
Using Gaussian Processes to

Approximate Solutions to Differential

Equations

Elizabeth Mabbutt
Supervised by Matt Moores and Aidan Sims

University of Wollongong

Abstract

Differential equations are useful for many important applications, but often do not have known solutions.

In this report, we introduce Gaussian processes and Gaussian process regression as a way to estimate these

unknown solutions. We then introduce a Sobolev space - a special function space that relates a function to

its derivatives - and, given some theorems from recent literature, come up with a list of factors that we need

to input into our design of Gaussian process regression to ensure convergence and minimise error.

1 Introduction

Differential equations (DEs) are equations involving a function and its derivatives. They are very useful for

modelling problems involving a rate of change, especially in physics. One notable example is the Navier Stokes

equation to model fluid dynamics, which, as seen in [4], is being used to model the movement of underwater

pipes in Western Australia. The problem with this is that the Navier Stokes equation, as well as many other

differential equations do not have known solutions. Usually, in this case, we approximate the the solution us-

ing numerical methods, however, in the case of the Navier Stokes equation, approximating the solution using

numerical methods is extremely time consuming; as stated in [4], it took 6 weeks to approximate the solution

at 9 points. It is therefore evident that other methods need to be used to approximate solutions to differential

equations.

The method that we will introduce in this report uses a statistical process known as a Gaussian process

(GP), which, as seen in Definition 2 is a set of random variables equipped with a mean and covariance function.

Given some approximations of points on the solution of a differential equation, we can use a method known

as Gaussian process regression (see section 3.2) to approximate the solution at other points by estimating the

mean and covariance functions (see section 3.3). From this, we have a predictive function, shown in Equation

(8), which we can use to approximate the solution at new values, as shown in section 3.4. We show an example

of approximating a function using Gaussian process regression in section 4.

From here, we want to know how accurate Equation (8) is at approximating the solution to the differential

equation, which requires us to introduce a special type of function space, a Sobolev space, which, as stated in

Definition 4, and more formally in Definition 6 is a space of bounded functions such that all of their derivatives

up to order l are also bounded. We then introduce the Sobolev norm, which defines the distance between func-

tions as the sum of how far apart all of their derivatives up to order l are.

With this in hand, section 6 presents two important theorems from [4] and [5]. The theorem from [4] allows

us to determine what Sobolev space our predictive function lies in, which allows us to determine if the limit

of our approximations satisfies the DE. The theorem from [5] then gives conditions for said limit to exist. We

then explain how we can adjust the covariance function we use for Gaussian process regression, as well as what

1

domain we are doing it over to get a bound on our estimate and ensure convergence.

Finally, in section 7, we sum all of this up, and discuss possible applications.

1.1 Statement of Ownership

This report was written by Elizabeth Mabbutt with some suggestions from Matt Moores and Aidan Sims. All

definitions and theorems are adapted from credited sources and/or discussions with Matt Moores and Aidan

Sims. Code is, as credited, from [3], with adaptations made by Elizabeth Mabbutt, and some suggestions

by Matt Moores. Figures were generated using the statistical software R. The information about Gaussian

processes and Sobolev spaces in sections 3 and 5 are not original ideas, but adapted from sources as credited.

2 Notation

The following table defines the notation used throughout this paper.

Notation Explanation

d d ∈ N is the dimension

U ⊂ Rd An open d-dimensional set

N0 The natural numbers including zero, i.e N0 := N ∪ {0}.

∂if For f : U → R a differentiable function and i = 1, ..., d, ∂if is the partial derivative

of f with respect to the ith input. We write ∂α
i for the αth partial derivative with

respect to the ith coordinate.

∂αf For f : U → R and α = (α1, ..., αd) ∈ Nd
0, ∂

αf := ∂α1
1 ...∂αd

d f .

∂α,αk For k : U × U → R, and α ∈ Nd
0, ∂

α,αk(u, u′) := ∂α1

∂u1
α1

... ∂αd

∂ud
αd

∂α1

∂u′
1
α1 ...

∂αd

∂u′
d
αd k(u, u

′)

cl(U) The closure of U , as defined in [6], section 1.1

[a(ui)]
1≤i≤n For a : U → R some function, and u1, ..., un ∈ U , [a(ui)]

1≤i≤n is a 1 × n matrix

(n-dimensional vector) where the ith entry is a(ui)

[b(ui, uj)]
1≤i≤n
1≤j≤n For b : U × U → R some function, and u1, ..., un ∈ U , [b(ui, uj)]

1≤i≤n
1≤j≤n is an n × n

matrix where the ijth entry is b(ui, uj).

0n For n ∈ N, 0n is the vector in Rn such that 0in = 0 for i = 1, ..., n. That is, the

n-dimensional 0 vector.

Nn(µ,Σ) For n ∈ N, µ ∈ Rn and Σ ∈ Mn(R), Nn(µ,Σ) is the multivariate normal distribution

(also known as the multivariate Gaussian distribution) for n variables

2

3 Gaussian Processes

In this section, we will define Gaussian processes (GPs), and then will show the theory behind how they can be

used to approximate functions.

3.1 Definition and Properties of Gaussian Processes

First, we will introduce a stochastic process, following the definition in [1] section 9.1

Definition 1. Let (Ω,F , P) be a probability space, and let U ⊆ Rd be some set. A stochastic process is a

collection, X = {X(u) | u ∈ U} of random variables, X(u) : Ω → R which we say are indexed by the set U .

Section 9.2 of [1] explains the different ways we can think of stochastic processes. The most common way we

will view them in this report is as a function from the sample space, Ω, to RU := {f : U → R | f is a function},

that is, the set of all functions from U to R. Then, we can write X : Ω → RU . This way of thinking of

stochastic processes allows us use them to estimate functions, but to do this, we need a more well-behaved

stochastic process; a special type of stochastic process called a Gaussian process. Following the definition in

section 9.8 of [1],

Definition 2. A Gaussian Process is a stochastic process, X = {X(u) | u ∈ U} equipped with

1. a mean function, µ : U → R such that for all u ∈ U , µ(u) = E(X(u)), and

2. a covariance function, σ : U × U → R such that for all u, u′ ∈ U , σ(u, u′) = cov (X(u), X(u′)),

such that for any finite collection of points, u1, ..., un ∈ U , (X(u1), ..., X(un)) ∼ Nn

(
[µ(ui)]

1≤i≤n, [σ(ui, uj)]
1≤i≤n
1≤j≤n

)
.

Remark 1. It is a requirement of the multivariate normal distribution that the covariance matrix, [σ(ui, uj)]
1≤i≤n
1≤j≤n

is positive-definite. Therefore, σ must be a positive definite function, that is, a function where for any

u1, ..., un ∈ U , [σ(ui, uj)]
1≤i≤n
1≤j≤n is a positive definite matrix.

To make our notation more readable, for any n ∈ N and any Dn := (u1, ..., un) ∈ Un, we define the mean

vector function, Mn : Un → Rn such that

Mn(Dn)i = µ(ui).

Similarly, for any n,m ∈ N, we define the covariance matrix function. For reasons that will be explained in

section 3.2, our matrix function has two inputs, Dn as defined in the above paragraph, and Xm := (x1, ..., xm) ∈

Um. Then we define Σn,m : Un × Um → Mn,m(R) such that

Σn,m(Dn, Xm)ij = σ(ui, xj).

For simplicity, when Dn = Xm, we write Σn(Dn, Dn) instead if Σn,n(Dn, Dn).

3

3.2 Using Gaussian Processes to Estimate Functions

When we view a Gaussian process as a random function X : Ω → RU , we can use it to approximate functions.

There are a lot of scenarios in applied mathematics where we have a finite set of approximations (u1, y1), ..., (u1, yn)

from the function f : U → R, that is, f(ui) = yi+ϵi for each i = 1, ..., n. We often writeDn := (u1, ..., un)
T ∈ Un

as the vector of points in U that we know the function values of, and refer to these as the design points, we

write Yn := (y1, ..., yn)
T as the vector of approximations of function values. Together, we call Dn and Yn the

training data. A common scenario where this may come about is if f is the unknown solution to a differential

equation (DE) and our training data are numerical approximations of the solution.

We now want to use our training data to approximate the values of the function at some other points. To

do this, we will assume that the image of f is the realisation of a Gaussian process. That is, for some Gaussian

process Z = {Z(u) | u ∈ U}, each f(u) is a realisation of the random variable Z(u). However, the problem is,

we do not know which Gaussian process f(u) are realisations of (and it is not unique). Therefore, we will use a

technique known as Gaussian process regression. As is explained in [3] chapter 5, this is where we find a Gaussian

process with a mean and covariance function that fits our data. An implication of Definition 2 is that a Gaussian

process is completely defined by its mean and covariance functions, so we perform Gaussian process regression

by approximating the mean and covariance function. This is commonly done by starting with a base function

with a set of parameters that we fit to the data. To make it clear that they are estimated, and also to show what

parameters we are using, for θ a vector of parameters we denote the estimated mean function m(θ; ·) : U → R

and the estimated covariance function, also called the kernel function k(θ; ·, ·) : U × U → R. Likewise to

section 3.1, Mn(θ; ·) : Un → Rn is our estimated mean vector function, such that M(θ;Dn)i = m(θ;ui), and

Kn,m(θ; ·, ·) : Un ×Um → R is our estimated kernel matrix function such that Kn,m(θ;Dn, Xm)ij = k(θ;ui, xj)

for Xm as defined in section 3.1.

3.3 Estimating the Parameters

In this section we will go through how we define the base functions m(θ; ·) and k(θ; ·, ·), and how we estimate

the parameters θ, which are sometimes referred to as the hyperparameters.

As presented in [3], section 5.1, for the mean function it is a common practice to assume it is zero. That is,

for any vector of parameters, θ, and any u ∈ U , m(θ;u) = 0. A Gaussian process with a mean function as such

is referred to as a centered Gaussian process.

If we assume that the mean function is zero everywhere, it means all of the estimation is focused on the

kernel function. We generally use a different base kernel function to fit the known properties of our function f .

Generally, for f the solution of a DE, the only properties we know about f is a lower bound for ν̃ - the number

4

of times f is differentiable. However, given a well-behaved DE, we often assume infinite differentiability. We

like to choose a kernel function that fits the differentiability of f . This will be further explored in section 6.

In either of these cases, the kernel function has parameters that we then fit to the data. The most common

parameters, as presented in [3] sections 5.2.1, 5.2.4 and 5.2.2 respectively, are θ = (τ2, λ, g), where;

• τ2 ∈ (0,∞) is called the amplitude, and measures how spread out the values of f are,

• λ ∈ (0,∞) is called the lengthscale, and measures how quickly Z(u) and Z(u′) become uncorrelated as u

and u′ become further apart in U , and

• g ∈ (0,∞) is called the nugget. It represents the error, ϵi in our observed data.. For example, if Yn is

found using numerical approximations, g would be the variance of the numerical error.

Note that here, our parameter space, Θ is (0,∞)3.

The first kernel function we will introduce is the Gaussian kernel, also called the squared exponential kernel.

Summarising the information presented in [3] sections 5.2.1-5.2.4, the Gaussian kernel is used for infinitely

differentiable functions, and is itself infinitely differentiable. We denote it kG(θ; ·, ·), and for θ = (τ2, λ, g) it is

given by

kG(θ;u, u
′) := τ2

(
exp

{
−
∥u− u′∥2

λ

}
+ gδu,u′

)
, (1)

where δu,u′ is the Kronecker delta, such that δu,u′ = 1 when u = u′, and δu,u′ = 0 otherwise.

The other kernel that we will introduce is the Matérn kernel. Summarising [3], section 5.3.3, the Matérn

kernel uses the parameters λ, τ2 and g, but also uses a parameter ν ∈ (0,∞), which is the number of times f is

differentiable. We denote the Matérn kernel kM (θ; ·, ·), and for θ = (λ, τ2, g, ν), it is given by

kM (θ;u, u′) = τ2

[
21−ν

Γ(ν)

(
∥u− u′∥2

√
2ν

λ

)ν

Kν

(√
2ν

λ

)
+ gδu,u′

]
, (2)

where Kν is the modified Bessel function of the second kind, and Γ is the gamma function. This formula does

not have an analytical solution, and is therefore hard to work with. However, when ν = p+ 1
2 for p ∈ N0, there

is an exact formula. As a result, in practice, if we think f is p times differentiable, we often use ν = p+ 1
2 , and

then

kM (θ;u, u′) = τ2

exp{∥u− u′∥2

√
2ν

λ

} (
ν − 1

2

)
!

(2ν − 1)!

ν− 1
2∑

i=1

(
ν − 1

2 + i
)
!

i!(ν − 1
2 − i)!

(∥u− u′∥2

√
8ν

λ

)ν− 3
2

+ gδu,u′

 .

Admittedly, for large p, this requires a lot of computational power to compute, however, ν is usually only

introduced as a parameter for ν ≤ 5
2 , otherwise, the function is assumed to be ‘smooth enough’.

5

Something that is also interesting to note is that as ν → ∞, kM ((τ2, λ, g, ν)) → kG((τ
2, 2λ, g)), meaning

that any theorems applying to Matérn kernels can be extended to Gaussian kernels.

Similarly to how we use a subscript G or M to specify if our kernel function uses a base Gaussian or Matérn

kernel respectively, for the estimated kernel matrix function, we write KG
n,m(θ; ·, ·) if each entry is defined using

the Gaussian kernel, and KM
n,m(θ; ·, ·) if each entry is defined using the Matérn kernel. When referring to a

kernel function or matrix that uses an arbitrary kernel, we will denote it k(θ; ·, ·) or Kn,m(θ; ·, ·) as before.

Now that we have explored the different kernel functions we use, we want to estimate θ. To see how, consider

that by the definition of a Gaussian process, for any finite set of points, the Gaussian process at those points is

multivariate normally distributed. Therefore, if we consider the finite set (vector) of points, Dn, we have that

(Z(u1), ..., Z(un)) ∼ Nn (Mn(θ;Dn),Kn(θ;Dn, Dn)) .

If we consider the multivariate normal pdf with Mn(θ;Dn) = 0n, we have that

P ((Z(u1), ..., Z(un)) = Yn) =
1√

(2π)n det (Kn(θ;Dn, Dn))
exp

{
−1

2
Y T
n Kn(θ;Dn, Dn)

−1Yn

}
, (3)

so we can use maximum likelihood estimation (MLE) to estimate θ. That is, estimate θ by the value θ̂ that

maximises Equation (3). Since ln is an increasing function, maximising Equation (3) is equivalent to maximising

ℓ(θ;Yn) := ln (P ((Z(u1), ..., Z(un)) = Yn))

= −1

2

(
n ln(2π) + ln (det (Kn(θ;Dn, Dn))) + Y T

n Kn(θ;Dn, Dn)
−1Yn

)
. (4)

In the case of either the Gaussian or Matérn kernel, τ2 has an exact estimate that can be found using

calculus, while and λ and g need to be estimated using numerical methods. Usually ν is selected based on the

properties of f , for example, if it is the solution to a DE we know how many derivatives it must have, and can

infer how smooth it is based on how nice the DE looks. More formally, we want the solution f and the Gaussian

process Z to belong to the same function space. This will be further explored in sections 5 and 6.

To see how we estimate τ2, first observe that for either the Matérn or Gaussian kernel, we can write

Kn(θ;Dn, Dn) = τ2 (Kn((1, λ, 0, (ν));Dn, Dn) + Ig) .

For ease of notation, let C := Kn((1, λ, 0, (ν)). Then it is shown in appendix D that the maximum likelihood

estimator for τ2 is given by

τ̂2 =
1

n
Y T
n (C + Ig)

−1
Yn.

Then to find λ and g, maximise Equation (4) with τ̂2 plugged in, that is

ℓ1(θ|Yn) := −1

2

(
n ln(2π) + ln

(
det
(
Y T
n (C + Ig)

−1
Yn (C + Ig)

))
+ n

)
.

6

Since n ln(2π) + n is a constant, is equivalent to maximising

ℓ2(θ|Yn) := −1

2
ln
(
det
(
Y T
n (C + Ig)

−1
Yn (C + Ig)

))
.

We did this in R using the code in appendix A. With θ̂ in hand, we have defined a Gaussian process Z =

{Z(u) | u ∈ U} with the mean function m(θ̂; ·) := 0, and kernel function k(θ̂; ·, ·) such that, by our assumption,

the image of f is a realisation of Z.

3.4 Approximating New Function Values

Now that we have estimated a Gaussian process, Z such that f is a realisation of Z, we now want to use Z to

estimate f at some new values. Firstly, given our estimator θ̂, we can say explicitly that

(Z(u1), ..., Z(un)) ∼ Nn

(
0n,Kn(θ̂;Dn, Dn)

)
. (5)

We have assumed that the image of f is a realisation of Z, which means we can approximate f(u) by

E(Z(u)) for all u ∈ U . However, given that we know the values of f at Dn, we can get an even better estimate

by approximating f(u) by E(Z(u) | Z(u1), ..., Z(un)) for all u ∈ U . There are two different ways we can do this

depending on how many points we want to approximate.

Method 1: If we only want to approximate f at a finite vector of m new points, which we will denote

Xm := (x1, ..., xm) such that for all i, j, xi ̸= uj , then, as is explained in [3] section 5.1.1, we can find the

distribution of (Z(x1), ..., Z(xm)) | (Z(u1), ..., Z(un)) = Yn, and estimate f(xi) by the ith entry of the mean

vector of that distribution. To determine the distribution, first consider that under the assumptions of a

Gaussian process,

(Z(x1), ..., Z(xm)) ∼ Nm

(
0m,Km(θ̂;Xm, Xm)

)
(6)

Then, considering Equations (5) and (6), by properties of the Gaussian distribution, it can be shown that

the conditional distribution, (Z(x1), ..., Z(xm)) | (Z(u1), ..., Z(un)) = Yn is given by

(Z(x1), ..., Z(xm)) | (Z(u1), ..., Z(un)) = Yn ∼ Nm(µp,Σp), where (7)

µp = Km,n(θ̂;Xm, Dn)Kn(θ̂;Dn, Dn)
−1Yn, and

Σp = Km(θ̂;Xm, Xm)−Km,n(θ̂;Xm, Dn)Kn(θ̂;Dn, Dn)
−1Kn,m(θ̂;Dn, Xm).

So we can estimate f(xi) by µi
p, and we can also estimate the covariance between Z(xi) and Z(xj) by Σij

p . This

method is slightly more accurate as the estimates take into account the covariance between all of the points we

are estimating, however, for large samples, this method can be extremely computationally expensive.

Method 2: As is presented in equations 2.2 and 2.3 from [5], if we want to estimate f at a large number

of points in U , we can estimate them one at a time. We can use the same procedure as method 1, but with

7

Xm = u. That is, Xm is a single point in U . Plugging this into Equation (7),

E (Z(u) | (Z(u1), ..., Z(un)) = Yn) = K1,n(θ̂;u,Dn)Kn(θ̂;Dn, Dn)
−1Yn.

So we can estimate f by the function

fp
n(u) := K1,n(θ̂;u,Dn)Kn(θ̂;Dn, Dn)

−1Yn. (8)

Furthermore, if we want to estimate the covariance between f(u), f(u′), by letting Xm = (u, u′) and consid-

ering the 1,2-entry of Σp (or equivalently the 2,1-entry), by Equation (7), we can estimate it by

kpn(θ̂;u, u
′) = k(θ̂;u, u′)−K1,n(θ̂;u,Dn)Kn(θ̂;Dn, Dn)

−1Kn,1(θ̂;Dn, u
′). (9)

This has much fewer operations required. If Xm is large, if we used the technique in method 1, then we

could need to perform matrix multiplication between an m × n matrix and an n × n matrix, which would be

very computationally expensive. Therefore, method 2 is sometimes the only feasible method. Furthermore,

Equation (8) allows us to approximate the function f for different values of n, meaning we can characterise the

convergence of the approximation to the true function f as n → ∞, as was done in [5], and will be explained

further in Section 6.

4 Applying Gaussian Processes to Differential Equations

We saw in section 3 how to use Gaussian process regression to estimate functions. Now we want to use Gaussian

process regression to estimate the solution to a differential equation given some numerical approximations. For

d ∈ N, f : U → R and u ∈ U , consider an arbitrary lth order differential equation,

0 = g(u, ∂αf(u) for all α ∈ Nd
0, ∥α∥1 ≤ l)

with an initial value / boundary value, and suppose that we do not know the analytical solution. If we are

able to determine points (u1, y1), ..., (un, yn) such that yi = f(ui) + ϵi, which could be done using numerical

methods, then we have n approximations of values from the solution function f . This means that we can

approximate the values of our solution function f at other u ∈ U using Gaussian process regression.

In this section, we will go through an example of using a Gaussian process to approximate the solution to a

differential equation. The equation in question is an ordinary differential equations (ODE) of order 1. That is,

the case where d = 1 and l = 1. In this case, it is common to arbitrarily represent the DE as

f ′(u) = g(u, f(u)), f(0) = f0

for f0 ∈ R. Through this example, we will explore some of the problems that arise when fitting Gaussian

processes to differential equations, and how we often rectify them.

8

Figure 1: True Solution of Equation 10 vs Euler’s Method Approximation

Consider

0 = f ′(u) +
1

2
f(u), f(0) = 1. (10)

We can show that the function f(u) = e−
1
2u is a solution to this DE, but for the sake of demonstrating Gaussian

process regression, we will pretend we do not know this.

In R, we approximated the solution to Equation (10) for 0 ≤ u ≤ 5 using Euler’s method with a step size

of h = 0.5. A plot of the approximated solution vs the true solution can be seen in Figure 1, where it is

evident that the numerical approximations are not completely accurate. This is because Euler’s method has

local truncation error of order O(h), meaning it is not the most accurate numerical method, and also because

we are using a relativity large step size.

We now want to fit a GP to these numerical approximations. Here, the n = 11 design points are given by

Dn = (0, 0.5, ..., 5)T , and Yn is the numerical approximations shown in Figure 1. We named these variables Dn

and Yn in R, and then fitted a Gaussian process through these points using the code in Appendix A, giving us

the MLE estimates λ̂ = 1, τ̂2 = 1.129483 and ĝ = 1.490116 × 10−8. We then attempted to approximate the

solution to Equation (10) at m = 111 new points, Xm = (0.05, 0.1, ..., 5.55) by using the predictive mean in

Equation (7) as an estimator. The approximations can be seen in Figure 2. Note that there is no 95% confidence

9

Figure 2: Gaussian process approximation of Equation (10)

interval in Figure 2. This is because the diagonal entries of Σp are so small that the 95% interval cannot be

clearly seen on the plot. The true solution is not inside the interval.

Figure 2 demonstrates one of the main problems that arise with Gaussian process regression - given numer-

ically inaccurate points, the Gaussian process often approximates what the numerical method would be doing

at those points, rather than the solution function. We explained in section 3.2 that the hyperparameter g is

introduced to rectify the numerical error in our observations, however, determining the best way to quantify

this error remains an open problem, as stated in [2].

We previously stated that the maximum likelihood estimate for g is 1.490116× 10−8, however, we notice in

Figure 1 that the error is a lot larger. In fact, if for i = 1, ..., 11 we write f(ui) = yi + ϵi, then the vector of

errors, ϵ := (ϵ1, ..., ϵ11), correct to 3 decimal places is given by

ϵ = (0, 0.029, 0.044, 0.05, 0.051, 0.049, 0.045, 0.04, 0.035, 0.03, 0.026), (11)

with var (ϵ) = 0.0002273649. This is 4 magnitudes larger than our predicted value of g. This is because,

when using MLE, we are assuming that our numerical errors (ϵ) are random, but really, they are determined

by our choice of numerical method in combination with the properties of our differential equation. It is hard

to model errors as such, so statisticians often assume they are random, which leads to the Gaussian process

10

approximating the wrong function.

Of course, in this example, we know the true error. In practice, we do not know the true numerical error: if

we knew the true function values, numerical approximations would be unnecessary, so we want a way to model

the error when it is unknown. Often, numerical errors do have bounds, however, these are often magnitudes

larger than the true errors, so are often not helpful. [2] provides an analysis on ways of modeling errors, but

in practice, often the only feasible solution to this is to use numerical methods with very low error that it is

essentially zero. For example, instead of using Euler’s method, we can use a method with lower truncation

error, such as the classical 4th order Runge Kutta method (rk4), which only has O(h4) truncation error, and

is therefore more accurate. Appendix C repeats this example, but instead calculating Yn using rk4, where it is

evident µp approximates the solution more accurately.

5 Sobolev Spaces

Now we want to find a way to determine how well a Gaussian process approximates the solution of a DE. To

do this we will first introduce a special type of function space.

A Sobolev space, denoted, W l,p(U) is a function space with a norm that incorporates distances between

derivatives of elements. For l ≥ 1 and p ∈ [1,∞), W l,p(U) is the norm completion of the space of functions

whose derivatives up to order l are p-integerable. The rigorous definition appears in appendix B, but for the

purposes of this report, it suffices to think of elements of W l,p(U) as functions from U to R, and work with the

subspace W l,p
c (U) consisting of continuous functions. We will first define a norm on continuous functions called

the Lp
c − norm, which we use to measure the distance between functions.

Definition 3. For U ⊆ Rd, and p ∈ [1,∞) the Lp
c -norm of a continuous function f : U → R is

∥f∥Lp
c (U) :=

(∫
U

|f(u)|pdu
) 1

p

.

We write Lp
c(U) for the collection {f : U → R | f is continuous and ∥f∥Lp

c (U) < ∞}, and sometimes refer to it

as an Lp
c-space.

It is easy to show that (Lp
c(U), ∥·∥Lp

c (U)) is a normed vector space, but for the sake of brevity, we will omit

the details. Note that it is common to prefer p = 2, because using the proper definition of an Lp space from

Definition 6, L2(U) is what is known as a Hilbert space, meaning we can define an inner product on it.

The Sobolev norm builds on the Lp
c norm by incorporating the Lp

c norms of derivatives of the function of

interest.

11

Definition 4. For U ⊆ Rd, p ∈ [1,∞), and l ≥ 1, we define

W l,p
c (U) :=

{
f ∈ Lp

c(U) | ∂αf ∈ Lp
c(U) for all α ∈ Nd

0 with ∥α∥1 ≤ l
}
.

The Sobolev norm of f ∈ W l,p
c (U) is

∥f∥W l,p
c (U) :=

 ∑
∥α∥1≤l

∥∂αf∥pLp
c (U)

 1
p

So given a sequence (ϕn)
∞
n=1 in W l,p

c (U), ϕn → f ∈ W l,p
c (U) with respect to the W l,p

c (U) norm if and only

if for every α ∈ Nd
0 such that ∥α∥1 ≤ l, ∂αϕn → ∂αf with respect to the Lp

c norm. However, note that W l,p
c (U)

and Lp
c(U) as we have defined them are not complete, so ∥·∥W l,p

c (U) and ∥·∥Lp
c (U)-Cauchy sequences need not

converge in W l,p
c (U) and Lp

c(U) respectively.

In the context of Gaussian process and differential equations, for (fp
n)

∞
n=1 a sequence of function approxima-

tions to the solution to an lth order DE using Equation (8), if (fp
n)

∞
n=1 converges to f ∈ W l,p

c (U) as n → ∞ with

respect to the ∥·∥W l,p
c (U) norm, then ∂αfp

n → ∂αf with respect to the Lp
c norm whenever ∥α∥1 ≤ l, meaning the

limit f will satisfy the DE.

6 Convergence of Gaussian Processes

In this section, we want to link together Gaussian processes and Sobolev spaces by presenting the ways in

which Sobolev spaces can be used to characterise the convergence of the function approximations resulting from

Gaussian process regression. The results in this section are ideas presented in [5] and [4], reworded into the

notation used in this report.

Firstly, proposition 3.1 from [4] highlights the link between Sobolev spaces, our choice of kernel function and

the function we are trying to approximate.

Theorem 1. Let Z = {Z(u) | u ∈ U} be a Gaussian process with mean function zero and covariance function

k(θ; ·, ·). Then, for p ∈ (1,∞), the sample paths of Z lie in W l,p
c (U) almost surely if and only if for all ∥α∥1 < l,

∂α,αk(θ; ·, ·) ∈ Lp
c(U × U), and sα ∈ Lp

c(U) for sα(θ;u) :=
√
∂α,αk(θ;u, u). (proposition 3.1 in [4])

Proof. [4], section 3.

Note for a Gaussian process Z, a sample path is a function h : U → R where h(u) is a realisation of Z(u)

for all u ∈ U . The most relevant example of a sample path is fp
n, so Theorem 1 this is essentially telling us that

our kernel function determines the Sobolev space that our predictive function lives in.

This idea of sample paths being in a specific Sobolev space can be extended to convergence using Theorem

3.5 from [5], and applies in the case of a Matérn covariance kernel or Gaussian kernel as defined in Equations

(2) and (1) respectively.

12

Theorem 2. Suppose that we want to approximate the function f : U → R using Gaussian process regression

with some training data, Dn and Yn as defined in section 3.2. Suppose we have a sequence of estimates for θ,

(θ̂n)
∞
n=1, that is, our maximum likelihood estimate, θ̂ for θ given training data of size n (which design points we

are using are irrelevant). Let (fp
n)

∞
n=1 be a sequence of function approximations as defined in Equation (8). ν̃

is the true smoothness of f , as introduced in section 3.3. Suppose that the following hold

1. (θ̂n)
∞
n=1 is uniformly bounded, that is {θ̂n | n ∈ N} ⊂ S ⊆ Θ for some compact set S.

2. cl(U) is compact.

3. For any θ ∈ S, k(θ; ·, ·) ∈ V ∼= W ν̂,2
c (U), that is, the space that our kernel function lives in is isomorphic

to W ν̂,2
c (U).

4. f ∈ W ν̃,2
c (U) for ν̃ > max

{
1, d

2

}
5. For all possible estimates θ ∈ S, and all n ∈ N, fp

n ∈ W ν̃,2
c (U) for fp

n as defined in Equation (8).

6. There exists an N ∈ N such that ν̂min := infn≥N ν̂n satisfies ν̂min = c for some fixed c ≥ max
{
1, d

2

}
.

Then ∥f − fp
n∥Wβ,2

c (U) is bounded by a decreasing bound for all β ≤ ν̃.

Proof. [5], section 3.1.1.

Of the list of requirements in Theorem 2 for fp
n to converge, we can check 3 and 5, as these are essen-

tially determined by what choice of kernel function we are using. 1 and 4 have to be assumed, as we cannot

know what all our possible estimated parameters could be, however, when applying to differential equations,

we will know the minimal number of derivatives that f must have, and 2 and 5 can be ensured by design - we

can make sure that the closure of the set U we choose is compact by restricting our DE to only that domain,

and we can fix our estimate for ν̂ (choose the same value for each ν̂n), therefore ensuring that it is bounded below.

Once we have made sure of all of these, we can be sure that fp
n does converge, so we can be sure that our

prediction is accurate, and also find a bound. The bound can be seen in [5] Theorem 3.5. We will not define

that bound here, as it requires the introduction of lots of new notation. The main takeaway is that we can

use Gaussian processes to approximate the solutions to differential equations, and by ensuring that our chosen

kernel function lives in an appropriate Sobolev space aligning with the smoothness of our differential equation,

we can be sure that our Gaussian process approximation is accurate.

7 Conclusion

Given the motivation of wanting to approximate unknown solutions to differential equations given numerical

solutions, this report explores a statistical process known as a Gaussian process. We define a Gaussian process

in section 3.1, and in sections 3.2-3.4, we explain how, using an approach known as Gaussian process regression,

13

we can estimate the solutions to differential equations. We want to know how accurate these approximations

were, so section 5 explores special types of function spaces – Sobolev spaces – that can be used to relate a

function to its first l derivatives. Finally, in section 6, we explore key theorems from [4] and [5] that can be used

to characterise if Gaussian process approximations of our solution converge to the true solution as the number

of numerical approximations goes to infinity, and determine how large the error bounds are given n numerical

approximations. From this, we know what factors of our design we need to fix to ensure convergence of our

approximations to the true solution of the differential equation, and can ensure that we apply Gaussian process

regression in such a way that our approximation will converge.

Given characteristics that determine convergence, and the link between convergence of Gaussian processes,

Sobolev spaces and differential equations, we can extend these results to many differential equations with un-

known solutions.

Differential equations are very useful in physics and other fields for modeling. Given a differential equation

with an unknown solution, this research can be used to approximate the solutions to that differential equations

for the purpose of using them for modeling in physics or otherwise. It is common for mathematicians to be able

to characterise what Sobolev space differential equations, especially partial differential equations (PDEs) lie in.

[4], section 1 provides a list of PDEs where we know the Sobolev space the solution lies in, including the wave

equation, heat equation, Laplace’s equation and Schrodinger’s equation, with lie in the Hilbert-Sobolev spaces

over R2 or R2 corresponding to l = 1. Given this, we can use Gaussian process regression to approximate the

solutions to differential equations in such a way that we can ensure convergence.

[10] also explores the use of the Navier Stokes equation in modeling the movement of underwater pipes in

Western Australia, and provides numerical approximations of the solution at 9 points. Given an analysis on

what Sobolev space the solution of the Navier Stokes equation could live in, we could model the solution using

Gaussian process regression and save much computational power.

References

[1] Jørgensen, J 1994, Probability With a View Towards Statistics, Volume II, Chapman & Hall/CRC

[2] Chkrebtii, O.A, Campbell, D.A, Calderhead, B & Girolami, M.A, 2016, ‘Bayesian Solution Uncertainty

Quantification for Differential Equations’, Bayesian Analysis, vol. 11, no. 4, pp. 1239–1267.

[3] Gramacy, R.B 2020, Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied

Sciences, Chapman & Hall/CRC, Boca Raton, Florida.

[4] Henderson, I 2024, ‘Sobolev regularity of Gaussian random fields’, Journal of Functional Analysis, vol. 286,

no. 3, pp.110241

14

[5] Teckentrup, A.L 2020, ‘Convergence of Gaussian Process Regression with Estimated Hyper-Parameters and

Applications in Bayesian Inverse Problems’, SIAM/ASA Journal on Uncertainty Quantification, vol. 8, no.

4, pp. 1310–1337

[6] Stein, E.M & Shakarchi, R 2005, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Princeton

University Press, Princeton, New Jersey.

[7] Wikipedia 2001, Equivalence relation, viewed 15 December, 2023, <https://en.wikipedia.org/wiki/

Equivalence_relation#Definition>

[8] Wikipedia 2002, Lp space, viewed 10 December, 2023, <https://en.wikipedia.org/wiki/Lp_space#Lp_

spaces_and_Lebesgue_integrals>

[9] Wikipedia, 2004, Sobolev space, viewed 10 December, 2023, <https://en.wikipedia.org/wiki/Sobolev_

space>

[10] Jiang, H 2022 “Flow past a circular cylinder: Fundamentals and engineering applications” Oceans Gradu-

ate School, University of Western Australia, viewed 18th September 2023, <https://www.bilibili.com/

video/BV1a44y1D7yk/>

Appendix A Code used to find µp and Σp

Code adapted from [3] sections 5.1-5.3.

true_soln <- function(u){

return(exp(-0.5*u))

}

f_dash <- function(u,fu){ #of the form f’(u) = g(u,f(u))

return(-0.5*fu)

}

#re -writing the function in the way that "euler" likes it

f_dash2 <- function(t,y,parms){

return(list(f_dash(t,y)))

}

#numerically calculate the the training data

library(deSolve)

Dn <- seq(0,5,by=0.5)

Yn <- euler(y=1,times = Dn,func = f_dash2,parms = c(0))[,2]

#get the true values and determine the error

fus <- true_soln(Dn)

error <- fus -Yn

#get the true values of f in a dense vector for the sake of plotting

15

https://en.wikipedia.org/wiki/Equivalence_relation#Definition
https://en.wikipedia.org/wiki/Equivalence_relation#Definition
https://en.wikipedia.org/wiki/Lp_space#Lp_spaces_and_Lebesgue_integrals
https://en.wikipedia.org/wiki/Lp_space#Lp_spaces_and_Lebesgue_integrals
https://en.wikipedia.org/wiki/Sobolev_space
https://en.wikipedia.org/wiki/Sobolev_space
https://www.bilibili.com/video/BV1a44y1D7yk/
https://www.bilibili.com/video/BV1a44y1D7yk/

us <- seq(Dn[1],Dn[length(Dn)],by=0.1)

true_fus <- true_soln(us)

plot(us,true_fus , type = "l", col = "blue",xlab = "u",ylab="f(u)",

main="Numerical Approximation of the Solution vs True Solution")

points(Dn,Yn,col="red",pch= 16)

legend(x = "topright",legend = c("Euler ’s","True"),col = c("red","blue"),lty = c(0,1),

pch = c(16,NA))

#now we want to fit a GP through these

norm2Vec <- function(x1,x2){ #function to determine the 2-norm of a vector

n <- length(x1)#note this still works for matrices

if (n == 1){

return(abs(x1-x2))

}

else{

sum = 0

for (i in 1:n){

sum = sum + (x1[i]-x2[i])^2

}

return (sum)^(1/2)

}

}

cGausEnt <- function(x1,x2,lambda){ #exponential part of the Gaussian kernel

r<- norm2Vec(x1,x2)

return(exp(-r^2/lambda))

}

cGausMatrix <- function(D1,D2,lambda){ # exponential part of the Gaussian kernel matrix

D1 = as.vector(D1)

D2 = as.vector(D2)

n = length(D1)

m = length(D2)

K = matrix(rep(NA ,n*m),nrow = n,ncol=m)

if(identical(D1,D2) == TRUE){ #since it’s symmetric

for (i in 1:n){

for (j in i:m){

ijent <- cGausEnt(D1[i],D2[j],lambda)

K[i,j] <- ijent -> K[j,i]

}

16

}

}else{

for (i in 1:n){

for (j in 1:m){

K[i,j] <- cGausEnt(D1[i],D2[j],lambda)

}

}}

return(K)

}

loglikelihood <- function(par , Dn , Y) #concentrated log likelihood

{

lambda <- par[1]

g <- par[2]

n <- length(Dn)

K <- cGausMatrix(Dn ,Dn ,lambda) + diag(g, n)

Ki <- solve(K)

ldetK <- determinant(K, logarithm=TRUE)$ modulus

ll <- - (n/2)*log(t(Y) %*% Ki %*% Y) - (1/2)*ldetK

return(ll)

}

negloglikelihood <- function(par ,Dn ,Y){ # negative log likelihood so we can use optim

return(-1*loglikelihood(par ,Dn,Y))

}

#find the maximum of the log likelihood - use the optim function

eps <- sqrt(. Machine$double.eps)

parm <- optim(c(0.1, 0.1*var(Yn)), fn = negloglikelihood , lower = eps ,upper = c(10,var(Yn)),

method="L-BFGS -B",Dn = Dn, Y=Yn)

lambda = parm$par[1]

g = parm$par[2]

c(lambda ,g)

Cg <- cGausMatrix(Dn,Dn,lambda) + diag(g, length(Yn)) #covariance matrix

cholCg <- t(chol(Cg)) #the cholesky decomposition of C (lower triangular)

Cginv <- chol2inv(t(cholC))

tau2hat <- drop((t(Yn) %*% Cginv %*% Yn) / length(Yn))

tau2hat

K = tau2hat*Cg

17

Kinv = (1/tau2hat)*Cginv

#now , say our new data is;

Xm <- seq(0.05,5.55,by = 0.05)

length(Xm)

#the correlation matrix between the new data and old data is

KXm_Dn <- tau2hat*cGausMatrix(Xm ,Dn ,lambda)

KXm_Xm <- tau2hat*(cGausMatrix(Xm ,Xm ,lambda) + g*diag(1,length(Xm)))

#predictive mean and covariance

mup = KXm_Dn%*% Kinv %*%Yn

sigmap = KXm_Xm - KXm_Dn%*% Kinv %*%t(KXm_Dn) + g*diag(1,length(Xm))

dense_True_fus <- rep(NA ,length(Xm))

for (i in 1:length(Xm)){ #get the true values of f at each of our new points.

dense_True_fus[i] <- true_soln(Xm[i])

}

plot(Xm,mup ,col="black",xlab = "u",ylab = "f(u)",main = "Gaussian Process Approximation",

type="p",pch = 20)

points(Dn,Yn,col="red",pch=16)

lines(Xm ,dense_True_fus , col = "blue")

legend(x = "topright",legend=c("Euler ’s","True","Gaussian Process"),

col = c("red","blue","black"),lty=c(0,1,1),pch=c(16,20,NA))

Note for Appendix C, all code is the same except for labels on graphs, and Yn is determined by

Yn <- rk4(y=1,times = Dn,func = f_dash2,parms = c(0))[,2]

Appendix B Proper Definition of Lp Spaces and Sobolev Spaces

In section 5, we defined a Sobolev space and Lp space only over continuous functions. The proper definition of

an Lp space and Sobolev space are over all measurable functions.

Note that this section will assume some measure theory background, including the definition of a measure,

a measure space, and a measurable function. All of these definitions, as well as other relevant background

information can be found in [6] chapter 1 and 2. This section also requires knowledge of what an equivalence

relation is, and what an equivalence class is, which can be found in [7], and knowledge of what a weak derivative

is, which is defined in the introduction of [4]. We will first properly define an Lp space following from [8]. This

firstly requires us to first define a precursor to an Lp space; an Lp
0 space.

18

Definition 5. For U a measurable set, and (U,B(U), γ) a measure space, where B(U) is a Borel-algebra on U ,

Lp
0(U) is given by

Lp
0(U) :=

{
measurable functions f : U → R |

(∫
U

|f |pdγ
) 1

p

< ∞

}
.

It can be shown that Lp(U) is a real vector space with zero element 0Lp
0(U) : U → R such that 0Lp

0(U)(u) = 0

for all u ∈ U . We want Lp
0 to be a normed vector space, so we will attempt to define a norm on Lp

0, given by

N : Lp
0(U) → [0,∞) such that

N(f) :=

(∫
U

|f |pdγ
) 1

p

. (12)

Lemma 1. N is not a norm

Proof. Consider the function g ∈ Lp
0(U), where for some u∗ ∈ U ,

g(u) :=

1 u = u∗

0 otherwise.

It can be shown that N(g) = 0. The definition of a norm requires that for N to be a norm, N(f) = 0 if and

only if f = 0Lp(U). We saw that N(g) = 0, but g ̸= 0Lp(U). Therefore, N is not a norm.

In order for Lp
0(U) to be a normed vector space with norm N we need to prevent functions other than 0Lp

0(U)

from having a norm of zero. Therefore, Lp(U) is defined on equivalence classes.

Definition 6. Consider the equivalence relation ∼ such that f ∼ g if N(g−f) = 0. That is, g ∼ f if the subset

A ⊂ U given by A := {a | f(a) ̸= g(a)} has measure zero (γ(A) = 0).

Let (U,B(U), γ) be some measure space for U ⊆ Rd. Then for p ∈ [1,∞), Lp(U) is given by

Lp(U) := Lp
0(U)/ ∼ .

Here, Lp
0(U)/ ∼ represents the quotient space of Lp

0(U) with respect to ∼.

It can be shown that ∥·∥Lp(U) : L
p(U) → R given by

∥[f]∥Lp(U) = N(f) for some f ∈ [f]

is a norm on Lp(U). In fact, it can also be shown using dual spaces that Lp(U) is complete with respect to

∥·∥Lp(U).

We can now use this to define W l,p(U) following from [9]. For f ∈ [f] ∈ Lp(U), let ∂αf denote the αth weak

derivative of f , then,

Definition 7. For p ∈ [1,∞), l ≥ 1, the Sobolev space W l,p(U) is defined as

W l,p(U) =
{
[u] ∈ Lp(U) | for all α ∈ Nd

0 such that ∥α∥1 < l, ∂αu ∈ Lp(U) for all u ∈ [u]
}

19

Definition 8. The Sobolev norm for [f] ∈ W l,p(U) is given by

∥[f]∥W l,p(U) :=

 ∑
∥α∥1≤l

∥∂αf∥pLp(U)

 1
p

for any f ∈ [f].

Note that each equivalence class [f] ∈ Lp(U) and [f] ∈ W l,p(U) only has one f ∈ [f] that is continuous,

so in section 5, given the context of differential equations, where we only care about continuous functions,

defining Lp
c(U) and W l,p

c (U) as the continuous elements of each equivalence class is valid, however, note there

are [f] ∈ Lp(U) and [f] ∈ W l,p(U) where no f ∈ [f] is continuous, hence why Lp
c(U) and W l,p

c (U) are not

complete.

Appendix C Gaussian Process Regression on Training Data Calcu-

lated Using rk4

Following on from section 4, where we stated it is difficult to quantify the error resulting in numerical approxi-

mations, and often the only solution is to use numerical methods with negligible error, we performed Gaussian

process regression on numerical approximations of Equation (10) that were determined using rk4 with a step

size of h = 0.5. The approximations are shown in Figure 3, where we can see visually that the errors are close

to zero. The errors are given by

ϵ = (0,−0.781,−1.22,−1.42,−1.48,−1.44, 1.34,−1.22,−1.09,−0.951,−0.823)× 10−5,

rounded to 3 significant figures, with var (ϵ) = 1.844461 × 10−11, which we notice is significantly less than

those resulting from Euler’s method, as seen in Equation (11). Our maximum likelihood estimates for θ are

λ̂ = 1, τ̂2 = 0.7931441 and ĝ = 1.490116× 10−8. Here, we notice that g is absolutely closer to the true value of

var (ϵ), and in fact over predicts our error. Then, using µp as defined in Equation (7) as an estimator for the

values of f at the same Xm used in section 4, we can see in Figure 4 that the GP approximation of the solution

to the DE is much more accurate.

Appendix D Maximum Likelihood Estimation for τ̂ 2

Given the log likelihood function in Equation (4), for θ = (τ2, λ, g, (ν)), we want to determine the maximum

likelihood estimator for τ2.

Lemma 2. The maximum likelihood estimator for τ2 is

τ̂2 :=
1

n
Y T
n (C + Ig)

−1
Yn.

Yn, g and C are defined in sections 3.2, 3.3 and 3.4 respectively.

20

Figure 3: Numerical approximation of the solution of Equation (10) using the Classical 4th Order Runge Kutta

Method

Proof. We find the maximum likelihood estimator for τ̂2 by maximising the log likelihood function shown in

Equation (4), that is

ℓ(θ;Yn) = −1

2

(
n ln(2π) + ln (det (Kn(θ;Dn, Dn))) + Y T

n Kn(θ;Dn, Dn)
−1Yn

)
.

Recalling that by definition of C, Kn(θ;Dn, Dn) = τ2 (C + Ig), so we can re-write the log likelihood function

as

ℓ(θ;Yn) = −1

2

(
n ln(2π) + ln

(
det
(
τ2(C + Ig)

))
+ Y T

n (τ2(C + Ig))−1Yn

)
.

Using the fact that (τ2(C + Ig))−1 = 1
τ2 (C + Ig)−1 and det

(
τ2(C + Ig)

)
= (τ2)n det(C + Ig),

= −1

2

(
n ln(2π) + ln

(
(τ2)n det (C + Ig)

)
+

1

τ2
Y T
n (C + Ig)−1Yn

)
= −1

2

(
n ln(2π) + n ln

(
τ2
)
+ ln (det (C + Ig)) +

1

τ2
Y T
n (C + Ig)−1Yn

)
.

Differentiating,

∂

∂τ2
ℓ(θ;Yn) = −1

2

(
n

τ2
− 1

(τ2)2
Y T
n (C + Ig)−1Yn

)
.

To find the stationary points, we want to find τ̂2 such that

0 = − 1

2τ̂2

(
n− 1

τ̂2
Y T
n (C + Ig)−1Yn

)
.

21

Figure 4: Gaussian process approximation of Equation (10), with training data calculated using the Classical

4th Order Runge Kutta Method

1

2τ̂2
cannot be equal to zero, therefore, the only way this can be equal to zero is if

0 = n− 1

τ̂2
Y T
n (C + Ig)−1Yn, i.e,

τ̂2 =
1

n
Y T
n (C + Ig)−1Yn.

To show that τ̂2 is in fact a maximum, we will take the second derivative.

∂2

∂(τ2)2
ℓ(θ;Yn) = −1

2

(
− n

(τ2)2
+

2

(τ2)3
Y T
n (C + Ig)−1Yn

)
= −1

2

(
− n

(τ2)2
+

2n

(τ2)3

(
1

n
Y T
n (C + Ig)−1Yn

))
.

Subbing in τ̂2,

∂2

∂(τ2)2
ℓ(τ̂2, λ, g, (v);Yn) = −1

2

(
− n

(τ̂2)2
+

2n

(τ̂2)2

)

= −1

2

n

(τ̂2)2
< 0,

therefore showing that τ̂2 is in fact a maximum. Then, since τ̂2 is a stationary point and a maximum, it is a

maximum likelihood estimator for τ̂2.

22

	Introduction
	Statement of Ownership

	Notation
	Gaussian Processes
	Definition and Properties of Gaussian Processes
	Using Gaussian Processes to Estimate Functions
	Estimating the Parameters
	Approximating New Function Values

	Applying Gaussian Processes to Differential Equations
	Sobolev Spaces
	Convergence of Gaussian Processes
	Conclusion
	Code used to find p and p
	Proper Definition of Lp Spaces and Sobolev Spaces
	Gaussian Process Regression on Training Data Calculated Using rk4
	Maximum Likelihood Estimation for

