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Prelude

Abstract

The partitioning of dynamical systems is necessary to apply a symbolic dynamics analysis. While many par-

titioning schemes exist, in practice an ordinal partition is frequently used. We are interested in identifying

possible alternatives to ordinal partitioning, however, there is currently no generalised method for assessing

the performance of a partitioning scheme on a given system. We propose such a method with a metric that

measures the mutual information between each point’s symbol history under a coarse partition (one with few

partitions), and its partition assignment under a fine partition (one with many partitions). Applying this met-

ric to a set of test systems and partitions shows that it is likely suitable as it generally displays the expected

behaviour. The metric shows that partitions based on trajectory history, including the ordinal partition and a

newly-proposed coarse history-based partition, are the best performing. Additionally, we find that the latter,

as well as a proposed weighted ordinal partition, have the potential to outperform the ordinal partition.
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1 Background and motivation

Symbolic dynamics is the modelling of a discretised dynamical system by splitting its points into sets, each

represented by a unique symbol, with applications in noise reduction and developing a general understanding

of system behaviour [1]. Symbolic dynamics analysis requires partitioning, which is the process of assigning to

each point a symbol based on some partitioning regime. Good partitions are those which produce a symbol

sequence retaining a large amount of information of the original system, termed ‘high-information’. A generating

partition is a particular high-information partition where there is a one-to-one correspondence between each

trajectory and its infinite symbolic sequence [5].

Finding generating partitions is difficult and a general method does not exist. There is an existing body

of work which attempts to estimate generating partitions for the special case of two-dimensional chaotic maps,

such as the Hénon and Ikeda maps [5, 7, 8, 6, 2]. However, these methods are not tested on higher-dimensional

or continuous systems.

Ordinal partitions have been used to partition higher-dimensional continuous-time systems with success [1],

but superior partitioning methods may exist. Furthermore, there is currently no method for assessing and

comparing the performance of different partitioning methods. Thus, in this research, we have two aims: first, to

develop a metric that can be used to assess the performance of a partition on a particular system, and second,

to identify superior alternatives to ordinal partitioning.

In Section 2, we introduce the mutual information-based metric used to assess partitions. In Section 3 we

introduce a set of test cases. In Section 4, the metric is applied to the set of test systems and partitions to

verify that it offers the expected assessment of each partition’s performance. After this is confirmed, in Section

5, alternatives to ordinal partitioning are explored and assessed.

2 Mutual information-based metric

Suppose we have a sequence of observations taken from a dynamical system with low precision, represented by

the area within the black circles in Figure 1. The Shadowing Lemma guarantees that there will be at least

one trajectory that passes through these points [4]; three are shown in the figure. Now, consider one of these

observations, shown in the bottom half of the figure. With the additional information that the point must

satisfy one of the trajectories, the location of the point is now known with higher precision; this higher-precision

region is shown inside the red oval. In general, the precision of an observation of a dynamical system can be

increased by taking more observations.

A good partitioning regime should then also preserve this property in the symbol sequence it generates. This

means that a point’s symbol assignment under a fine partition (equivalent to a high-precision observation) should

provide information about its symbol history under a coarse partition (equivalent to a series of low-precision

observations).

To quantify this property for a given partitioning regime on a dynamical system, we measure the mutual
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Figure 1: We can effectively increase observation precision by taking more observations.

information between the random variables representing the fine partitions of points, and the history symbol

sequences of each point under a coarse partition. This tells us how much knowing the fine partition of a point

reduces uncertainty about its history symbol sequence under a coarse partition, and vice versa. The mutual

information between random variables X and Y of a joint probability distribution is given by:

MI(X,Y ) =
∑
x,y

pX,Y (x, y) log2

(
pX,Y (x, y)

pX(x)pY (y)

)
. (1)

Formally, suppose P is a partitioning regime that can be applied to produce a variable number of partitions.

Let Pk be the partition resulting from applying P to produce k partitions. The algorithm for assessing P on

orbit X = {xn} is as follows:

1. Apply P2 to X .

2. Assign to each point xn ∈ X the coarse history symbol sequence πn−d(L−1), πn−d(L−2), ..., πn−d, πn, where

πm is the symbol for xm under P2, and d and L are parameters called history delay and history length

respectively.

3. For some k > 2, apply Pk to X , and assign to each point xn ∈ X its corresponding fine partition symbol.

4. Produce the joint probability distribution PX,Y , whereX is the random variable representing fine partition

symbols, and Y is the random variable representing coarse history symbol sequences.

5. Calculate MI(X,Y ) as given in Equation 1.

6. Repeat Steps 3 to 5 for various values of k.

Good partitioning regimes have high values of mutual information and result in increasing mutual information

as k increases, while bad partitioning regimes have low mutual information and no strong increase in mutual

information as k increases.
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Parameter d is chosen to be approximately 1
4 of the period of the orbit for continuous systems [11]. For

discrete-time maps, we choose d = 1. We set L = 5.

3 Test cases

3.1 Test systems

3.1.1 Lorenz system

The Lorenz system is three-dimensional continuous chaotic system defined by the equations:

dx

dt
= 10(y − x),

dy

dt
= x(

8

3
− z)− y,

dz

dt
= xy − 28z.

Simulations of the system are carried out using a differential equation solver, with time step δt = 0.01 and

initial point (x, y, z) = (0.5, 0.5, 0.5).

3.1.2 Rössler system

The Rössler system is a three-dimensional continuous chaotic system defined by the equations:

dx

dt
= −y − z,

dy

dt
= x+ 0.1y,

dz

dt
= 0.1 + z(x− 14).

Simulations of the system are carried out using a differential equation solver, with time step δt = 0.01 and

initial point (x, y, z) = (0, 0, 1).

3.1.3 Hénon map

The Hénon map is a two-dimensional discrete-time chaotic map defined by the equations:

xn+1 = 1− 1.4x2
n + 0.3yn,

yn+1 = xn.

Initial point (x, y) = (0, 0) is chosen.
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3.1.4 Ikeda map

The Ikeda map is a two-dimensional discrete-time chaotic map defined by the equations:

xn+1 = 1 + 0.9(xn · cos(tn)− yn · sin(tn)),

yn+1 = 0.9(xn · sin(tn) + yn · cos(tn)),

tn = 0.4− 6

1 + x2
n + y2n

.

Initial point (x, y) = (0, 0) is chosen.

3.1.5 Duffing oscillator

The Duffing oscillator is a continuous-time system defined by the following equation:

ẍ+ 0.3ẋ− x+ x3 = 0.65 cos(0.65t).

Taking x and ẋ to create a two-dimensional system generates a periodic orbit following an approximately circular

trajectory. Simulations of the system are carried out using a differential equation solver, with time step δt = 0.1

and initial point (x, ẋ) = (0,−0.3). Additionally, Gaussian noise with distribution (0, σ) is added to each point

during simulation.

3.1.6 Hyperchaotic map

The hyperchaotic map is a three-dimensional discrete-time map that exhibits hyperchaotic behaviour, defined

by the following equations:

xn+1 = 3.8xn(1− xn)− 0.05(yn + 0.35)(1− 2zn),

yn+1 = 0.1[(yn + 0.35)(1− 2zn)− 1](1− 1.9xn),

zn+1 = 3.78zn(1− zn) + 0.2yn.

Initial point (x, y, z) = (0.085,−0.121, 0.075) is chosen [10].

3.1.7 Hyperchaotic flow

The hyperchaotic flow is a four-dimensional continuous map that exhibits hyperchaotic behaviour, defined by

the following equations:
dx

dt
= −y − z,

dy

dt
= x+ 0.25y + w,

dz

dt
= 3 + xz,

dw

dt
= −0.5z + 0.05w.

Simulations of the system are carried out using a differential equation solver, with time step δt = 0.01 and

initial point (x, y, z, w) = (−20, 0, 0, 15) [10].
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3.1.8 Mackey-Glass system

The Mackey-Glass system is a one-dimensional series defined by the following delay differential equation:

dx

dt
= 0.2

xt−17

1 + x10
t−17

− 0.1x.

Simulations of the system are carried out using a differential equation solver, with time step δt = 0.05 and

initial point x = 0.58.

3.1.9 Time-delay embedding

Time-delay embedding can be applied to a one-dimensional time-series to construct a W -dimensional orbit.

Given the one-dimensional time-series {x(t)}, the time-delay embedded orbit is {x(t)}, where for each point

x(t) ∈ RW , x(t) = (x(t− (W − 1)τ), x(t− (W − 2)τ), ..., x(t− τ), x(t)). The values of W and τ are embedding

parameters called window size and time-delay respectively. τ is chosen to be approximately 1
4 of the period of

the orbit for continuous systems [11]. For discrete-time maps, we choose τ = 1.

3.1.10 Surrogate data

Surrogate data is used to simulate random orbits. Surrogate data is produced from a given system by randomly

drawing points with replacement from the original system in order to remove temporal correlation between

observations.

3.2 Partitioning methods

3.2.1 Ordinal partition

Consider the time-series {f(t)}. To construct an ordinal partition, we first select a dimension of the system

{x(t)}, then apply time-delay embedding to get the embedded orbit {x(t)}. Each point x(t) ∈ {x(t)} is assigned

a symbol according to the rank order of the amplitude of each component. W is varied to vary k, the number

of partitions produced. For W = w, there are a maximum of w! possible ordinal sequences, and therefore w!

partitions. However, in practice, many ordinal sequences are forbidden due to the nature of a system’s dynamics.

Mapping back to the original state space, each point f(t) is assigned the same symbol as x(t).

Geometrically, the ordinal partition is equivalent to partitioning along the hyperplanes of equality between

each pair of dimensions in embedded space, given by xt = xt−τ , xt = xt−2τ , xt−τ = xt−2τ etc.

3.2.2 K-means clustering

K-means clustering is an unsupervised machine learning method that separates points into K clusters, and aims

to minimise the sum of the squared distances between all points and their cluster means [3]. Here, K-means

clustering is implemented using the Python library scikit-learn [9], and each cluster is assigned a unique symbol.
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(a) Hénon map. (b) Rössler system.

Figure 2: Mutual information vs k for random partition. The metric shows low mutual information and little

increase with k, and is therefore successful in detecting that the random partition is a poor partitioning method.

3.2.3 Slice partition

To apply a slice partition, one dimension of an orbit is selected to produce a one-dimensional time-series {x(t)}.

k evenly sized bins are constructed between min({x(t)}) and max({x(t)}). Each point in the orbit is assigned

one of k symbols based on which bin its value in the selected dimension falls into.

3.2.4 Random partition

To apply random partitioning, points are randomly assigned a symbol from a uniform distribution.

4 Results on test cases

4.1 Random partition

The random partition is known to be a poor partitioning method, as it fails to systematically encode any

information. Results from the metric reflect this, with low mutual information and little growth as k increases,

as shown in Figure 2 for two test systems. Therefore, here the metric behaves as expected.

4.2 Surrogate data

As there is no temporal correlation between points in the surrogate data, all partitioning methods are expected

to perform poorly. This holds true for the k-means partition in state space, shown in Figure 3a; we take the

Lorenz system as an example, but results hold true for surrogate data generated from other systems as well.

However, the k-means partition on embedded orbits and the ordinal partition in Figures 3b and 3c respectively

show greater mutual information between fine partitions and coarse partition history. Both partitioning methods
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(a) K-means in state space. (b) K-means on embedded orbit. (c) Ordinal partition.

Figure 3: Mutual information vs k for Lorenz system surrogate. K-means on the embedded orbit demonstrates

higher mutual information than on the orbit in state space, while the ordinal partition demonstrates even higher

mutual information as well as an increase with increasing k. These results suggest that partitioning methods

utilising trajectory history perform better.

(a) Slice partition. (b) K-means partition. (c) Ordinal partition.

Figure 4: Mutual information vs k for Duffing oscillator with varying amounts of noise. The metric is able to

detect that increasing noise reduces partition quality.

involve a time-delay embedding step, so partitions are applied to systems where each point contains information

about trajectory history. The process of time-delay embedding then partitioning therefore results in partition

assignments sharing information with trajectory history, resulting in higher mutual information, despite the

original orbit containing no temporal correlation between successive points. The ordinal partition is explicitly

dependent upon the relationship between successive points, while the k-means partition geometrically partitions

the embedded orbit; this accounts for the ordinal partition’s higher mutual information and consistent increase

with k.

4.3 Duffing oscillator

As expected, the slice partition performs worse than the k-means and ordinal partitions, as shown in Figure

4. Additionally the metric detects that increasing the noise parameter σ results in decreasing partition quality,

aligning with expectations.
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(a) Slice partition. (b) K-means partition. (c) Ordinal partition.

Figure 5: Mutual information vs k for Lorenz system. The slice partition performs worst, followed by k-means

then the ordinal partition, aligning with expectations.

4.4 Lorenz system

As expected, the slice partition performs worse than the k-means and ordinal partitions, as shown in Figure 5.

The z-slice and z-embedding result in significantly higher mutual information than other dimensions. This is

because the Lorenz system is symmetric under inversion through the z-axis, so the z dimension does not offer

full observability of the system. The z-embedded orbit is therefore less complex than the original orbit, with

only a single lobe as shown in Figure 6, resulting in greater predictability and mutual information.

The exception to this is the ordinal partition, where the z-embedding only slightly outperforms the other

dimensions. This is because the partitions in the coarse z-embedded ordinal partition are not contiguous, as

shown in Figure 7. This means that transitions between symbols are more difficult to associate with a specific

location on the trajectory, resulting in lower mutual information between fine partitions and coarse partition

history.

For the Lorenz system, the metric still produces reliable and understandable results. However, it demon-

strates that higher mutual information alone does not guarantee a better partition, as such results can also be

an artefact of factors such as embedding dimension selection.

4.5 Conclusion

The mutual information-based metric assesses partitions in accordance with expectations, and thus we conclude

it is likely a suitable method for determining the quality of a partition.

5 Alternative partitioning methods

In this section, three alternatives to ordinal partitioning are investigated; all methods are assessed using the

mutual information-based metric.
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(a) Lorenz orbit in state space. (b) z-embedded Lorenz orbit.

Figure 6: Lorenz orbit in state space and after z-embedding. The z-embedded orbit exhibits less complex

behaviour, resulting in lower mutual information for a given partition.

(a) x-embedded. (b) y-embedded. (c) z-embedded.

Figure 7: k = 2 ordinal partitions on Lorenz system. The z-embedded coarse partition is non-contiguous,

resulting in lower mutual information for a given partition.
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(a) Lorenz system. (b) Rössler system.

Figure 8: K-means vs ordinal partition on Lorenz and Rössler systems. The ordinal partition outperforms the

k-means partition.

5.1 K-means vs ordinal

In this section, k-means and ordinal partitioning are compared on the Lorenz and Rössler systems. Both were

tested on various systems in Section 4. However, embedding dimension W was fixed for orbits to which k-means

partitioning was applied, while for ordinal partitions, W had to be increased to obtain a greater k value. This

gave the ordinal partition the advantage of being able to access a greater amount of history than the k-means

partition for higher values of k. To control for this, for each system tested here, the parameters values of k and

W used for each trial of the ordinal partition are also applied to the k-means partition.

Results are shown in Figure 8, demonstrating that the ordinal partition still outperforms the k-means

partition. Only the best performing embedding dimensions are shown (x and y for k-means for both systems,

x ordinal for Lorenz and z ordinal for Rössler). Given that the mutual information-based metric measures

the ability of a partition to provide information about trajectory history, it is unsurprising that the ordinal

partition, which partitions based on properties of trajectory history, outperforms the k-means partition.

5.2 History-based partition

According to the mutual information-based metric, a strong partition is one in which fine partition symbols

provide information about coarse partition history. Assigning fine partitions directly based on coarse partition

history should therefore maximise mutual information, producing, from the metric’s perspective, an optimal

partition. The algorithm for this history-based partition is below:

1. Select a partitioning method (e.g. ordinal) and use it to apply coarse partition P2 to an orbit {x(t)}.

2. Select a ‘look-back dimension’ l and time-delay d.
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Figure 9: History-based partitions on the Lorenz system outperform conventional partitions.

3. Each point x(t) has coarse symbol history π = πn−d(l−1), πn−d(l−2), ..., πn−d, πn. x(t) is assigned fine

partition π.

The history-based partition produces k = 2l fine partitions, and is applied to the Lorenz system with both

ordinal and k-means partitions used to apply the initial coarse partition P2. Results are shown in Figure 9,

along with the convnetional ordinal and k-means partitions for comparison.

The history-based partitions both outperform the conventional partitioning methods used to produce their

coarse partitions. It should be noted that the parameter L, the length of coarse history considered when

calculating mutual information, is set to 5. Therefore, once l = L at k = 25 = 32 partitions, there is a one-to-

one correspondence between the fine partition symbols and the coarse symbol history used to calculate mutual

information. At this point, increasing l will subdivide existing fine partitions but will not allow them to provide

more information about the length-5 coarse partition history; this accounts for the plateau for the history-based

partitions at k = 32.

We have reason to be skeptical about this partitioning method, as it is vulnerable to the error of optimising

for a metric, rather than what the metric is trying to measure. However, these results do support the hypothesis

that strong partitions are those that partition points according to their trajectory history, and thus provide

greater information about trajectory history under the proposed metric. The ordinal partition outperforms the

k-means partition for this reason, and the history-based partition utilises trajectory history to an even greater

extent.

5.3 Weighted ordinal partition

Consider a point x(t) with history xt−2τ , xt−τ , xt. In a typical ordinal partition with W = 3, we assign symbols

based on the rank order of the amplitudes of these three points. In a weighted ordinal partition, we first
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(a) Lorenz system. (b) Rössler system.

Figure 10: Sweeping over values of a1 and a2. Lighter areas correspond to ordinal weightings with higher mutual

information.

apply a weighting to the history of x(t) to obtain the sequence a1xt−2τ , a2xt−τ , xt, and then perform a regular

ordinal partition on this sequence. Geometrically, this is equivalent to changing the gradients of the hyperplanes

xt = xt−τ , xt = xt−2τ and xt−τ = xt−2τ used to partition the embedded orbit in an unweighted ordinal partition.

We sweep over values of a1 and a2 for both the Lorenz and Rössler systems, with results shown in Figure

10. In both graphs, a quadratic relationship between a1 and a2 results in high mutual information; the reason

for this is not yet understood.

For the Lorenz system, the standard ordinal partition with (a2, a1) = (1, 1) produces a mutual information

value of MI = 1.27. There are two regions where higher mutual information is observed: the line a2 = 0, with

(a2, a1) = (0, 2) givingMI = 1.34, and the region above and to the left of (a2, a1) = (1, 1), with (a2, a1) = (0.5, 2)

giving MI = 1.40.

Along the line a2 = 0, ordinal sequences are generated from the points (a1xt−2τ , 0, xt). This means that

ordinal sequences 123 and 321 only occur when the Lorenz system crosses the plane x = 0. This plane represents

an important switching between the two lobes of the system; this weighting of the ordinal partition thus

effectively captures an important system behaviour, resulting in high mutual information.

When compared to (a2, a1) = (1, 1), the weighting parameters (a2, a1) = (0.5, 2) result in a more even

distribution of points among the partitions, as Figure 11 illustrates. Given similar partitioning schemes, ‘fully

utilising’ each partition should provide more information per symbol, which can account for the higher mutual

information for the weighting (a2, a1) = (0.5, 2).

The weighted ordinal partition, combined with analysis made possible by the mutual information-based met-

ric, presents a possible avenue for improving on the ordinal partition by maximising the amount of information

preserved.
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(a) (a2, a1) = (0.5, 2), state space. (b) (a2, a1) = (0.5, 2), embedded.

(c) (a2, a1) = (1, 1), state space. (d) (a2, a1) = (1, 1), embedded.

Figure 11: Weighted ordinal partitions on Lorenz system with (a2, a1) = (0.5, 2) (top) and (a2, a1) = (1, 1)

(bottom). (a2, a1) = (0.5, 2) gives a more even distribution of points among partitions.
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6 Conclusions and further work

The mutual information-based metric presented is a suitable method for assessing the quality of a partition;

it can continue to be used to compare the performance of other partitioning methods. We find that ordinal

partitioning outperforms the k-means partition, as it assigns partition symbols based on trajectory history.

The proposed history-based partition performs well under the metric for the same reason, but its usefulness in

practice remains to be seen; further investigation is required here. Similarly, the ability for the weighted ordinal

partition to offer improvements in certain cases has been demonstrated, but further work is needed to generalise

its use.
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Appendix

A Number of points in orbit simulation

When numerically simulating an orbit, we must choose how many points, n, to simulate. In all calculations,

n is varied in proportion with k; this ensures that as k increases, the average number of points per partition

remains constant. If n remains constant while k changes, mutual information between symbol history and the

fine partition of a point increases as a result of the number of points per partition decreasing.

Practically, n is varied according to the equation n = a · k, k ≥ 1000. a must be chosen such that for the

lowest value of k tested, n is sufficiently large to capture the orbit faithfully. Chosen values of a for each system

tested are shown below:

System a

Lorenz 2000

Rössler 20000

Hénon 2000

Ikeda 2000

Hyperchaotic map 2000

Hyperchaotic flow 20000

Mackey-Glass 10000

Duffing 60000

B τ and d values for continuous systems

For continuous systems, τ and d are chosen to be approximately 1
4 of the period of their orbits. Each system

has a different period; values chosen for the tested continuous orbits are shown below:

System τ = d

Lorenz 0.1

Rössler 1.5

Hyperchaotic flow 1.6

Mackey-Glass 2.5

Duffing 12.5
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