—variation, where o € (0,1).
The next lemma is standard and is stated without proof.
Lemma 2.4. If1 < p < ¢ < +00, then V1-ver C yp-var C pa-var,
Now we show that ¢ — || X||1,; has finite p-variation for 1 < p < +o0.
Lemma 2.5. If X € VI"'o"(J,R"), then t — [ X1[1,0,4y has finite p-variation, for 1 < p < +oo.
A proof of Jensen’s inequality can be found in [10]

Lemma 2.6 (Jensen’s Inequality). Suppose that f: R™ — R is conver and X: Q — R™ is a random vector.

Then f(EX) <Ef(X).
Lemma 2.7. If p > 1 and z1,...,x, are non-negative numbers, then
(@14 @)’ <nP(ay +-- - +ap).
The next two lemmas will be used shortly.

Lemma 2.8. Suppose that X € VP, Then || X||ps < n|>p || X]|P
- <t} of J.

p,[tist; +1]} for any partition D = {tg <

Lemma 2.9. Suppose that dy,...,d, € Ny and ; € R%. Then

(1, z0)| <z1] 4+ + |20

NAMS|
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To simplify the notation, | X, | S |t — s| will mean | X, ;| < C|t — s| for some C' > 0. Furthermore, the next

proposition contains new results about RDEs.

Proposition 2.10 (Regularity). Suppose that p € [2,3), ¢ € €7, M € Ry, [|[KIl2.gsiys < M, b € Lipy,
5 -Hél,
Y\ € CE, v € VEY and X satisfies the RDE (2.16) with Gubinelli derivative X' = X\(X,7). Then we have

the following regularity results

LA 5 S XL,

2 1Ry s S UGy + [1BX]]y 5+ 1115

1
3 IX,s S 1+

p,J ~

4 |[RY], S 1+l ||2+”

P J ~
We refer the reader to [2] for proofs of the next two theorems. They are long but not difficult, and rely on

standard arguments and the results above.

Theorem 2.11 (Existence & Uniqueness). Suppose that b € Lipy, A € C} and ¢ € €P. If v € VEUT and x is
fized, then there exists a unique solution (X,X') € Z{ to the RDE

dX; = b(X¢,vs)dt + N Xy, ve)dCy (2.17)
with Xg = x.
Theorem 2.12. Suppose that b € Lipy,, A € C} and the two rough paths ¢, m € €? satisfy |||C|||;_Hé-l,7 |||n|||%Hol <
M, where 0 < M. If v,0 € VE and (X, X' )= (X, \NX,7)) € 22, (V,Y') = (Y, \(Y,9)) € DY, then
X" =Y, 5 S e =yl + 11y =il + 1y = nll, 5 + 0p.5(¢.m) (2.18)

and if ¢ € C3,

Sle—yl+ 1y = nlle,s + v —nll,
p.J (2.19)

+ QP,J(C7 77)

H/OIQZ}(XS’%MCS - /0 W(Ya, 05)dn,

3 Optimal Control Under Rough Paths

Here we will develop some results regarding path-wise optimal control. To motivate the introduction of regu-

larizing costs, suppose that (; is a path with infinite 1-variation. Then the optimal control problem
v(t,z) = sup EX 5"
¥

governed by the dynamics dX)*7 = v (6dBs + d(s) with Xtlt 7 = x, where the supremum is taken over all
controls —e < 75 < ¢, has the solution v(¢, ) = +oo for all controls + [2]. This is due to us being able to control
the noise term d(,; we able to take advantage of the fine structure of the path (; since we have infinitely precise
observations.

The interpretation of the optimal control problem above is that of a trader maximizing his/her terminal

wealth X;w”, trading the asset over the time [¢t,T], where 5 denotes the shares held at time s.

NAMS|
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3.1 The Set-up

We now define the space of all geometric rough paths. %go’p C ¢6* will denote the g1 _y closure of canonical
P
lifts of smooth paths. This is well-defined by the Stone-Weierstrass theorem.

Fix a geometric rough path ¢ € %;’p(J, R%). In this section, we will consider the optimal control problem

v(t,z) = inf J(t,xz,7) (3.1)
,-Yevp/2-var
where
T T ,
J(t,z,7) =/ f(Xﬁ’z’”,%)dSﬁL/ PXE™Y, ys)dCs + g(X ™) (3.2)
t t

and X5%7 satisfies the RDE (2.16) subject to X;*7 = x. We call v(t, z), J(t,z,v) the value function and cost
functional, respectively. It is understood that f: R™ x R¥ — R, ¢: R™ x R* — L£(R? R) and g: R™ — R.

Lemma 3.1. Suppose the hypotheses of theorem 2.11. Then

ST+ IR (3.3)

Xt 177'7' )dCS L)

The lemma above allows us to place an upper bound on the magnitude of | tT Y(XH7 y5)dCs in terms of

the control 4 € V&3, This upper bound is not meant to be sharp.

Definition 3.1 (Regularizing Cost). Suppose that S C V%V2'(J,R¥) is a Banach space. A regularizing cost on
S is a function

B: Ay x VEVE(JRF) = [0, 400] (3.4)
such that
1. v+ Br4(7) is continuous

2. Bri(y) = 400 on Ay x VEVA(JRF\S

Bt ()

"y ||2(1+P) — +00 as ||7||%,[7‘,t} — +00.
[r,t]

In practice, the regularizing cost depends on the phenomena being modelled. We shall see an application
of this in the section on robust stochastic filtering where the regularizing cost takes the form of a negative
log-likelihood function.

Let V9Pvar denote the ||| p,~closure of smooth paths in V7", The value function is restated as

Vit,r) = inf {J(tz,7)+Br(V)}- (3.5)

,yevo,g-var

Now we can show that V is bounded under suitable conditions.

Proposition 3.2. If f and g in (3.2) are bounded below, then V (t,z) is bounded below.

NAMS|
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3.2 Dynamic Programming Principle

The dynamic programming principle is a fundamental result in optimal control. It enables us to solve problems
by breaking them down into smaller sub-problems. Since regularizing costs need not be additive i.e. B, 4Byt =
Bs,+ need not hold, it must be shown that there exists a suitable subset of additive costs so that the dynamic

programming principle can be retained.
Lemma 3.3. Suppose that S C V929" contains all the smooth functions from J to R¥. Then

V(t,z) = 1nf {J(t, z,v) + Ber(7)}

-var

eyt (3.6)
= inf {J(t,z,7) + Ber(7)}.
yES

Proof. Fix v € V%PV and choose a sequence (7")°_; of paths in S such that |[7* — y||sc — 0 as n — +oo.

Then ||y™ — ’y||g7J — 0 as n — 400, so (3.6) holds by theorem 2.12. O

Remark 3.1. If u € WhH4 and L% := q + f: uydy, where W14 is a Sobolev space, then

Bur(75") = ¢ / oy |9y

is clearly additive by the properties of integration. We will see that regularizing costs taking this form are

adequate for our purposes.

Definition 3.2 (Value Function). Suppose that us € W9, where s € J. Let dyi%* = u,ds, ’yf % = q. The

value function is now defined to be

T
v(t,x,a) = inf {J(t,m,'yt’“’“)+5/ |u5|qu} (3.7

u€L4 t

Note that the regularizing cost in the definition above enables us to retain the dynamic programming
principle, the proof of which is analogous to the standard case [12].

tia,u

Theorem 3.4 (Dynamic Programming Principle). Let X5H®% .= X5e7 " [f1 < g < 400 and r € [t,T],

then

T
oltea) = inf {otr ooy o [ ponimen e
t

T i
—|—/ w(Xz’”’“’“,'yz’a’“)dCS—i—a/ |us|qu}
t t

3.3 Generalized Control Problem

We may generalize the value function given by (3.7). Note that we can absorb the regularizing cost into the
integral involving the function f. Thus, fixing a Banach space (U, || - ||), we may reformulate the optimal

control problem as

T
J(t, z,a,u) ;:/ F(Xbau yhaw)gg
t

T
4 / PP ALY dE, (XL e
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where
AXDT0 = LR, AL ds 4 AXE 200 de, (3.10)
dye™ = h(yy™", ug)ds (3.11)
u:J > U (3.12)
with the value function
v(t,z,a) = mLf J(t,x,a,u). (3.13)
ueL>°

The following assumptions (appendiz (C.1)), lemma and corollary are required for the main results in the

next section.

Lemma 3.5. Assume (C.1). Then for some 0 < C < 400,

T T
1
PIXERO LG < C g [ FOXm e e ) ds, (3.14)
t

Corollary 3.5.1. Suppose that K C R™ x RF is compact. Then there exists an M > 0 such that when

(t,z,a) € J x K, the controls u € U may be restricted to the ones satisfying ||yt ”||p J <M.

3.4 Rough HJB Equation

We now derive the rough Hamilton-Jacobi-Bellman (HJB) equation. Fix a geometric rough path ¢ = (¢, () €
2P and a sequence (1)), of smooth paths such that nj' — (; as n — +oo. We lift n}* into rough path space
by defining \
(") = / Mo ® 1Ty
s
and set

dX;,z,a,u,n — b(X;,z,a,u,n7 ,Y;,a,u)ds 4 )\(X;S,x,a,u,n t,a, u)dns (315)
so letting n — oo yields (3.10) by theorem 2.11, where " = (5™, (n™)®) and
(Xt,a;,a,u,n’ (Xt,z,a,u,n)/) _ (Xt,z,a,u,n’ )\(Xt,w,a,u,n7 ,yt,a,u)) . (316)

Furthermore, the integral in (3.15) is calculated in the Riemann-Stieltjes sense.
The rough HJB equation derived by firstly solving (3.15) using the results in [4] and then taking the limit

as n — +00. The above is now stated as a result.
Theorem 3.6 (Rough HJB Equation). Suppose (3.9) - (3.13) at the beginning of §3.3. Then
—dv —b-Vyvdt — lng {h-Vov+ f}dt—(A-Vzuv+¢)d¢ =0 (3.17)

subject to

o(T,z,a) = g(z,a) (3.18)

where V,, denotes the Laplacian with respect to the variable y.

NAMS|
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Before showing that v in theorem 8.17 is the unique viscosity solution, we make the following definition.

Definition 3.3. Suppose that v — v¢ as n — 400 in the sense of theorem 3.6. Then v¢ solves (3.17) if

v — v¢ locally uniformly such that n™ — ¢ with respect to the %—Hélder rough path metric g1 _y.
p

Theorem 3.7. Suppose assumption C.1. Then the value function (3.13) solves (3.17), (8.18) in the sense of
definition 3.3. Furthermore, for each fized (t,z,a), the map ¢ — v¢(t,x,a) is uniformly continuous with respect

to the rough path metrics 01 _ s 5 and op, g, where ¢ € %go’p(J, R%).
: .

4 Robust Filtering

Stochastic filtering enables us to make inferences about the state of a “signal process” that is not directly
observed; more rigorously, we make an inference about the “signal process” dS; = a;Sidt + o;dB} through
our observations dY; = ¢;S;dt + dB2. These inferences, however, require knowledge of the parameters o, oy
occurring in the signal which causes difficulties in practice. The filtering problem has been well studied though
[3] and various methods exist for handling inferences and parameter estimates. Our main focus will be on
“robust” filtering, where an estimate of the current state of the signal is made through the observation process
and is achieved by penalizing bad parameter estimates in an “intelligent” way. Moreover, as we will see, path-
wise filtering problems can be transformed into path-wise optimal control problems, enabling us to use the

results in section §3 to find a solution.

4.1 Kalman-Bucy Filter

We will make use of the Kalman-Bucy filter and it takes the form
dSt = atStdt + O'tdBtl (41)

dY; = ¢;S;dt + dB? (4.2)

where (4.1) is the signal process and (4.2) is the observation process. We assume S; is R™-valued, Y; is R%-
valued, Yy = 0, Sg ~ N(uo,%0), a: J — R™™ g: J — R™%! and ¢: J — R¥™. Furthermore, we assume

that the quadratic covariation of the Brownian motions B}, B? satisfy
d<Bl,B2>t = ptdt
where p; € R4 and

I—pip

is positive semi-definite for all ¢.
Now, let ); denote the completed filtration generated by the observation process Y;; that is, ), is the
completion of the sigma algebra generated by (Ys)s<¢. Lastly, the prediction

=E[S¢| V] (4.3)
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satisfies the stochastic differential equation
dqt = atqtdt + (RtC;r + Utpt) (d}/t — thtdt) (44)

and R, = E [(St —q)(St — qt)TDJt] satisfies the Riccati equation

dR
d—tt = O'tO'tT + ath + RtO[;r - (th;l— + O'tpt) (Cth + p;rat—r) . (45)
4.2 Robust Filtering

We now develop the machinery for our robust filtering problem, starting with controls and convex expectations.

Let ¢ == (e, 0,¢,p)r € T denote our controls, where
L= R™™ x R x R™ % T

and

T:={p € R>4: T — pyp/ is positive definite} .

If ¢: R™ — R is a bounded Borel function, then we define the convex expectation

(v,100,%0)

1 k2
E(@(5)| V) = esssup {JE'V"“”E" [p(Se) V4] — (k—lﬁ(%uo,zom)) } (4.6)

for k1 > 0 and ko > 1.

The admissible controls and penalty function (regularizing cost) are defined as:

Definition 4.1 (Admissible Controls). A will denote the space of all admissible controls vz € T such that

~v: J — IT' is absolutely continuous with bounded derivative.

Definition 4.2 (Penalty Function). The penalty function S will take the form of a negative log-likelihood

function; that is,

ﬁt<77 Ho, X:Olj}t) =—In (ﬂ-t(’}/7 Ho, ZO)Lt(’Y7 Ho, E()'yt)) <47)

where 7 is the prior density and L is the likelihood function.

Remark 4.1 (Robust Point Estimate & Confidence Interval). The definitions above permit the construction of

a robust point estimate and a confidence interval, given by

argelginf ((p(Se) = ©°|0) (4.8)
and
[=E (=(S) V1) € (@(Sp)| V)] (4.9)
respectively.

To make some progress, we need the following assumption:

10
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Assumption 4.1. We will assume that the log prior density takes the form

t
—ln(ﬂ't(% ,U(],Eo)) = / Z(QaRsa’Ys)ds"'g(MOaZO) (410)
0

Now, the log-likelihood function L¢(-) can be represented as a Radon-Nikodym derivative

dIPY-Ho,%0
AP K625

Li(v, o, Xo|Vr) = < (4.11)

where v*, ufy, X5 are fixed reference parameters. It turns out that an explicit expression for the likelihood
function (4.11) can be found.

The innovation process [3] is given by
dVy, = dY5 — csqsds (4.12)

and is a Y;-adapted Brownian motion under P7:#0->0 and the conditional mean and expectation process, ¢*, V*,
respectively, satisfy

dVs = dV) — (csqs — c5q%) ds. (4.13)

By Girsanov’s theorem [9], it follows that

t 1 t
Ly (7, po, Xo|V4) = exp (/ (csqs — coqy) - AV — 5/ lesqs — ciqs | d8> (4.14)
0 0

and substituting dV." = dY; — ciqids into the above implies

t t
*k ok 1 kk
_lnLt(77 Ho, E(let) = _/ (CSqS - csqs) ~dYs + 5/ (|qu5|2 - |qus |2) ds
0 0 (4.15)

t t
1
= —/ Csqs - AYy + 5/ |csq5|2ds + constant
0 0

since the reference parameters are assumed to be fixed. In the following, we will omit this constant and assume
our penalty function is correct up to an additive constant. In numerical computations, the constant may be
chosen to ensure the penalty always takes the value 0 at its minimum [2].

We will now transform the It6 integral occurring in (4.15) into a Stratonovich integral in anticipation of the

path-wise optimal control problem. Hence

t t
1
_/ Csqs - dYs = _/ csqs o dYs + §<CQ7Y>15' (416)
0 0
It can also be shown [2] that
t
(cq,Y)s = / trace (c;(Rsc) + 0gps)) ds. (4.17)
0
This implies
t 1t .
—InL: (7, po, Xo|V) = —/ csqs 0 dYs + 5/ (Jesgs|* + trace (cs(Rse) + osps))) ds. (4.18)
0 0

Now, set

1
w(g, R,y) = 2(q, R,7) + 5 (leq]” + trace (c(Re” + 0p)))
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and
Y(g,7) = —cq

so that

£ (o(S0)|Vh) = ess sup {E (S|

V10,50

_ <kl1 (/Otw(qs,Rs,*ys)ds +/{th(QS>7s) odY +g(uo,20)>)k2 }

4.3 Lifting Into Rough Path Space

(4.19)

In practice, filtering is performed with respect to a fixed observation path. Thus, one might want to fix a path
¢t = Yi(w) and solve the filtering problem with respect to it. Doing so requires ¢; to be lifted into rough path
space, however. Define the lift of (; by

) = / Yar(w) @ odY;(w) (4.20)
so that ¢ = (¢,¢(?) e (ggﬂ,p for p € (2,3). Then the prediction ¢; satisfies the rough differential equation
dg; = apqedt + (th;r + O'tpt) (dC: — crqedt) (4.21)
and

t
Gt = / (ch;r + 0ypr) dG + O(Jt — s|)
s (4.22)
= (ch: + Urpr) Cs,t + O(|t - Sl)
by theorem 2.2. Hence the Gubinelli derivative of 1(g,v) = —cq satisfies ¥(¢q,7)’ = —c (R,c, + o,p;). Further-

more, .
/0 Y(qs, vs)dCs

exists as a rough integral and coincides with the Stratonovich integral.

4.4 The Optimal Control Problem

Now we are ready to transform the filtering problem into a path-wise optimal control problem. Let

t t
ki(p, ) = inf{/o w(qs,Rs,%)der/o ¢(QS775>dCs+g(q07R0)} (4.23)

where the infimum is taken over all v, g9, Ro such that (g, R;) = (1, X). Additionally, we set g(ug, Xo) = 400
for (p0,¥0) & R™ x ST, where ST is the set of all m x m symmetric, positive-definite matrices over R. This

allows us to rewrite the convex expectation (4.19) as

Lemma 4.1. Let ¢(-|u, ) denote the probability density function of a N(u,X) distribution. If ¢ = (¢,¢®) is

defined as above, then for any bounded measurable function ¢ we have

k2
E (p(S¢)|Ve) = sup {/Rm p(z)de(z|p, ¥) — (kilkt(uyﬁ)) } (4.24)

where the supremum is taken over all (u,X) € R™ x ST

12
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The proof of lemma 4.1 can be found in [1]. Thus, for ¢#*=, Rb#> that satisfy (¢i'"~, Ri*¥) = (1, ), we

have the optimal control problem

t t
ke (p, X) = igf{/ w(Qi’“’E,RZ’“’E,%)dSJr/ V(g s)dEs +g(QS’“’Z,RB’“’E)}- (4.25)
0 0

Note that the optimal control problem in (4.25) is lacking a regularizing cost. Again, we must introduce a

regularizing cost to prevent degeneracy. Consider the dynamics
dyg ™" = h(ye™", us)ds

where

h:TxU—=U
w: J — U is bounded

and U = R™*™ x R™*! x RYX™ x R¥4 The new terminal condition is
(g™ =, Ry= O 40 = (1, %, a). (4.26)
We may allow w and g to depend on 7y without affecting the proof of lemma 4.1 [2]. Thus,
ke(u, %) = ig%v(t,u,ﬂ,a) (4.27)
where

t
— : t,pn,2,a,u t,u,2,a,u ta,u
v(t, pu,2,a) = inf {/ w(gy* , RoH YN ug)ds
0

u bounded
t
_|_/O w(q;’#’ﬁ,a u’,}/;au)dcs+g( top,2,a,u Rt,,u,Eau ')/87(17”)}

is our new value function.

4.5 The Associated HJB Equation

We are now in a position derive a rough HJB equation for the filtering problem. To simplify the notation, we

write the following;:
dqz,,u,E,a,u _ bu(q‘?“’z’a’uv Rg,E,a,uy,y;,a,u)ds + /\(R?Z},a,u t,a, u)dcs, t NV IR ) =u

dRLP O = by (REP O o) ds, Ry =%
Ayl = h(yh" ug)ds, 0" = a
where
v =(a,0,¢,p)
bu(q, R,v) = aq— (Rc" +0p) cq
bs(R,7) =00 aR+ Ra' — (Rc" +0p) (cR+p'o’)

MR,7v) = Rc' + op.

13
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Remark 4.2 (Backward Control Problem). The dynamics above define a “backward” control problem; that is,
the equations above satisfy a terminal condition at time ¢ and a cost is prescribed to the initial values qq, Ro, Yo
by the function g occurring in v(t, 4, ¥, a) defined in the previous section. Thus, some work needs to be done
to transform the problem into one where the results of §3 can be applied.

Let us define the following:

||A]| = trace(AT A)
[yl = max{]|al], [lo]l, [lell, [|oll}
and if A € ST, let A\pin(A), Amaz(A) denote the minimum and maximum eigenvalue of A, respectively. We will
also require some assumptions (appendiz D.1).

The assumption {h(y,u): u € U} = U is used to guarantee the existence of a control u such that the state
trajectories remain inside their respective domains, irrespective of the terminal condition (¢, u, X, a), ensuring
that the value function v is finite [2].

The next two results are analogous to lemma 3.5 and corollary 8.5.1. The purpose of these is to derive a

result similar to theorem 3.7, which will be the main statement of this section.

Lemma 4.2. Suppose assumption D.1. Then for any terminal condition (t,u, >, a) and control u we have

t 1 t
/ w(q‘sv’}/s)dCs <C+ 5 (/ w(QSa R37'Ys)d3 + Q(QO, R0770)> .
0 0

The proof is long and relies on the simplifying notation in the beginning of this section, as well as assumption

D.1. The idea is to use theorem 2.2 and to bound estimates involving |¥(q,v)l, ||¥(g,7)’|l, ||Rw(q 7)||7 0 2 and

|14(¢: 7)1l (0,4 in & special way. Thus, it is omitted and the reader is referred to [2].
Corollary 4.2.2. Suppose that K C R™ x 8" x I' is compact. Then one may restrict to controls u such that
the norms ||q||so, [| R |oos [[Vlloos [1Bll1 0,4+ |[V]1,0,¢ are bounded by 0 < M < +oo when (t, 1, %, a) € [0,T] x K.

To derive the HJB equation, we proceed as we did in §3.4; we approximate ¢ = (¢, ¢ (2)) with smooth functions
n™ = (1", (n")?) by the Stone-Weierstrass theorem, solve the problem with respect to " = (7", (n™)(?)) using
classical methods and then take the rough HJB equation as the limiting case.

Before stating the HJB equation, let A : B denote the inner product between two elements A, B of the same

inner product space. If A, B are matrices, define their inner product A : B := trace(A' B).

Theorem 4.3 (The HIB Equation). Suppose assumption D.1. Then the value function v satisfies

dv+ (b, -V, +bs : Vsv)dt +sup {h: Voo —whdt + (XA V,o—19)d( =0 (4.28)
uelU
subject to
v(0, 1,2, a) = g(u, B, a). (4.29)

To guarantee a unique solution to (4.28), one should restrict to solutions ¥(t, i, X, a) that approach oo as
Ll + |13l + |la|] = 400, Amin(E) — 0 and when p is random, as Apmaz(p' p) — 1. Denote this space of value
functions by H. The reasoning, which is beyond the scope of this paper, is given by [1].

Two additional results are required before proving the main result:

14
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Theorem 4.4 (Young Integral). Suppose that V, W are Banach spaces and 1 < p,q < +oo satisfy % + % > 1.
If X e VPvor(J V) and Y € VIUor(J, L(V,W)), then for each t € J,

t
/0 Y dX, = | %ig();}’ti (Xtior — Xe:) (4.30)
and
\ [oe=vaax| g, i, (431)
p,J

A proof of this can be found in [11].

Lemma 4.5 (Gronwall’s Inequality). Suppose that f(t) > 0 and f(t) < C + Afo s)ds for some A,C € Ry
holds for all t € J. Then f(t) < et for allt € J.

We close this section with the main theorem:

Theorem 4.6. The value function v in theorem 4.3 solves the HJB in the sense of definition 3.3. Also,
the map ¢ +— v&(t, 1, %, a), ¢ € ‘Kgo’p is locally uniformly continuous with respect to the rough path metrics

01 _gors(5s), 0p,5(,+), locally uniformly in (t,p, %, a).
1-Hal,

5 Research Questions

We have seen how path-wise optimal control theory under rough paths is degenerate when no modifications
are made to penalize the variation of the path . We have also seen how this can be rectified by introducing
a regularizing cost. By restricting to a suitable class of regularizing costs, we were able to retain the dynamic
programming principle, which permitted the derivation of the rough HJB equation. Lastly, we showed that
solutions to the HJB equation are unique in a certain sense (theorem 3.7). Naturally, one might ask whether
there exists a “rough” version of the verification theorem, i.e. if one has a function w and a control v* which
satisfies the HJB equation, then w is the unique value function and +* is the optimal control, suggesting future
research.

We have also seen how robust stochastic filtering can be treated from the path-wise optimal control per-
spective. Another natural question, as remarked by [2], is about the convergence properties of the convex
expectation &€ (p(S:)|V:) to the actual expectation E [p(St)]|)e]. Furthermore, the performance of the path-wise

robust filter in practice is also of interest, which also suggests an area of future research.
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Appendices

A Rough Path Motivation
Ezample A.1 (Rough path motivation). Consider a differentiable function
f:R" >R

and a continuous path

X:J—=R"
Taylor’s theorem implies for s < r
(X)) = f(Xs) + V(X)) - (X = X) + 0| Xy — Xi).
If we ignore the o(| X, — X;|) term and assume X is “regular enough”, then
t t

/ f(X)dX, = f(X) (X — Xs) + Vf(XS)/ (X, — X)) ®dX,

where u @ v :== uv' is the Cartesian tensor in R™, u,v € R”. Let us temporarily define
) t
X% = / (X, — X,) ®dX,

to be the “lift” of the path X. This additional information allows us to obtain a better estimate of the integral
fst f(X,)dX,. In fact, the notion of the “lift” of a rough path is necessary for our integration theory to hold,
giving rise to the existence and uniqueness of rough integrals and rough differential equations.

Also, a tedious calculation shows for s < u <t

X&) =X2 + X2+ X ® Xy

U

The identity above is known as Chen’s relation.

B Rough Path Theory Proofs

Proof of proposition 2.1. Note that
Z |Cti i |” = Z |Ct“1till (tiyr —ti)
< ledll ma (iv1 — ti)
= ||C||2_H61 ;(ti-i-l —t;)

= ||C||1 H6l

< Ho0.
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Taking the supremum over all D shows that

€M, < TSI gy T

is finite, hence
1
CHlp,s < TICH s g - T

is also finite. An analagous argument applied to ¢(?) shows that
1EP[5.5 < +o0.
Thus, in light of the above and (2.11), |||¢||]p,7 < +00. O

Proof of proposition 2.3. By a-Hélder continuous, we mean paths X: J — R"™ such that

sup M < +o00.

s#teJ |t — 5|

Applying the same method of proof as in proposition 2.1 gives the result. O

Proof of lemma 2.5. Define
fit— ||X||1,[0,t]'

It is not hard to show that f is monotonically increasing on J. With this in mind, it follows that for any

partition D={0=ty <---<t, =T}

Z |f(tiva) — f(:)] = Zf(tiH) — f(t:)
D D

= f(T) = £(0)
< 400

so f has finite 1-variation, hence finite p-variation by lemma 2.4. O
Proof of lemma 2.7. Consider the probability measure on Q = {z1,...,z,} defined by
1
P{z;} = —
fwih =
Since the map ¢+ t* is convex (for ¢t > 0), we have
it 2 M SR
n ~ op T T
< E(a:’{+---+aﬂ;;).
by Jensen’s inequality 2.6. Multiplying through the above by n? > 1 yields

(@1 4+ zp)P SN 4 a)

<nP(xf +-- +a2b).

O
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Proof of lemma 2.8. Fix a partition D = {tg < -+ < t,} of J and let Dy = {s§ < --- < sk } be an partition of

[trytrs1] for k =1,...,n. Lemma 2.7 above implies

n—1 [ng—1 p
PENERAESY [Z X, —Xsf']
D k=0 L ¢=0
n—1ng—1
= n? Z Z |Xsi'c+1 - XS?|p

k=0 =0

n—1

p
<n” Z ||X||P7[ti7ti+1]

k=0

proving the result. O

Proof of lemma 2.9. The proof proceeds by applying the triangle inequality to
(xh s axn) = (:cl,O) + (0,12,0) +oeet (van)
O

Proof of proposition 2.10. The regularity results above hold for any sub-interval [s,t] of J = [0,T] so we
will restrict ourselves to [s,t]. Recall lemmas 2.4, 2.5, 2.7, 2.8 and 2.9. Since ¥(X,v) = 0,¢(X,v)X' =
Oxp(X,v)AN(X,v) and ¢, X € CZ, it follows that that 9,1, A are Lipschitz continuous due to their bounded
derivatives. To simplify the notation further, let ALX = X, ;. Then
|AL(X, )T S (Xt 7s,0)]

S |Xs,t| + |78,t|

S X s + 112 5.0
80 [[Ql]), 15,1 S Xl s, + 11715 (5,09 ProOving (1).

To prove (2) we expand RY using Taylor’s theorem, i.e.
R:lsp,t = Aidj(Xv 7) - w(Xsa’Ys)l(Xs,thS,t)

1
= 5651/)()(5 + th,tu 75)(Xs,t775,t)®2

for some h € [0, 1]. Before proceeding, note that p — ||X]|, (s,¢] 18 non-increasing for any path X. Hence

IRV, S (Xt vs)
< ||X||p,{s,t] 1z 150

S ||X||12;,[s,t] + ||RXHg,[s,t] + Mg s,

by (B.1).
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Now we prove (3). By theorem 2.2 and since b € Lipy,, we have

R3] = X = X{Cadl

t
X, )l + / AKX ) dCu — A(X o 7s)Cor

<

t
/ A7) G — A(Xar 7)ot — A(Xar 1) ¢
S

t
+ / b(X . 70 )du

S B g o 1€l oy + A g g |

+ ‘)‘(Xsa 75)/C§,t

5lst]

+|t—s|+H<<

5ils:t]

In light of (1), (2) and the above, it follows that
e X

HR Hf,[st] (||X|| st]+HR HP [st]+||7|| [s,t})”d'p,[s,t]

+ <||X||p,[s,t] + ||’Y||g,[s,t]) ’C

+|t—s|+HC(2)

5ils:t]

lel (B.2)
S (12 oy + R Mg g + 11 1) 1 o

(L X1 g + 111 ) |6

Bils.tl

+|t—s|+H§(2)

Sils:tl

Looking at the proof of proposition 2.1, we see that ||C|| < M|t — s| v, and similarly for ¢(2). Also, we saw

pi[sit] =
in the proof of (2) above that

RS S IXI, +1lg

so we may drop HR ||p [ 1 from the right-hand side in (B.2). Supposing without loss of generality that
<1,

have

|C(2)||p <3 ! whenever |t — s| < § (we can do this and extend to J = [0,7] via lemma 2.8), we

1Ry g S (X1 g+ 1015 o) 1€

(1 + ||X||p [s,4] T ||’Y|| st]) ‘C

]
+|t—s|+HC(2)

£.ls.1]
and by definition of ||R¥||, (o]
2.ls,

||X||p7[s7t] S./ ||C||p,[s,t] + ||RX||g’[s’t]
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hence
||X||p,[s’t S ||C||p7 s7t] + ||RXH£ [S t]
SNl oy + (X1 oy + 1112 g ) 1€l p o

+ (L4 IXIR g + 1Pl o)

5lst]

+|

5[s:t]

Expanding the right-hand side and noting that ||X||i 5.0 1S sy < ||X||129 (.4 Since [[C]], s 4 < 1, we get

P, [s,1]

Xl S (U ) (1€l + (€2, +1e= o) + 1K

Let I C [s,t] denote a sub-interval such that [|X||, ; < 3 and set r equal to the length of 1. Then

11 5 (1 g ) (1€l,00+] 6

2
) DI
3

2 (Il ) (il + 6], +101)
< (1+1hly0) (M6 + M) +6)

S1+1hlly -

where |I| = r. Now we extend to J = [0,T]. Set 6* = min{d,r} and choose a partition of J as in lemma 2.8

such that the mesh size that is lesser than 6*. Then

p D p
(1+1mll.0) <22 (1411,

by lemma 2.7, so

|X||NN2(1+||7||” )

S1+In,
but 1+ |71, < 1+ [1l[5%. proving (3).

To prove (4) we use (B.3) and approach the situation in an analogous fashion, arriving at the inequality

1R, , S 1+ 113

2
S+l
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C Optimal Control Proofs

Proof of lemma 3.1. By theorem 2.2 and proposition 2.10, we have

B g gy Ty oy + 11D g €]

2 [t,7]

‘/ BXE 7 )dG| <

+ (@, ve) G| + [0 (x, ) Ct T
2
< (!|Xt””’7||p7[t7;p] +[|RY], 27 T ||7||g,[t,T]> €Iy, 6,77

+ (], o + ||7||g,[t,T]) IiSs

5.[6.T]
o )G+ () ¢l
Now, |[¢(x,v)Cer| + |1,b(x,%)'g‘t(’21)«| is a constant and
1BX |5 oy S 1+ INIEE 4 (C.1)
1
X1y oy S 1+ I 2 (C2)
so lemma 2.7 applied to the square of the right-hand side of (C.2) gives (3.3). O
Proof of proposition 3.2. By propositions 2.10 and 3.1 we have
4 2(1+p)
/t v S 1+ 1D
Ber(7)
S0 -
T +bur) 2 [ gas+ gt + 220 ¢
t
for some C > 0, proving the result. O

Assumption C.1. We will assume the following:
1. b€ Lipy and \,¢ € Cg

2. f(z,a,u) and g(x,a) are continuous, bounded below, Lipschitz continuous in (z,a) and f is uniformly

continuous in u

3. h(a,u) is continuous, Lipschitz continuous in a, uniformly continuous in u, is bounded in a, locally uni-

formly in u, and for some § > 1
(e, w)]
b 3
acrr  [ullg;

as ||ully = 400

4. for the same § above,
feaw)|

2ER™ g ERF ||u||2U§(1+p)

as ||ully = 400
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Proof of lemma 3.5. Note again that p — [|7[|,, ; is non-increasing for 1 < p < +oo. By lemma 3.1 and Hélder’s

inequality we have

,leta:au taudc <C

au 1+
L [ )

(
c(1+||vt“||1 o)

[t
2(1+p)
=C ( Aylan us)|ds]

2(1+p)

<C Ih(vi“ o s)|2<1+p>ds>

since T —t < T, where p’ is the Holder conjugate of 2(1 + p). The result now follows by assumption C.1. O

Proof of corollary 3.5.1. By lemma 3.5 we have
J(t,z,a,u) > / f(xboau qbau y Yds — C
for some C > 0. If we fix u* € U, then we may ignore all controls u that satisfy

e .
Q/t f(Xhmau yhat 4y Yds — C > (t*su*p , J(t*, 2%, a*, u").
Thus, the proof of lemma 3.5 also gives an upper bound on ||y%%|| e The result holds by assumption C.1

and since u* is arbitrary. O

Proof of theorem 3.7. Suppose that n € €*(.J,R?) is another geometric rough path such that |||¢] ||%_H61’J, |||77|||%_H6]’J <
M so that the conditions of (2.12) are satisfied given the paths X7 = Xb®aun X¢ .= XL#aw6 je. they

satisfy the RDE driven by 1, {. Now, we may restrict to controls v satisfying ||7||%7J < L for some L > 0 by

corollary 3.5.1. Hence,

X = X| ., S eps(Sim)
and

S 0p,0(C,m)
p,J

XS, Abam)dC, / P(XT, o) dn,
0
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by proposition 2.12. Lastly, if we let U denote the set of all u such that dy-®* = u.ds and ||fy||% ; < L, then

[0S (t, x,a) —v"(t,z,a)| < sup
ueUFk

[ st e
- / FOXEm0mn Ao o) ds
/th““ AL C,
- / X0, A0 ) i,
t

bog(XLmemS Abewy _gxhmann hauy

T
< sup -th@mﬁ__;xt%%um +_Q11C’n
= s s P,
t

ueUL

b bt _X;,x,a,u,no

5 Q;D,J(C7 77)

S Q%-Hiﬁl,J(Ca n)

by the Lipschitz assumptions on f,g. Replacing n with n", where

lim Ql-HolJ(Ca ):0

n—-+00

and 1" is smooth proves the result. O

D Robust Filtering Proofs

Assumption D.1.

e w(q,R,v,u) and g(q, R,7) are continuous, bounded below and locally Lipschitz in (q, R,7v), uniformly in

u
o h(y,u) is continuous, {h(vy,u): w € U} =U for any v € T, Lipschitz in 7, uniformly in u, is bounded in
v, locally uniformly in u, and for some 6,

h
up 1)

—0
ver |[ul[®

as ||u|| = o0

e for some 0y > 01,

|f(q, R,y,u)]|
(T + [gl + [IRI[Z 4 [I7[12) [l 22 4 (1 + [q]* + [|RI[?) (1 + [|7][*)

— +00

as |q| + [|RI| + [[7]] + [Jul| = +o0
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e g satisfies
l9(g, R, 7)|
gl + (L+[[RI]) (1 + [[7][*)

— +00
as |q| + ||R|| + ||| = +oo and

inf , R, — 400
R l9(a, R, )]

as Apin(R) — 0
o infy raoeclog(q,R,Y)| — +00 as Amaz(pp’) = 1

o [|h(y,u)]] < (1— )‘maz(pp—r))HuH for all (y,u) €T xU.

Proof of corollary 4.2.2. We may obtain an upper bound for ||v||, [0,4] by an argument analogous to corollary
3.5. Also, the path R; lies in a bounded set by the ODE for R; and assumption D.1, so ||R||sc < +00, hence
|[RI]1,[0,4 < +o0. Lastly, |lg||sc < +oo by observing the differential equation for g. O

Proof of lemma 4.5. Let

so that

Solving the ODE

g —Ag—C=0
implies
g(t) = ket %

for some k. Lastly, setting g(0) = C and solving for k implies k = C25 < C, hence

g(t) < Ce' —
< Cet,
Differentiating the above and noting that ¢'(t) < C' + Ag(t) proves the result. O

Proof of theorem 4.6. Fix another rough path n € %904’ such that (without loss of generality) 01 s 5(¢,m) <1
-Hel,

and

|||C|||%-H61,Ja |||"7|||%-H61,J < M,

where M* := max{|[|¢|||1_g1. s, 1M 21_gze1, s} Also, let ¢, ¢ denote the prediction driven by the ¢,n, respec-
tively, and similarly for the value functions v¢,v". Now, let the bound M be defined by corollary 4.2.2 such
that it holds for ¢, n. Now, by (4.31), we have

/ (RrCI + Urpr) d(n—¢)r

5 ||77 - C”p,]

so that
215 [ lat =l + =l
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implying
o™ =4l o.; Sl —=<ll,.s

by Gronwall’s inequality. In light of theorem 2.12 and the above,

< 0p,0(m,€).
p,J

H / (g e )dms / (e, 1) dCs
0 0

Thus, for any terminal condition (¢, u,%,a) € J x K

t

|Un(t7,uv 27 a’) - Uc(t,/j,, Z,G’)' < sup (w(qg»Rsﬁs»Us) - w(qga Rsvvsvus)) ds

0

t t
+/ ¢(Q?,Vs)dﬂs _/ ¢(Q§”Ys)dCs +g(q6’,Ro,’Yo) _g(qgaROa'YO)
0

(/ g7 — ¢Sds + o0p.5(m, C)+IqU—qU|)
< 0p,0(m,€)

< «Q%-Hél,.](na ¢)-

where the supremum is taken over all u such that « satisfies the assumptions at the beginning of the proof. The

remainder of the proof proceeds as in theorem 3.7.
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