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Abstract

Stochastic optimal control and robust filtering is considered from the path-wise perspective. This is done

using the theory of rough paths, and a gentle introduction is given in the first section of this report. Path-

wise optimal control results are developed using this machinery and applications are then given to robust

stochastic filtering, where the filtering problem is transformed into a path-wise one. This path-wise filtering

problem is further transformed into an optimal control problem where the rough path theory is applied.
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1 Introduction

In this report, stochastic optimal control and robust filtering is studied from the path-wise perspective. This is

done most naturally under the theory of rough paths since, for example, the sample trajectories of Brownian

motion are not smooth; that is, Brownian motion is not differentiable. The Brownian sample paths are “rough”

in a precise sense, which will be made clear. Naively applying path-wise optimal control theory to the stochastic

case produces degeneracy issues that must be rectified, and this is done by introducing “cost functions”. Lastly,

“robust” stochastic filtering can be transformed into a path-wise optimal control problem, which lends itself

to the optimal control theory constructed in this paper. A “robust” point estimate can then be obtained by

solving a differential equation and an optimization problem.

1.1 A Note on Proofs

Proofs of the statements contained in this paper are relegated to the appendices, unless stated otherwise.

1.2 Statement of Authorship

The path-wise optimal control and filtering theorems in this paper were discovered by A. L. Allan and S. N.

Cohen [2], with additional lemmas and propositions introduced by J. A. Mavroforas. Moreover, the work was

reviewed by A. H. Dooley.

2 Rough Path Preliminaries

Some general results about rough path theory will be developed in this section. For a comprehensive overview

of the subject, the reader is referred to [5].

2.1 General Integration Theory

In the following, J will denote the closed interval [0, T ] and | · | will denote the Euclidean norm on Rn. We

begin with some standard definitions.

Definition 2.1. Suppose that X : J → Rn, t 7→ Xt and 0 ≤ s ≤ t ≤ T .

∆[s,t] := {(s, t) ∈ J2 : 0 ≤ s ≤ t ≤ T} (2.1)

Xs,t := Xt −Xs (2.2)

||X||p,J :=

[
sup
D

∑
|Xti,ti+1

|p
] 1

p

(2.3)

where D = (ti)
n
i=0 denotes a partition of J = [0, T ]. To be explicit, the supremum in (2.3) is being taken over

all partitions D of [a, b].
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Let us now denote the space of all continuous paths X : J → Rn with finite p-variation (2.3) by Vp-var(J,Rn).

Furthermore, let V0,p-var(J,Rn) denote its closure with respect to the p-variation seminorm || · ||p,J . Finally,

define for p ∈ [2, 3) the set C p(J,Rn) consisting of all 1
p -Hölder rough paths ζ = (ζ, ζ(2)); that is, the set of all

ζ satisfying:

ζ : J → Rn (2.4)

ζ(2) : ∆[s,t] → Rn ⊗ Rn, (s, t) 7→ ζ
(2)
s,t (2.5)

ζ
(2)
s,t = ζ(2)s,r + ζ

(2)
r,t + ζs,r ⊗ ζr,t (2.6)

|||ζ||| 1
p−Höl := ||ζ|| 1

p−Höl + ||ζ(2)|| 2
p−Höl

< +∞
(2.7)

where

||ζ|| 1
p−Höl := sup

s̸=t∈J

|ζs,t|
|t− s|

1
p

(2.8)

and

||ζ(2)|| 2
p−Höl := sup

s̸=t∈J

|ζ(2)s,t |
|t− s|

2
p

. (2.9)

The tensor product in (2.5) and (2.6) is the Cartesian tensor product. We also assume that (2.6) holds for all

r such that 0 ≤ s ≤ r ≤ t ≤ T . Equation (2.6) is called Chen’s relation and ζ(2) is called the lift (or lift) of ζ.

Moreover, we sometimes call ζ = (ζ, ζ(2)) the lift of ζ. The tensor product in (2.5) and (2.6) is the Cartesian

tensor product. We also assume that (2.6) holds for all r such that 0 ≤ s ≤ r ≤ t ≤ T . Equation (2.6) is called

Chen’s relation and ζ(2) is called the lift of ζ.

The variation of a rough path ζ = (ζ, ζ(2)) can now be defined.

Definition 2.2. Suppose that ζ = (ζ, ζ(2)) ∈ C p(J,Rn). We define the variation of ζ(2) and then the variation

of ζ:

||ζ(2)|| p
2 ,J

:=

[
sup
D

∑
|ζ(2)ti,ti+1

|
p
2

] 2
p

(2.10)

|||ζ|||p,J := ||ζ||p,J + ||ζ(2)|| p
2 ,J

(2.11)

where the supremum in (2.10) is taken over all partitions D of J .

An immediate consequence of Definition 2.2 is that rough paths have finite p-variation for p ∈ [2, 3):

Proposition 2.1. If ζ = (ζ, ζ(2)) ∈ C p(J,Rn), then |||ζ|||p,J < +∞.

We turn C p(J,Rn) into a metric space by:

Definition 2.3 (Rough Path Metrics). Suppose that ζ = (ζ, ζ(2)), η = (η, η(2)) are two rough paths. The

1
p -Hölder and p-variation metrics over the interval J are defined to be

ϱ 1
p -Höl,J(ζ,η) := ||ζ − η|| 1

p -Höl,J +
∣∣∣∣∣∣ζ(2) − η(2)

∣∣∣∣∣∣
2
p -Höl,J

(2.12)

ϱp,J(ζ,η) := ||ζ − η||p,J +
∣∣∣∣∣∣ζ(2) − η(2)

∣∣∣∣∣∣
p
2 ,J

(2.13)
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Remark 2.1 (Canonical Lift). Smooth paths ζt can be lifted in a canonical way:

ζ
(2)
s,t :=

∫ t

s

ζs,r ⊗ dζr

“Control” in the next definition is not to be confused with its meaning in optimal control theory. Our usage

of the word will be clear from the context.

Definition 2.4 (Controlled Rough Paths [6]). Let ζ ∈ C p(J,Rd) be a rough path. The space of controlled

rough paths (with respect to ζ) Dp
ζ (J,Rm) is the set of all

(X,X ′) ∈ Vp-var(J,Rm)× Vp-var(J,L(Rd,Rm))

such that the remainder term

RXs,t := Xs,t −X ′
sζs,t

has finite p
2 -variation. X

′ is called the Gubinelli derivative with respect to ζ.

Remark 2.2 (Norm on Dp). Dp
ζ (J,Rm) equipped with the norm

|(X,X ′)| := |X0|+ |X ′
0|+ ||X ′||p,J + ||RX || p

2 ,J

turns it into a Banach space.

The existence and uniqueness of rough integrals is given by the next result. The reader is referred to [6] for

a proof as it is beyond the scope of this paper.

Theorem 2.2 (Rough Integration). Recall that J = [0, T ]. Suppose p ∈ [2, 3), ζ = (ζ, ζ(2)) ∈ C p(J,Rd) and

(X,X ′) ∈ Dp
ζ (J,L(Rd,Rm)). Then∫ T

0

Xrdζr := lim
|D|→0

∑
D

[
Xtiζti,ti+1 +X ′

tiζ
(2)
ti,ti+1

]
(2.14)

exists and is unique, and is called the rough integral of X against ζ. Furthermore,∣∣∣∣∫ t

s

Xrdζr −Xsζs,t −X ′
sζ

(2)
s,t

∣∣∣∣ (2.15)

≤ C
(
||RX || p

2 ,[s,t]
||ζ||p,[s,t] + ||X ′||p,[s,t]||ζ(2)|| p

2 ,[s,t]

)
where 0 ≤ s ≤ t ≤ T and C depends only on p.

2.2 Integration Theory for Optimal Control

In the stochastic optimal control setting, one typically encounters differential equations of the form

dXs = b(Xs, γs)dt+ σ(Xs, γs)dBs

where γt is a control process and Bt is a standard Brownian motion. Naively applying path-wise optimal control

in the rough differential equation (RDE) setting, however, leads to degeneracy issues, as observed by Diehl, Friz
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and Gassiat [7] and Allan and Cohen [2]. These issues will be discussed and rectified in the next section, but

first we aim to make sense of RDEs taking the form

dXs = b(Xs, γs)ds+ λ(Xs, γs)dζs

which take us out of the standard setting.

Definition 2.5 (Rough Differential Equations). Suppose that p ∈ [2, 3), ζ ∈ C p(J,Rd) and γ ∈ V
p
2 -var(J,Rk).

We will consider rough differential equations (RDEs) of the form

dXs = b(Xs, γs)ds+ λ(Xs, γs)dζs (2.16)

with X0 = x0, where the integration λ(Xs, γs)dζs is interpreted in the sense of theorem 2.2.

Remark 2.3 (Gubinelli Derivative). Suppose that (X,X ′) ∈ Dp and λ ∈ C2
b . Then λ(X, γ) has the Gubinelli

derivative λ(X, γ)′ = ∂xλ(X, γ)X
′, where ∂xλ is the Fréchet derivative [8] in the first variable defined by

lim|h|→0
|λ(x+ h, γ)− λ(x, γ)−Ah|

|h|
= 0

for some linear transformation A.

Mirroring the proof of proposition 2.1, we have

Proposition 2.3. α-Hölder continuous paths have finite 1
α -variation, where α ∈ (0, 1).

The next lemma is standard and is stated without proof.

Lemma 2.4. If 1 ≤ p ≤ q < +∞, then V1-var ⊆ Vp-var ⊆ Vq-var.

Now we show that t 7→ ||X||1,t has finite p-variation for 1 ≤ p < +∞.

Lemma 2.5. If X ∈ V1-var(J,Rn), then t 7→ ||X||1,[0,t] has finite p-variation, for 1 ≤ p < +∞.

A proof of Jensen’s inequality can be found in [10]

Lemma 2.6 (Jensen’s Inequality). Suppose that f : Rn → R is convex and X : Ω → Rn is a random vector.

Then f(EX) ≤ Ef(X).

Lemma 2.7. If p ≥ 1 and x1, . . . , xn are non-negative numbers, then

(x1 + · · ·+ xn)
p ≤ np(xp1 + · · ·+ xpn).

The next two lemmas will be used shortly.

Lemma 2.8. Suppose that X ∈ Vp-var. Then ||X||p,J ≤ n
[∑

D ||X||pp,[ti,ti+1]

]
for any partition D = {t0 <

· · · < tn} of J .

Lemma 2.9. Suppose that d1, . . . , dn ∈ N+ and xi ∈ Rdi . Then

|(x1, . . . , xn)| ≤ |x1|+ · · ·+ |xn|.
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To simplify the notation, |Xs,t| ≲ |t− s| will mean |Xs,t| ≤ C|t− s| for some C > 0. Furthermore, the next

proposition contains new results about RDEs.

Proposition 2.10 (Regularity). Suppose that p ∈ [2, 3), ζ ∈ C p, M ∈ R+, |||ζ||| 1
p -Höl,J ≤ M , b ∈ Lipb,

ψ, λ ∈ C2
b , γ ∈ V

p
2 -var and X satisfies the RDE (2.16) with Gubinelli derivative X ′ = λ(X, γ). Then we have

the following regularity results

1. ||ψ(X, γ)′||p,J ≲ ||X||p,J + ||γ|| p
2 ,J

2.
∣∣∣∣Rψ∣∣∣∣ p

2 ,J
≲ ||X||2p,J +

∣∣∣∣RX ∣∣∣∣ p
2 ,J

+ ||γ|| p
2 ,J

3. ||X||p,J ≲ 1 + ||γ||1+pp
2 ,J

4.
∣∣∣∣RX ∣∣∣∣ p

2 ,J
≲ 1 + ||γ||2+pp

2 ,J
.

We refer the reader to [2] for proofs of the next two theorems. They are long but not difficult, and rely on

standard arguments and the results above.

Theorem 2.11 (Existence & Uniqueness). Suppose that b ∈ Lipb, λ ∈ C3
b and ζ ∈ C p. If γ ∈ V

p
2 -var and x is

fixed, then there exists a unique solution (X,X ′) ∈ Dp
ζ to the RDE

dXt = b(Xt, γs)dt+ λ(Xt, γt)dζt (2.17)

with X0 = x.

Theorem 2.12. Suppose that b ∈ Lipb, λ ∈ C3
b and the two rough paths ζ,η ∈ C p satisfy |||ζ||| 1

p -Höl,, |||η||| 1p -Höl, ≤

M , where 0 < M . If γ, ϑ ∈ V
p
2 -var and (X,X ′) = (X,λ(X, γ)) ∈ Dp

ζ , (Y, Y
′) = (Y, λ(Y, ϑ)) ∈ Dp

η , then

||X ′ − Y ′||p,J ≲ |x− y|+ ||γ − η||∞,J + ||γ − η||p,J + ϱp,J(ζ,η) (2.18)

and if ψ ∈ C3
b , ∣∣∣∣∣∣∣∣∫ ·

0

ψ(Xs, γs)dζs −
∫ ·

0

ψ(Ys, ϑs)dηs

∣∣∣∣∣∣∣∣
p,J

≲ |x− y|+ ||γ − η||∞,J + ||γ − η||p,J

+ ϱp,J(ζ,η)

(2.19)

3 Optimal Control Under Rough Paths

Here we will develop some results regarding path-wise optimal control. To motivate the introduction of regu-

larizing costs, suppose that ζt is a path with infinite 1-variation. Then the optimal control problem

v(t, x) = sup
γ

EXt,x,γ
T

governed by the dynamics dXt,x,γ
s = γs (σdBs + dζs) with Xt,x,γ

t = x, where the supremum is taken over all

controls −ε ≤ γs ≤ ε, has the solution v(t, x) = +∞ for all controls γ [2]. This is due to us being able to control

the noise term dζs; we able to take advantage of the fine structure of the path ζt since we have infinitely precise

observations.

The interpretation of the optimal control problem above is that of a trader maximizing his/her terminal

wealth Xt,x,γ
T , trading the asset over the time [t, T ], where γs denotes the shares held at time s.
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3.1 The Set-up

We now define the space of all geometric rough paths. C 0,p
g ⊂ C p will denote the ϱ 1

p -Höl closure of canonical

lifts of smooth paths. This is well-defined by the Stone-Weierstrass theorem.

Fix a geometric rough path ζ ∈ C 0,p
g (J,Rd). In this section, we will consider the optimal control problem

v(t, x) := inf
γ∈Vp/2-var

J(t, x, γ) (3.1)

where

J(t, x, γ) =

∫ T

t

f(Xt,x,γ
s , γs)ds+

∫ T

t

ψ(Xt,x,γ
s , γs)dζs + g(Xt,x,γ

T ) (3.2)

and Xt,x,γ
s satisfies the RDE (2.16) subject to Xt,x,γ

t = x. We call v(t, x), J(t, x, γ) the value function and cost

functional, respectively. It is understood that f : Rm × Rk → R, ψ : Rm × Rk → L(Rd,R) and g : Rm → R.

Lemma 3.1. Suppose the hypotheses of theorem 2.11. Then∣∣∣∣∣
∫ T

t

ψ(Xt,x,γ
s , γs)dζs

∣∣∣∣∣ ≲ 1 + ||γ||2(1+p)p
2 ,[t,T ]

. (3.3)

The lemma above allows us to place an upper bound on the magnitude of
∫ T
t
ψ(Xt,x,γ

s , γs)dζs in terms of

the control γ ∈ V
p
2 -var. This upper bound is not meant to be sharp.

Definition 3.1 (Regularizing Cost). Suppose that S ⊆ V
p
2 -var(J,Rk) is a Banach space. A regularizing cost on

S is a function

β : ∆J × V
p
2 -var(J,Rk) → [0,+∞] (3.4)

such that

1. γ 7→ βr,t(γ) is continuous

2. βr,t(γ) = +∞ on ∆J × V
p
2 -var(J,Rk)\S

3.
βr,t(γ)

||γ||2(1+p)
p
2
,[r,t]

→ +∞ as ||γ|| p
2 ,[r,t]

→ +∞.

In practice, the regularizing cost depends on the phenomena being modelled. We shall see an application

of this in the section on robust stochastic filtering where the regularizing cost takes the form of a negative

log-likelihood function.

Let V0,p-var denote the ||·||p,-closure of smooth paths in Vp-var. The value function is restated as

V (t, x) := inf
γ∈V0,

p
2
-var

{J(t, x, γ) + βt,T (γ)} . (3.5)

Now we can show that V is bounded under suitable conditions.

Proposition 3.2. If f and g in (3.2) are bounded below, then V (t, x) is bounded below.
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3.2 Dynamic Programming Principle

The dynamic programming principle is a fundamental result in optimal control. It enables us to solve problems

by breaking them down into smaller sub-problems. Since regularizing costs need not be additive i.e. βs,u+βu,t =

βs,t need not hold, it must be shown that there exists a suitable subset of additive costs so that the dynamic

programming principle can be retained.

Lemma 3.3. Suppose that S ⊆ V0, p2 -var contains all the smooth functions from J to Rk. Then

V (t, x) = inf
γ∈V0,

p
2
-var

{J(t, x, γ) + βt,T (γ)}

= inf
γ∈S

{J(t, x, γ) + βt,T (γ)} .
(3.6)

Proof. Fix γ ∈ V0,p-var and choose a sequence (γn)∞n=1 of paths in S such that ||γn − γ||∞ → 0 as n → +∞.

Then ||γn − γ|| p
2 ,J

→ 0 as n→ +∞, so (3.6) holds by theorem 2.12.

Remark 3.1. If u ∈W 1,q and γt,a,us := a+
∫ s
t
uydy, where W

1,q is a Sobolev space, then

βs,r(γ
t,a,u) := ε

∫ r

s

|uy|qdy

is clearly additive by the properties of integration. We will see that regularizing costs taking this form are

adequate for our purposes.

Definition 3.2 (Value Function). Suppose that us ∈ W1,q, where s ∈ J . Let dγt,a,us = usds, γ
t,a,u
t = a. The

value function is now defined to be

v(t, x, a) := inf
u∈Lq

{
J(t, x, γt,a,u) + ε

∫ T

t

|us|qds

}
(3.7)

Note that the regularizing cost in the definition above enables us to retain the dynamic programming

principle, the proof of which is analogous to the standard case [12].

Theorem 3.4 (Dynamic Programming Principle). Let Xt,x,a,u
s := Xt,x,γt,a,u

s . If 1 ≤ q < +∞ and r ∈ [t, T ],

then

v(t, x, a) = inf
u∈Lq

{
v(r,Xt,x,a,u

r , γt,a,ur ) +

∫ r

t

f(Xt,x,a,u
s , γt,a,us )ds

+

∫ r

t

ψ(Xt,x,a,u
s , γt,a,us )dζs + ε

∫ r

t

|us|qds
} (3.8)

3.3 Generalized Control Problem

We may generalize the value function given by (3.7). Note that we can absorb the regularizing cost into the

integral involving the function f . Thus, fixing a Banach space (U, || · ||U ), we may reformulate the optimal

control problem as

J(t, x, a, u) :=

∫ T

t

f(Xt,x,a,u
s , γt,a,us )ds

+

∫ T

t

ψ(Xt,x,a,u
s , γt,a,us )dζs + g(Xt,x,a,u

T , γt,a,uT )

(3.9)
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where

dXt,x,a,u
s = b(Xt,x,a,u

s , γt,a,us )ds+ λ(Xt,x,a,u
s , γt,a,us )dζs (3.10)

dγt,a,us = h(γt,a,us , us)ds (3.11)

u : J → U (3.12)

with the value function

v(t, x, a) := inf
u∈L∞

J(t, x, a, u). (3.13)

The following assumptions (appendix (C.1)), lemma and corollary are required for the main results in the

next section.

Lemma 3.5. Assume (C.1). Then for some 0 < C < +∞,∣∣∣∣∣
∫ T

t

ψ(Xt,x,a,u
s , γt,a,us )dζs

∣∣∣∣∣ ≤ C +
1

2

∫ T

t

f(Xt,x,a,u
s , γt,a,us , us)ds. (3.14)

Corollary 3.5.1. Suppose that K ⊆ Rm × Rk is compact. Then there exists an M > 0 such that when

(t, x, a) ∈ J ×K, the controls u ∈ U may be restricted to the ones satisfying ||γt,a,u|| p
2 ,J

≤M .

3.4 Rough HJB Equation

We now derive the rough Hamilton-Jacobi-Bellman (HJB) equation. Fix a geometric rough path ζ = (ζ, ζ(2)) ∈

Dp and a sequence (ηnt )
∞
n=1 of smooth paths such that ηnt → ζt as n → +∞. We lift ηnt into rough path space

by defining

(ηn)
(2)
s,t =

∫ t

s

ηns,u ⊗ ηnu

and set

dXt,x,a,u,n
s = b(Xt,x,a,u,n

s , γt,a,us )ds+ λ(Xt,x,a,u,n
s , γt,a,us )dηns (3.15)

so letting n→ +∞ yields (3.10) by theorem 2.11, where ηn = (ηn, (ηn)(2)) and

(
Xt,x,a,u,n, (Xt,x,a,u,n)′

)
=
(
Xt,x,a,u,n, λ(Xt,x,a,u,n, γt,a,u)

)
. (3.16)

Furthermore, the integral in (3.15) is calculated in the Riemann-Stieltjes sense.

The rough HJB equation derived by firstly solving (3.15) using the results in [4] and then taking the limit

as n→ +∞. The above is now stated as a result.

Theorem 3.6 (Rough HJB Equation). Suppose (3.9) - (3.13) at the beginning of §3.3. Then

−dv − b · ∇xvdt− inf
u∈U

{h · ∇av + f} dt− (λ · ∇xv + ψ) dζ = 0 (3.17)

subject to

v(T, x, a) = g(x, a) (3.18)

where ∇y denotes the Laplacian with respect to the variable y.
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Before showing that v in theorem 3.17 is the unique viscosity solution, we make the following definition.

Definition 3.3. Suppose that vη
n → vζ as n → +∞ in the sense of theorem 3.6. Then vζ solves (3.17) if

vη
n → vζ locally uniformly such that ηn → ζ with respect to the 1

p -Hölder rough path metric ϱ 1
p−Höl.

Theorem 3.7. Suppose assumption C.1. Then the value function (3.13) solves (3.17), (3.18) in the sense of

definition 3.3. Furthermore, for each fixed (t, x, a), the map ζ 7→ vζ(t, x, a) is uniformly continuous with respect

to the rough path metrics ϱ 1
p−Höl,J and ϱp,J , where ζ ∈ C 0,p

g (J,Rd).

4 Robust Filtering

Stochastic filtering enables us to make inferences about the state of a “signal process” that is not directly

observed; more rigorously, we make an inference about the “signal process” dSt = αtStdt + σtdB
1
t through

our observations dYt = ctStdt + dB2
t . These inferences, however, require knowledge of the parameters αt, σt

occurring in the signal which causes difficulties in practice. The filtering problem has been well studied though

[3] and various methods exist for handling inferences and parameter estimates. Our main focus will be on

“robust” filtering, where an estimate of the current state of the signal is made through the observation process

and is achieved by penalizing bad parameter estimates in an “intelligent” way. Moreover, as we will see, path-

wise filtering problems can be transformed into path-wise optimal control problems, enabling us to use the

results in section §3 to find a solution.

4.1 Kalman-Bucy Filter

We will make use of the Kalman-Bucy filter and it takes the form

dSt = αtStdt+ σtdB
1
t (4.1)

dYt = ctStdt+ dB2
t (4.2)

where (4.1) is the signal process and (4.2) is the observation process. We assume St is Rm-valued, Yt is Rd-

valued, Y0 = 0, S0 ∼ N(µ0,Σ0), α : J → Rm×m, σ : J → Rm×l and c : J → Rd×m. Furthermore, we assume

that the quadratic covariation of the Brownian motions B1
t , B

2
t satisfy

d⟨B1, B2⟩t = ρtdt

where ρt ∈ Rl×d and

I − ρtρ
⊤
t

is positive semi-definite for all t.

Now, let Yt denote the completed filtration generated by the observation process Yt; that is, Yt is the

completion of the sigma algebra generated by (Ys)s≤t. Lastly, the prediction

qt = E [St|Yt] (4.3)

9



satisfies the stochastic differential equation

dqt = αtqtdt+
(
Rtc

⊤
t + σtρt

)
(dYt − ctqtdt) (4.4)

and Rt = E
[
(St − qt)(St − qt)

⊤|Yt
]
satisfies the Riccati equation

dRt
dt

= σtσ
⊤
t + αtRt +Rtα

⊤
t −

(
Rtc

⊤
t + σtρt

) (
ctRt + ρ⊤t σ

⊤
t

)
. (4.5)

4.2 Robust Filtering

We now develop the machinery for our robust filtering problem, starting with controls and convex expectations.

Let γt := (α, σ, c, ρ)t ∈ Γ denote our controls, where

Γ := Rm×m × Rm×l × Rd×m ×Υ

and

Υ :=
{
ρt ∈ Rl×d : I − ρtρ

⊤
t is positive definite

}
.

If φ : Rm → R is a bounded Borel function, then we define the convex expectation

E (φ(St)|Yt) := ess sup
(γ,µ0,Σ0)

{
Eγ,µ0,Σ0 [φ(St)|Yt]−

(
1

k1
β(γ, µ0,Σ0|Yt)

)k2}
(4.6)

for k1 > 0 and k2 ≥ 1.

The admissible controls and penalty function (regularizing cost) are defined as:

Definition 4.1 (Admissible Controls). A will denote the space of all admissible controls γt ∈ Γ such that

γ : J → Γ is absolutely continuous with bounded derivative.

Definition 4.2 (Penalty Function). The penalty function β will take the form of a negative log-likelihood

function; that is,

βt(γ, µ0,Σ0|Yt) = − ln (πt(γ, µ0,Σ0)Lt(γ, µ0,Σ0|Yt)) (4.7)

where π is the prior density and L is the likelihood function.

Remark 4.1 (Robust Point Estimate & Confidence Interval). The definitions above permit the construction of

a robust point estimate and a confidence interval, given by

argmin
ξ∈R

E
(
(φ(St)− ξ)2|Yt

)
(4.8)

and

[−E (−φ(St)|Yt) , E (φ(St)|Yt)] , (4.9)

respectively.

To make some progress, we need the following assumption:
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Assumption 4.1. We will assume that the log prior density takes the form

− ln(πt(γ, µ0,Σ0)) =

∫ t

0

z(qs, Rs, γs)ds+ g(µ0,Σ0) (4.10)

Now, the log-likelihood function Lt(·) can be represented as a Radon-Nikodym derivative

Lt(γ, µ0,Σ0|Yt) =
(
dPγ,µ0,Σ0

dPγ∗,µ∗
0 ,Σ

∗
0

)
Yt

(4.11)

where γ∗, µ∗
0,Σ

∗
0 are fixed reference parameters. It turns out that an explicit expression for the likelihood

function (4.11) can be found.

The innovation process [3] is given by

dVs = dYs − csqsds (4.12)

and is a Yt-adapted Brownian motion under Pγ,µ0,Σ0 and the conditional mean and expectation process, q∗, V ∗,

respectively, satisfy

dVs = dV ∗
s − (csqs − c∗sq

∗
s ) ds. (4.13)

By Girsanov’s theorem [9], it follows that

Lt(γ, µ0,Σ0|Yt) = exp

(∫ t

0

(csqs − c∗sq
∗
s ) · dV ∗

s − 1

2

∫ t

0

|csqs − c∗sq
∗
s |2ds

)
(4.14)

and substituting dV ∗
s = dYs − c∗sq

∗
sds into the above implies

−lnLt(γ, µ0,Σ0|Yt) = −
∫ t

0

(csqs − c∗sq
∗
s ) · dYs +

1

2

∫ t

0

(
|csqs|2 − |c∗sq∗s |2

)
ds

= −
∫ t

0

csqs · dYs +
1

2

∫ t

0

|csqs|2ds+ constant

(4.15)

since the reference parameters are assumed to be fixed. In the following, we will omit this constant and assume

our penalty function is correct up to an additive constant. In numerical computations, the constant may be

chosen to ensure the penalty always takes the value 0 at its minimum [2].

We will now transform the Itô integral occurring in (4.15) into a Stratonovich integral in anticipation of the

path-wise optimal control problem. Hence

−
∫ t

0

csqs · dYs = −
∫ t

0

csqs ◦ dYs +
1

2
⟨cq, Y ⟩t. (4.16)

It can also be shown [2] that

⟨cq, Y ⟩t =
∫ t

0

trace
(
cs(Rsc

⊤
s + σsρs)

)
ds. (4.17)

This implies

−lnLt(γ, µ0,Σ0|Yt) = −
∫ t

0

csqs ◦ dYs +
1

2

∫ t

0

(
|csqs|2 + trace

(
cs(Rsc

⊤
s + σsρs)

))
ds. (4.18)

Now, set

w(q,R, γ) = z(q,R, γ) +
1

2

(
|cq|2 + trace

(
c(Rc⊤ + σρ)

))
11



and

ψ(q, γ) = −cq

so that

E (φ(St)|Yt) = ess sup
γ,µ0,Σ0

{
E [φ(St)|Yt]

−
(

1

k1

(∫ t

0

w(qs, Rs, γs)ds+

∫ t

0

ψ(qs, γs) ◦ dYs + g(µ0,Σ0)

))k2 } (4.19)

4.3 Lifting Into Rough Path Space

In practice, filtering is performed with respect to a fixed observation path. Thus, one might want to fix a path

ζt = Yt(ω) and solve the filtering problem with respect to it. Doing so requires ζt to be lifted into rough path

space, however. Define the lift of ζt by

ζ
(2)
s,t =

∫ t

s

Ys,r(ω)⊗ ◦dYr(ω) (4.20)

so that ζ = (ζ, ζ(2)) ∈ C 0,p
g for p ∈ (2, 3). Then the prediction qt satisfies the rough differential equation

dqt = αtqtdt+
(
Rtc

⊤
t + σtρt

)
(dζt − ctqtdt) (4.21)

and

qs,t =

∫ t

s

(
Rrc

⊤
r + σrρr

)
dζr +O(|t− s|)

=
(
Rrc

⊤
r + σrρr

)
ζs,t +O(|t− s|)

(4.22)

by theorem 2.2. Hence the Gubinelli derivative of ψ(q, γ) = −cq satisfies ψ(q, γ)′ = −c
(
Rrc

⊤
r + σrρr

)
. Further-

more, ∫ ·

0

ψ(qs, γs)dζs

exists as a rough integral and coincides with the Stratonovich integral.

4.4 The Optimal Control Problem

Now we are ready to transform the filtering problem into a path-wise optimal control problem. Let

kt(µ,Σ) := inf

{∫ t

0

w(qs, Rs, γs)ds+

∫ t

0

ψ(qs, γs)dζs + g(q0, R0)

}
(4.23)

where the infimum is taken over all γ, q0, R0 such that (qt, Rt) = (µ,Σ). Additionally, we set g(µ0,Σ0) = +∞

for (µ0,Σ0) ̸∈ Rm × Sm+ , where Sm+ is the set of all m ×m symmetric, positive-definite matrices over R. This

allows us to rewrite the convex expectation (4.19) as

Lemma 4.1. Let ϕ(·|µ,Σ) denote the probability density function of a N(µ,Σ) distribution. If ζ = (ζ, ζ(2)) is

defined as above, then for any bounded measurable function φ we have

E (φ(St)|Yt) = sup

{∫
Rm

φ(x)dϕ(x|µ,Σ)−
(

1

k1
kt(µ,Σ)

)k2}
(4.24)

where the supremum is taken over all (µ,Σ) ∈ Rm × Sm+ .
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The proof of lemma 4.1 can be found in [1]. Thus, for qt,µ,Σ, Rt,µ,Σ that satisfy (qt,µ,Σt , Rt,µ,Σt ) = (µ,Σ), we

have the optimal control problem

kt(µ,Σ) = inf
γ

{∫ t

0

w(qt,µ,Σs , Rt,µ,Σs , γs)ds+

∫ t

0

ψ(qt,µ,Σs , γs)dζs + g(qt,µ,Σ0 , Rt,µ,Σ0 )

}
. (4.25)

Note that the optimal control problem in (4.25) is lacking a regularizing cost. Again, we must introduce a

regularizing cost to prevent degeneracy. Consider the dynamics

dγt,a,us = h(γt,a,us , us)ds

where

h : Γ× U → U

u : J → U is bounded

and U := Rm×m × Rm×l × Rd×m × Rl×d. The new terminal condition is

(qt,µ,Σ,a,ut , Rt,µ,Σ,a,ut , γt,a,ut ) = (µ,Σ, a). (4.26)

We may allow w and g to depend on γ0 without affecting the proof of lemma 4.1 [2]. Thus,

k̃t(µ,Σ) := inf
a∈Γ

v(t, µ,Σ, a) (4.27)

where

v(t, µ,Σ, a) := inf
u bounded

{∫ t

0

w(qt,µ,Σ,a,us , Rt,µ,Σ,a,us , γt,a,us , us)ds

+

∫ t

0

ψ(qt,µ,Σ,a,us , γt,a,us )dζs + g(qt,µ,Σ,a,u0 , Rt,µ,Σ,a,u0 , γt,a,u0 )

}
is our new value function.

4.5 The Associated HJB Equation

We are now in a position derive a rough HJB equation for the filtering problem. To simplify the notation, we

write the following:

dqt,µ,Σ,a,us = bµ(q
t,µ,Σ,a,u
s , Rt,Σ,a,us , γt,a,us )ds+ λ(Rt,Σ,a,us , γt,a,us )dζs, q

t,µ,Σ,a,u
t = µ

dRt,Σ,a,us = bΣ(R
t,Σ,a,u
s , γt,a,us )ds, Rt,Σ,a,ut = Σ

dγt,a,us = h(γt,a,us , us)ds, γ
t,a,u
t = a

where

γ = (α, σ, c, ρ)

bµ(q,R, γ) := αq −
(
Rc⊤ + σρ

)
cq

bΣ(R, γ) := σσ⊤αR+Rα⊤ −
(
Rc⊤ + σρ

) (
cR+ ρ⊤σ⊤)

λ(R, γ) := Rc⊤ + σρ.
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Remark 4.2 (Backward Control Problem). The dynamics above define a “backward” control problem; that is,

the equations above satisfy a terminal condition at time t and a cost is prescribed to the initial values q0, R0, γ0

by the function g occurring in v(t, µ,Σ, a) defined in the previous section. Thus, some work needs to be done

to transform the problem into one where the results of §3 can be applied.

Let us define the following:

||A|| := trace(A⊤A)

||γ|| := max{||α||, ||σ||, ||c||, ||ρ||}

and if A ∈ Sm+ , let λmin(A), λmax(A) denote the minimum and maximum eigenvalue of A, respectively. We will

also require some assumptions (appendix D.1).

The assumption {h(γ, u) : u ∈ U} = U is used to guarantee the existence of a control u such that the state

trajectories remain inside their respective domains, irrespective of the terminal condition (t, µ,Σ, a), ensuring

that the value function v is finite [2].

The next two results are analogous to lemma 3.5 and corollary 3.5.1. The purpose of these is to derive a

result similar to theorem 3.7, which will be the main statement of this section.

Lemma 4.2. Suppose assumption D.1. Then for any terminal condition (t, µ,Σ, a) and control u we have∣∣∣∣∫ t

0

ψ(qs, γs)dζs

∣∣∣∣ ≤ C +
1

2

(∫ t

0

w(qs, Rs, γs)ds+ g(q0, R0, γ0)

)
.

The proof is long and relies on the simplifying notation in the beginning of this section, as well as assumption

D.1. The idea is to use theorem 2.2 and to bound estimates involving |ψ(q, γ)|, ||ψ(q, γ)′||,
∣∣∣∣Rψ(q,γ)∣∣∣∣ p

2 ,[0,t]
and

||ψ(q, γ)′||p,[0,t] in a special way. Thus, it is omitted and the reader is referred to [2].

Corollary 4.2.2. Suppose that K ⊆ Rm × Sm+ × Γ is compact. Then one may restrict to controls u such that

the norms ||q||∞, ||R||∞, ||γ||∞, ||R||1,[0,t] , ||γ||1,[0,t] are bounded by 0 < M < +∞ when (t, µ,Σ, a) ∈ [0, T ]×K.

To derive the HJB equation, we proceed as we did in §3.4; we approximate ζ = (ζ, ζ(2)) with smooth functions

ηn = (ηn, (ηn)(2)) by the Stone-Weierstrass theorem, solve the problem with respect to ηn = (ηn, (ηn)(2)) using

classical methods and then take the rough HJB equation as the limiting case.

Before stating the HJB equation, let A : B denote the inner product between two elements A,B of the same

inner product space. If A,B are matrices, define their inner product A : B := trace(A⊤B).

Theorem 4.3 (The HJB Equation). Suppose assumption D.1. Then the value function v satisfies

dv + (bµ · ∇µv + bΣ : ∇Σv) dt+ sup
u∈U

{h : ∇av − w} dt+ (λ · ∇µv − ψ) dζ = 0 (4.28)

subject to

v(0, µ,Σ, a) = g(µ,Σ, a). (4.29)

To guarantee a unique solution to (4.28), one should restrict to solutions ṽ(t, µ,Σ, a) that approach ±∞ as

|µ| + ||Σ|| + ||a|| → +∞, λmin(Σ) → 0 and when ρ is random, as λmax(ρ
⊤ρ) → 1. Denote this space of value

functions by H. The reasoning, which is beyond the scope of this paper, is given by [1].

Two additional results are required before proving the main result:
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Theorem 4.4 (Young Integral). Suppose that V, W are Banach spaces and 1 ≤ p, q ≤ +∞ satisfy 1
p + 1

q > 1.

If X ∈ Vp-var(J, V ) and Y ∈ Vq-var(J,L(V,W )), then for each t ∈ J ,∫ t

0

YsdXs = lim
|D|→0

∑
D
Yti(Xti+1 −Xti) (4.30)

and ∣∣∣∣∣∣∣∣∫ ·

0

(Ys − Y0) dXs

∣∣∣∣∣∣∣∣
p,J

≲ ||Y ||q,J ||X||p,J . (4.31)

A proof of this can be found in [11].

Lemma 4.5 (Grönwall’s Inequality). Suppose that f(t) ≥ 0 and f(t) ≤ C + A
∫ t
0
f(s)ds for some A,C ∈ R+

holds for all t ∈ J . Then f(t) ≲ eAt for all t ∈ J .

We close this section with the main theorem:

Theorem 4.6. The value function v in theorem 4.3 solves the HJB in the sense of definition 3.3. Also,

the map ζ 7→ vζ(t, µ,Σ, a), ζ ∈ C 0,p
g is locally uniformly continuous with respect to the rough path metrics

ϱ 1
p -Höl,J(·, ·), ϱp,J(·, ·), locally uniformly in (t, µ,Σ, a).

5 Research Questions

We have seen how path-wise optimal control theory under rough paths is degenerate when no modifications

are made to penalize the variation of the path ζ. We have also seen how this can be rectified by introducing

a regularizing cost. By restricting to a suitable class of regularizing costs, we were able to retain the dynamic

programming principle, which permitted the derivation of the rough HJB equation. Lastly, we showed that

solutions to the HJB equation are unique in a certain sense (theorem 3.7). Naturally, one might ask whether

there exists a “rough” version of the verification theorem, i.e. if one has a function w and a control γ∗ which

satisfies the HJB equation, then w is the unique value function and γ∗ is the optimal control, suggesting future

research.

We have also seen how robust stochastic filtering can be treated from the path-wise optimal control per-

spective. Another natural question, as remarked by [2], is about the convergence properties of the convex

expectation E (φ(St)|Yt) to the actual expectation E [φ(St)|Yt]. Furthermore, the performance of the path-wise

robust filter in practice is also of interest, which also suggests an area of future research.
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Appendices

A Rough Path Motivation

Example A.1 (Rough path motivation). Consider a differentiable function

f : Rn → R

and a continuous path

X : J → Rn.

Taylor’s theorem implies for s ≤ r

f(Xr) = f(Xs) +∇f(Xs) · (Xr −Xs) + o(|Xr −Xs|).

If we ignore the o(|Xr −Xs|) term and assume X is “regular enough”, then∫ t

s

f(Xr)dXr ≈ f(Xs)(Xt −Xs) +∇f(Xs)

∫ t

s

(Xr −Xs)⊗ dXr

where u⊗ v := uv⊤ is the Cartesian tensor in Rn, u, v ∈ Rn. Let us temporarily define

X
(2)
s,t =

∫ t

s

(Xr −Xs)⊗ dXr

to be the “lift” of the path X. This additional information allows us to obtain a better estimate of the integral∫ t
s
f(Xr)dXr. In fact, the notion of the “lift” of a rough path is necessary for our integration theory to hold,

giving rise to the existence and uniqueness of rough integrals and rough differential equations.

Also, a tedious calculation shows for s ≤ u ≤ t

X
(2)
s,t = X(2)

s,u +X
(2)
u,t +Xs,u ⊗Xu,t.

The identity above is known as Chen’s relation.

B Rough Path Theory Proofs

Proof of proposition 2.1. Note that ∑
D

|ζti,ti+1
|p =

∑
D

|ζti,ti+1
|p

ti+1 − ti
(ti+1 − ti)

≤
∑
D

||ζ||p1
p−Höl

(ti+1 − ti)

= ||ζ||p1
p−Höl

∑
D

(ti+1 − ti)

= ||ζ||p1
p−Höl

· T

< +∞.
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Taking the supremum over all D shows that

||ζ||pp,J ≤ ||ζ||p1
p−Höl

· T

is finite, hence

||ζ||p,J ≤ ||ζ|| 1
p−Höl · T

1
p

is also finite. An analagous argument applied to ζ(2) shows that

||ζ(2)|| p
2 ,J

< +∞.

Thus, in light of the above and (2.11), |||ζ|||p,J < +∞.

Proof of proposition 2.3. By α-Hölder continuous, we mean paths X : J → Rn such that

sup
s̸=t∈J

|Xs,t|
|t− s|α

< +∞.

Applying the same method of proof as in proposition 2.1 gives the result.

Proof of lemma 2.5. Define

f : t 7→ ||X||1,[0,t] .

It is not hard to show that f is monotonically increasing on J . With this in mind, it follows that for any

partition D = {0 = t0 < · · · < tn = T}∑
D

|f(ti+1)− f(ti)| =
∑
D
f(ti+1)− f(ti)

= f(T )− f(0)

< +∞

so f has finite 1-variation, hence finite p-variation by lemma 2.4.

Proof of lemma 2.7. Consider the probability measure on Ω = {x1, . . . , xn} defined by

P{xi} =
1

n
.

Since the map t 7→ tp is convex (for t ≥ 0), we have(
x1 + · · ·+ xn

n

)p
=

1

np
(x1 + · · ·+ xn)

p

≤ 1

n
(xp1 + · · ·+ xpn).

by Jensen’s inequality 2.6. Multiplying through the above by np > 1 yields

(x1 + · · ·+ xn)
p ≤ np−1(xp1 + · · ·+ xpn)

< np(xp1 + · · ·+ xpn).
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Proof of lemma 2.8. Fix a partition D = {t0 < · · · < tn} of J and let Dk = {sk0 < · · · < sknk
} be an partition of

[tk, tk+1] for k = 1, . . . , n. Lemma 2.7 above implies

∑
D

|Xti+1 −Xti |p ≤
n−1∑
k=0

[
nk−1∑
i=0

|Xski+1
−Xski

|

]p

≤ np
n−1∑
k=0

nk−1∑
i=0

|Xski+1
−Xski

|p

≤ np
n−1∑
k=0

||X||pp,[ti,ti+1]

proving the result.

Proof of lemma 2.9. The proof proceeds by applying the triangle inequality to

(x1, . . . , xn) = (x1, 0) + (0, x2, 0) + · · ·+ (0, xn).

Proof of proposition 2.10. The regularity results above hold for any sub-interval [s, t] of J = [0, T ] so we

will restrict ourselves to [s, t]. Recall lemmas 2.4, 2.5, 2.7, 2.8 and 2.9. Since ψ(X, γ)′ = ∂xψ(X, γ)X
′ =

∂xψ(X, γ)λ(X, γ) and ψ, λ ∈ C2
b , it follows that that ∂xψ, λ are Lipschitz continuous due to their bounded

derivatives. To simplify the notation further, let ∆t
sX := Xs,t. Then

|∆t
sψ(X, γ)

′| ≲ |(Xs,t, γs,t)|

≲ |Xs,t|+ |γs,t|

≲ ||X||p,[s,t] + ||γ|| p
2 ,[s,t]

so ||ψ||p,[s,t] ≲ ||X||p,[s,t] + ||γ|| p
2 ,[s,t]

, proving (1).

To prove (2) we expand Rψ using Taylor’s theorem, i.e.

Rψs,t = ∆t
sψ(X, γ)− ψ(Xs, γs)

′(Xs,t, γs,t)

=
1

2
∂2xψ(Xs + hXs,t, γs)(Xs,t, γs,t)

⊗2
(B.1)

for some h ∈ [0, 1]. Before proceeding, note that p 7→ ||X||p,[s,t] is non-increasing for any path X. Hence

|Rψs,t| ≲ |(Xs,t, γs,t)|2

≲ ||X||2p,[s,t] + ||γ|| p
2 ,[s,t]

≲ ||X||2p,[s,t] +
∣∣∣∣RX ∣∣∣∣ p

2 ,[s,t]
+ ||γ|| p

2 ,[s,t]

by (B.1).
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Now we prove (3). By theorem 2.2 and since b ∈ Lipb, we have

|RXs,t| = |Xs,t −X ′
sζs,t|

=

∣∣∣∣∫ t

s

b(Xu, γu)du+

∫ t

s

λ(Xu, γu)dζu − λ(Xs, γs)ζs,t

∣∣∣∣
≤
∣∣∣∣∫ t

s

λ(Xu, γu)dζu − λ(Xs, γs)ζs,t − λ(Xs, γs)
′ζ

(2)
s,t

∣∣∣∣
+

∣∣∣∣∫ t

s

b(Xu, γu)du

∣∣∣∣+ ∣∣∣λ(Xs, γs)
′ζ

(2)
s,t

∣∣∣
≲
∣∣∣∣Rλ∣∣∣∣ p

2 ,[s,t]
||ζ||p,[s,t] + ||λ(X, γ)′|| p

2 ,[s,t]

∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣
p
2 ,[s,t]

+ |t− s|+
∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣

p
2 ,[s,t]

.

In light of (1), (2) and the above, it follows that∣∣∣∣RX ∣∣∣∣ p
2 ,[s,t]

≲
(
||X||2p,[s,t] +

∣∣∣∣RX ∣∣∣∣ p
2 ,[s,t]

+ ||γ|| p
2 ,[s,t]

)
||ζ||p,[s,t]

+
(
||X||p,[s,t] + ||γ|| p

2 ,[s,t]

) ∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣
p
2 ,[s,t]

+ |t− s|+
∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣

p
2 ,[s,t]

≲
(
||X||2p,[s,t] +

∣∣∣∣RX ∣∣∣∣ p
2 ,[s,t]

+ ||γ|| p
2 ,[s,t]

)
||ζ||p,[s,t]

+
(
1 + ||X||2p,[s,t] + ||γ|| p

2 ,[s,t]

) ∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣
p
2 ,[s,t]

+ |t− s|+
∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣

p
2 ,[s,t]

.

(B.2)

Looking at the proof of proposition 2.1, we see that ||ζ||p,[s,t] ≤M |t− s|
1
p , and similarly for ζ(2). Also, we saw

in the proof of (2) above that

|RXs,t| ≲ ||X||2p,J + ||γ|| p
2 ,J

so we may drop
∣∣∣∣RX ∣∣∣∣ p

2 ,[s,t]
from the right-hand side in (B.2). Supposing without loss of generality that

||ζ||p,[s,t] ,
∣∣∣∣ζ(2)∣∣∣∣ p

2 ,[s,t]
≤ 1

2 whenever |t − s| < δ (we can do this and extend to J = [0, T ] via lemma 2.8), we

have ∣∣∣∣RX ∣∣∣∣ p
2 ,[s,t]

≲
(
||X||2p,[s,t] + ||γ|| p

2 ,[s,t]

)
||ζ||p,[s,t]

+
(
1 + ||X||2p,[s,t] + ||γ|| p

2 ,[s,t]

) ∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣
p
2 ,[s,t]

+ |t− s|+
∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣

p
2 ,[s,t]

(B.3)

and by definition of
∣∣∣∣RX ∣∣∣∣ p

2 ,[s,t]

||X||p,[s,t] ≲ ||ζ||p,[s,t] +
∣∣∣∣RX ∣∣∣∣ p

2 ,[s,t]
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hence

||X||p,[s,t] ≲ ||ζ||p,[s,t] +
∣∣∣∣RX ∣∣∣∣ p

2 ,[s,t]

≲ ||ζ||p,[s,t] +
(
||X||2p,[s,t] + ||γ|| p

2 ,[s,t]

)
||ζ||p,[s,t]

+
(
1 + ||X||2p,[s,t] + ||γ|| p

2 ,[s,t]

) ∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣
p
2 ,[s,t]

+ |t− s|+
∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣

p
2 ,[s,t]

.

Expanding the right-hand side and noting that ||X||2p,[s,t] ||ζ||p,[s,t] ≤ ||X||2p,[s,t] since ||ζ||p,[s,t] <
1
2 , we get

||X||p,[s,t] ≲
(
1 + ||γ|| p

2 ,[s,t]

)(
||ζ||p,[s,t] +

∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣
p
2 ,[s,t]

+ |t− s|
)
+ ||X||2p,[s,t] .

Let I ⊆ [s, t] denote a sub-interval such that ||X||p,I <
1
2 and set r equal to the length of I. Then

||X||p,I ≲
(
1 + ||γ|| p

2 ,I

)(
||ζ||p,I +

∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣
p
2 ,I

+ |I|
)
+ ||X||2p,I

≲ 2
(
1 + ||γ|| p

2 ,I

)(
||ζ||p,I +

∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣
p
2 ,I

+ |I|
)

≲
(
1 + ||γ|| p

2 ,I

)(
M(δ∗)

1
p +M(δ∗)

2
p + δ∗

)
≲ 1 + ||γ|| p

2 ,I
.

where |I| = r. Now we extend to J = [0, T ]. Set δ∗ = min{δ, r} and choose a partition of J as in lemma 2.8

such that the mesh size that is lesser than δ∗. Then(
1 + ||γ|| p

2 ,I

)p
≤ 2p

(
1 + ||γ||pp

2 ,I

)
by lemma 2.7, so

||X||p,J ≲
∑
D

(
1 + ||γ||pp

2 ,[ti,ti+1]

)
≲ 1 + ||γ||pp

2 ,J

but 1 + ||γ||pp
2 ,J

≲ 1 + ||γ||1+pp
2 ,J

, proving (3).

To prove (4) we use (B.3) and approach the situation in an analogous fashion, arriving at the inequality∣∣∣∣RX ∣∣∣∣ p
2 ,J

≲ 1 + ||γ||p/2p
2 ,J

≲ 1 + ||γ||2+pp
2 ,J

.
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C Optimal Control Proofs

Proof of lemma 3.1. By theorem 2.2 and proposition 2.10, we have∣∣∣∣∣
∫ T

t

ψ(Xt,x,γ
s , γs)dζs

∣∣∣∣∣ ≲ ∣∣∣∣Rψ∣∣∣∣ p2 ,[t,T ]
||ζ||p,[t,T ] + ||ψ′||p,[t,T ]

∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣
p
2 ,[t,T ]

+ |ψ(x, γt)ζt,T |+ |ψ(x, γt)′ζ(2)t,T |

≲
(∣∣∣∣Xt,x,γ

∣∣∣∣2
p,[t,T ]

+
∣∣∣∣RX ∣∣∣∣ p

2 ,[t,T ]
+ ||γ|| p

2 ,[t,T ]

)
||ζ||p,[t,T ]

+
(∣∣∣∣Xt,x

∣∣∣∣
p,[t,T ]

+ ||γ|| p
2 ,[t,T ]

) ∣∣∣∣∣∣ζ(2)∣∣∣∣∣∣
p
2 ,[t,T ]

+ |ψ(x, γt)ζt,T |+ |ψ(x, γt)′ζ(2)t,T |.

Now, |ψ(x, γt)ζt,T |+ |ψ(x, γt)′ζ(2)t,T | is a constant and∣∣∣∣RX ∣∣∣∣ p
2 ,[t,T ]

≲ 1 + ||γ||2+pp
2 ,[t,T ] (C.1)

||X||p,[t,T ] ≲ 1 + ||γ||1+pp
2 ,[t,T ] (C.2)

so lemma 2.7 applied to the square of the right-hand side of (C.2) gives (3.3).

Proof of proposition 3.2. By propositions 2.10 and 3.1 we have∣∣∣∣∣
∫ T

t

ψdζs

∣∣∣∣∣ ≲ 1 + ||γ||2(1+p)p
2 ,[t,T ]

≲ 1 +
βt,T (γ)

2

so

J(t, x, γ) + βt,T (γ) ≥
∫ T

t

fds+ g(Xt,x,γ
T ) +

βt,T (γ)

2
− C

for some C > 0, proving the result.

Assumption C.1. We will assume the following:

1. b ∈ Lipb and λ, ψ ∈ C3
b

2. f(x, a, u) and g(x, a) are continuous, bounded below, Lipschitz continuous in (x, a) and f is uniformly

continuous in u

3. h(a, u) is continuous, Lipschitz continuous in a, uniformly continuous in u, is bounded in a, locally uni-

formly in u, and for some δ ≥ 1

sup
a∈Rk

|h(a, u)|
||u||δU

→ 0

as ||u||U → +∞

4. for the same δ above,

inf
x∈Rm,a∈Rk

|f(x, a, u)|
||u||2δ(1+p)U

→ +∞

as ||u||U → +∞
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Proof of lemma 3.5. Note again that p 7→ ||γ||p,J is non-increasing for 1 ≤ p < +∞. By lemma 3.1 and Hölder’s

inequality we have ∣∣∣∣∣
∫ T

t

ψ(Xt,x,a,u
s , γt,a,us )dζs

∣∣∣∣∣ ≤ C
(
1 +

∣∣∣∣γt,a,u∣∣∣∣2(1+p)p
2 ,[t,T ]

)
≤ C

(
1 +

∣∣∣∣γt,a,u∣∣∣∣2(1+p)
1,[t,T ]

)
= C

1 +

[∫ T

t

|h(γt,a,us , us)|ds

]2(1+p)
≤ C

(
1 + T

2(1+p)

p′

∫ T

t

|h(γt,a,us , us)|2(1+p)ds

)

since T − t ≤ T , where p′ is the Hölder conjugate of 2(1 + p). The result now follows by assumption C.1.

Proof of corollary 3.5.1. By lemma 3.5 we have

J(t, x, a, u) ≥ 1

2

∫ T

t

f(Xt,x,a,u
s , γt,a,us , us)ds− C̃

for some C̃ > 0. If we fix u∗ ∈ U , then we may ignore all controls u that satisfy

1

2

∫ T

t

f(Xt,x,a,u
s , γt,a,us , us)ds− C̃ ≥ sup

(t∗,x∗,a∗)

J(t∗, x∗, a∗, u∗).

Thus, the proof of lemma 3.5 also gives an upper bound on ||γt,a,u|| p
2 ,J

. The result holds by assumption C.1

and since u∗ is arbitrary.

Proof of theorem 3.7. Suppose that η ∈ C 0,p
g (J,Rd) is another geometric rough path such that |||ζ||| 1

p−Höl,J , |||η||| 1p−Höl,J ≤

M so that the conditions of (2.12) are satisfied given the paths Xη
s := Xt,x,a,u,η

s , Xζ
s := Xt,x,a,u,ζ

s , i.e. they

satisfy the RDE driven by η, ζ. Now, we may restrict to controls γ satisfying ||γ|| p
2 ,J

≤ L for some L > 0 by

corollary 3.5.1. Hence, ∣∣∣∣Xζ −Xη
∣∣∣∣
∞,J

≲ ϱp,J(ζ,η)

and ∣∣∣∣∣∣∣∣∫ ·

0

ψ(Xζ
s , γ

t,a,u
s )dζs −

∫ ·

0

ψ(Xη
s , γ

t,a,u
s )dηs

∣∣∣∣∣∣∣∣
p,J

≲ ϱp,J(ζ,η)

22



by proposition 2.12. Lastly, if we let UL denote the set of all u such that dγt,a,us = usds and ||γ|| p
2 ,J

≤ L, then

|vζ(t, x, a)− vη(t, x, a)| ≤ sup
u∈UL

∣∣∣∣ ∫ T

t

f(Xt,x,a,u,ζ
s , γt,a,us , us)ds

−
∫ T

t

f(Xt,x,a,u,η
s , γt,a,us , us)ds

+

∫ T

t

ψ(Xt,x,a,u,ζ
s , γt,a,us )dζs

−
∫ T

t

ψ(Xt,x,a,u,η
s , γt,a,us )dηs

+ g(Xt,x,a,u,ζ
T , γt,a,uT )− g(Xt,x,a,u,η

T , γt,a,uT )

∣∣∣∣
≲ sup
u∈UL

(∫ T

t

|Xt,x,a,u,ζ
s −Xt,x,a,u,η

s |+ ϱp,J(ζ,η)

+ |Xt,x,a,u,ζ
T −Xt,x,a,u,η

T |
)

≲ ϱp,J(ζ,η)

≲ ϱ 1
p -Höl,J(ζ,η)

by the Lipschitz assumptions on f, g. Replacing η with ηn, where

lim
n→+∞

ϱ 1
p -Höl,J(ζ,η

n) = 0

and ηn is smooth proves the result.

D Robust Filtering Proofs

Assumption D.1.

• w(q,R, γ, u) and g(q,R, γ) are continuous, bounded below and locally Lipschitz in (q,R, γ), uniformly in

u

• h(γ, u) is continuous, {h(γ, u) : u ∈ U} = U for any γ ∈ Γ, Lipschitz in γ, uniformly in u, is bounded in

γ, locally uniformly in u, and for some δ1

sup
γ∈Γ

||h(γ, u)||
||u||δ1

→ 0

as ||u|| → +∞

• for some δ2 > δ1,

|f(q,R, γ, u)|
(1 + |q|+ ||R||2 + ||γ||2) ||u||δ2 + (1 + |q|2 + ||R||2) (1 + ||γ||4)

→ +∞

as |q|+ ||R||+ ||γ||+ ||u|| → +∞
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• g satisfies
|g(q,R, γ)|

|q|2 + (1 + ||R||) (1 + ||γ||2)
→ +∞

as |q|+ ||R||+ ||γ|| → +∞ and

inf
(q,γ)∈Rm×Γ

|g(q,R, γ)| → +∞

as λmin(R) → 0

• infq,R,α,σ,c |g(q,R, γ)| → +∞ as λmax(ρρ
⊤) → 1

• ||h(γ, u)|| ≤ (1− λmax(ρρ
⊤))||u|| for all (γ, u) ∈ Γ× U .

Proof of corollary 4.2.2. We may obtain an upper bound for ||γ||1,[0,t] by an argument analogous to corollary

3.5. Also, the path Rt lies in a bounded set by the ODE for Rt and assumption D.1, so ||R||∞ < +∞, hence

||R||1,[0,t] < +∞. Lastly, ||q||∞ < +∞ by observing the differential equation for q.

Proof of lemma 4.5. Let

g(t) :=

∫ t

0

f(s)ds

so that

g′(t) ≤ C +Ag(t).

Solving the ODE

g′ −Ag − C = 0

implies

g(t) = keAt − C

A

for some k. Lastly, setting g(0) = C and solving for k implies k = C A
A−1 < C, hence

g(t) ≤ CeAt − C

A

≤ CeAt.

Differentiating the above and noting that g′(t) ≤ C +Ag(t) proves the result.

Proof of theorem 4.6. Fix another rough path η ∈ C 0,p
g such that (without loss of generality) ϱ 1

p -Höl,J(ζ,η) ≤ 1

and

|||ζ||| 1
p -Höl,J , |||η||| 1p -Höl,J ≤M∗,

where M∗ := max{|||ζ||| 1
p -Höl,J , |||η||| 1p -Höl,J}. Also, let qζ , qη denote the prediction driven by the ζ,η, respec-

tively, and similarly for the value functions vζ , vη. Now, let the bound M be defined by corollary 4.2.2 such

that it holds for ζ,η. Now, by (4.31), we have∣∣∣∣∫ t

s

(
Rrc

⊤
r + σrρr

)
d(η − ζ)r

∣∣∣∣ ≲ ||η − ζ||p,J

so that

|qηs − qζs | ≲
∫ t

s

|qηr − qζr |dr + ||η − ζ||p,J
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implying ∣∣∣∣qη − qζ
∣∣∣∣
∞,J

≲ ||η − ζ||p,J

by Grönwall’s inequality. In light of theorem 2.12 and the above,∣∣∣∣∣∣∣∣∫ ·

0

ψ(qηs , γs)dηs −
∫ ·

0

ψ(qζs , γs)dζs

∣∣∣∣∣∣∣∣
p,J

≲ ϱp,J(η, ζ).

Thus, for any terminal condition (t, µ,Σ, a) ∈ J ×K

|vη(t, µ,Σ, a)− vζ(t, µ,Σ, a)| ≤ sup
u

∣∣∣∣ ∫ t

0

(
w(qηs , Rs, γs, us)− w(qζs , Rs, γs, us)

)
ds

+

∫ t

0

ψ(qηs , γs)dηs −
∫ t

0

ψ(qζs , γs)dζs + g(qη0 , R0, γ0)− g(qζ0 , R0, γ0)

≲ sup
u

(∫ t

0

|qηs − qζs |ds+ ϱp,J(η, ζ) + |qη0 − qζ0 |
)

≲ ϱp,J(η, ζ)

≲ ϱ 1
p -Höl,J(η, ζ).

where the supremum is taken over all u such that γ satisfies the assumptions at the beginning of the proof. The

remainder of the proof proceeds as in theorem 3.7.
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