
The Spectra of Toeplitz operator on

the Hardy space

Enxi Lin
Supervised by Associate Professor Pinhas Grossman

University of New Souths Wales

Feburary, 2024



Abstract

Toeplitz operators are an important class of bounded linear operators on the Hardy space, and to discuss

the existence and uniqueness of solutions to Toeplitz equations, one is motivated to describe the spectrum

of Toeplitz operators. For Toeplitz operators with specific properties, such as being analytic, and associated

with continuous symbols, the spectrum is completely understood, while an area of continuing research is the

spectral structure of more general Toeplitz operators.

In this report, we will start by summarising existing results for well-understood Toeplitz operators and their

spectra, and provide concrete examples to verify the theorems. We will then discuss methods of finding

the spectra of general Toeplitz operators, including investigating the connection of the numerical range of a

Toeplitz operator to its spectrum, and using numerical method with computer programs.
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1 Introduction

Given a linear operator A : H → H′ between Hilbert spaces, one is often interested in the solution to linear

equations A(h) = h′ for h ∈ H and h′ ∈ H′; when H and H′ and are finite dimensional, the solution is com-

pletely understood by employing the theories of eigenvalues and eigenvectors to the matrix that represents A.

However, many of these results fail in infinite-dimensional spaces, where operators may have no eigenvalues.

One is therefore motivated to define the spectrum of a (bounded) linear operator, to generalise the notion for

the eigenvalues to infinite-dimensional spaces.

One class of operator on Hilbert spaces that has attracted particular interest is the Toeplitz operators, which

are the compressions of the multiplication operators on L2 to the Hardy space H2. The study of this class of

operators originated with Otto Toeplitz, a German mathematician, around 1900s, and there has been ongoing

research dedicated to it as increasing applications of Toeplitz operator to various fields arise, such as noncom-

mutative geometry and singular integral equations in pure mathematics, and signal processing and time-series

analysis in engineering.

Extensive work has been done to compute spectra of Toeplitz operators, In particular, the spectra are well-

understood for Toeplitz operators with specific properties, such as being analytic, and associated with continuous

symbols (Arveson 2002). An area of continuing research is the spectral structure of more general Toeplitz op-

erators, which is also the interest for our research project.

In this report, we will summarise existing results on well-understood Toeplitz operators and their spectra,

and provide concrete examples to verify the theorems. We will then discuss methods of (partially) computing

the spectra of general Toeplitz operators, including investigating the connection of the numerical range of a

Toeplitz operator to its spectrum, and using computational method with computer programs.

2 Preliminary definitions

2.1 Hardy space

We will begin by defining the function spaces we will be working on.

The L2 space, a special case in of the Lp spaces, is central to many problems in Analysis. In this project,

we will specifically look at the L2 spaces on the circle, which is naturally associated with Fourier series. Con-

sider the measure space of S1 with the standard Lebesgue measure. A function f : S1 → C is in L2(S1) if it is

measurable and square-integrable, i.e.,
´ 2π
0

|f(eiθ)|2dθ < ∞. We can then define the L2-norm of f :

||f ||L2 =

(
1

2π

ˆ 2π

0

|f(eiθ)|2dθ
) 1

2
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which is normalised so that the measure of the entire circle is 1.

A caveat to note is that there is a technical issue with this definition: ||f ||L2 = 0 does not imply f = 0,

but f = 0 a.e., making || · ||L2 only a semi-norm on the set of all square-integrable functions. Therefore, the

precise definition of L2 requires the equivalence relation: f and g are equivalent if f = g a.e.

Definition 1. L2 = L2(S1) consists of all (equivalence classes of) square-integrable functions on S1 with respect

to Lebesgue measure. The norm of an element in L2 is defined as the L2-norm of a representative function in

the equivalence class.

However, in practice, there is little risk of regarding elements in L2 as functions, rather than equivalence classes

of functions.

Some elementary properties of L2 are useful to note. Firstly, when equipped with the inner product: ⟨f, g⟩L2 =

1
2π

´ 2π
0

f(eiθ)g(eiθ)dθ, L2 is a Hilbert space (Conway 1990). Moreover, the set {bn : bn(e
iθ) = einθ}n∈Z forms

an orthonormal basis for L2 (Conway 1990), this means every f ∈ L2 has Fourier series of form

∞∑
n=−∞

⟨f, einθ⟩einθ =

∞∑
n=−∞

f̂ne
inθ,

which converges to f in L2. A key result is that sequence of Fourier coefficients f̂ = {f̂n}n∈Z are square-

summable, i.e.,
∑∞

−∞ |fn|2 < ∞. This allows us to identify elements in L2 with ℓ2(Z) via the Fourier transform.

Theorem 2. (Riesz-Fischer) If f ∈ L2, then the Fourier transform

f̂n =

ˆ 2π

0

f(eiθ)e−inθdθ, for n ∈ Z

provides a Hilbert space isomorphism between L2 and l2(Z).

In particular, this isomorphism is norm-preserving:

||f ||L2 = ||f̂ ||ℓ2 =

( ∞∑
−∞

|fn|2
) 1

2

Next, we shall examine the space on which the Toeplitz operators acts: the Hardy space, which is the (closed)

subspace of L2 with vanishing negative Fourier coefficients.

Definition 3. The Hardy space (on S1), denoted H̃2, is defined as

H̃2 = {f ∈ L2 : ⟨f, bn⟩ = 0 ∀n < 0} =

{
f ∈ L2 : f(eiθ) =

∞∑
n=0

fne
inθ

}

Clearly, the set {bn : bn(e
iθ) = einθ}n∈N forms an orthonormal basis for H̃2, and we can similarly identify

elements in H̃2 with those in ℓ2(N).
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We may extend functions in H̃2 to the open unit disc D, yielding a space of analytic functions with square-

summable power series coefficients H2(D) = H2:

H2 =

{
(f : D → C) : f(z) =

∞∑
n=0

fnz
n and

∞∑
n=0

|fn|2 ≤ ∞

}
with the inner product and norm

⟨
∞∑

n=0

fnz
n,

∞∑
n=0

gnz
n⟩H2 =

∞∑
n=0

fngn and ||
∞∑

n=0

fnz
n||H2 =

( ∞∑
n=0

|fn|2
) 1

2

respectively.

The extension is constructed as follows: for f̃ ∈ H̃2, we define

f̃r(z) := f̃ ∗ Pr(θ) =
1

2π

ˆ 2π

0

Pr(θ − t)f̃(eit)dt, 0 < r < 1.

where Pr(θ) is the Poisson Kernel and f̃r = f̃ ∗ Pr ∈ H2(D) (Rossi 2011).

Theorem 4. For every f̃ ∈ H̃, there exist a unique f ∈ H2(D), such that

||f̃r − f ||H2(D) → 0 as r → 1− , and ||f̃ ||H̃2 = ||f ||H2(D)

Further, if f̃ =
∑∞

n=0 fne
inθ, then the corresponding f ∈ H2(D) is f =

∑∞
n=0 fnz

n

Proof of this theorem may be found in Rossi (2011, p.461-464).

Next, we shall define another important class of functions.

Definition 5. The space L∞ = L∞(S1) consists of essentially bounded measurable functions, that is,

L∞ = {ϕ : µ
(
{eiθ : |ϕ(eiθ)| > M}

)
= 0 for some M > 0}

where µ is the standard Lebesgues measure on S1.

Similar to the technicality with defining L2, L∞ is more precisely defined in terms of equivalence classes of

functions modulo sets of measure zero.

Further, the norm on a (representative) function ϕ ∈ L∞ is the essential norm

||ϕ||L∞ = inf
{
M : µ

(
{eiθ : |ϕ(eiθ)| > M}

)
= 0
}
.

Moreover, it is clear that L∞ ⊆ L2.

We may similarly defined H̃∞ as the subset of L∞ with vanishing negative Fourier coefficients: H̃∞ = H̃2∩L∞,

and H∞ as the analytic extension of H̃∞ to the unit disc:

Definition 6. The space H∞ consists of analytic and bounded functions on the open unit disc; and the norm

of ϕ ∈ H∞ is ||f ||H∞ = sup{|f(z)| : z ∈ D}.

Clearly, H∞ ⊆ H2.
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2.2 Toeplitz operator

In this section, we will define and discuss the basic properties of Toeplitz operators.

The modern formulation begins with the multiplication operator:

Definition 7. For ϕ ∈ L∞. The multiplication operator by ϕ, denotad Mϕ, is defined by

Mϕ : L2 → L2 : Mϕf = ϕf.

An interesting property of the multiplication operator is its matrix representation:

Theorem 8. Let ϕ ∈ L∞ with Fourier series

∞∑
−∞

ϕne
inθ.

Then the matrix of Mϕ with respect to the orthonormal basis {einθ}n∈Z of L2 is

Mϕ =



. . .

ϕ0 ϕ−1 ϕ−2

ϕ1 ϕ0 ϕ−1 ϕ−2

ϕ2 ϕ1 ϕ0 ϕ−1 ϕ−2

ϕ2 ϕ1 ϕ0 ϕ−1

ϕ2 ϕ1 ϕ0

. . .


where the boxed entry represents the (0,0) position

Matrices of this form are an example of Toeplitz matrix:

Definition 9. A (finite, singly infinite, or doubly infinite) matrix is called a Toeplitz matrix if its entries are

constant along each diagonal, i.e., the matrix (am,n) is Toeplitz if am1,n1 = am2,n2 whenever m1−n1 = m2−n2.

Returning to the definition of a multiplication operator, a natural question is to ask: for such a multiplication

operator to be well-defined, is ϕ necessarily a L∞ function? It is easy to see L2 is not closed under this operation

(consider ϕ(z) = f(z) = z−1/4). In fact, the multiplication of an L2 function by a Lp, p ≥ 1 function is not

necessarily in L2. A theorem on the boundedness criterion elaborates on this note:

Theorem 10. (Brown and Halmos 1963) Consider a Toeplitz matrix corresponding to the sequence (an)n∈Z,

which represent an operator, A, on ℓ2, then A is bounded if and only if there exists a function ϕ ∈ L∞(S1) such

that an = ϕ̂n, that is, A = Mϕ if we let it acts on L2(S1).
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Next, We shall see that Toeplitz operator is the compression of a multiplication operator on L2 to the Hardy

space H̃2:

Definition 11. For ϕ ∈ L∞, the Toeplitz operator with symbol ϕ is the operator Tϕ defined by

Tϕ : H̃2 → H̃2 : Tϕf = Pϕf,

where P is the orthogonal projection of L2 onto H̃2

Regarding the matrix representation of the Toeplitz operator, we have the following corollary of Theorem 10:

Corollary 12. An operator on H̃2 is a Toeplitz operator with symbol ϕ ∈ L∞ if and only if its matrix with

respect to the basis {einθ}∞n=0 of H̃2 is

Tϕ =



ϕ0 ϕ−1 ϕ−2 ϕ−3
. . .

ϕ1 ϕ0 ϕ−1 ϕ−2
. . .

ϕ2 ϕ1 ϕ0 ϕ−1
. . .

ϕ3 ϕ2 ϕ1 ϕ0
. . .

. . .
. . .

. . .
. . .

. . .


where ϕk is the kth Fourier coefficient of ϕ.

Let’s now consider an example.

Example 1 - Shift operators

On ℓ2 = ℓ2(N), we define the unilateral right shift operator U by

U : ℓ2 → ℓ2 : U(a0, a1, a2, ..., ) = (0, a0, a1, a2, ...)

The adjoint of U is the unilateral left shift:

U∗ : ℓ2 → ℓ2 : U(a0, a1, a2, a3, ..., ) = (a1, a2, a3, ...)

These well-known shift operators are Toeplitz operators:

Lemma.The operator Teiθ is unitarily equivalent to U on ℓ2, and the operator Te−iθ is unitarily equivalent to U∗.

This lemma is proven by considering the isomorphism between H̃2 and ℓ2:

h : H̃2 → ℓ2 :

∞∑
n=0

ane
inθ → (an)

∞
n=0.

Then Teiθ = hUh∗ and Te−iθ = hU∗h∗.

Intuitively, Te−iθ shifts the Fourier coefficient of the function to the right by raising the power of each term by

1, which is equivalent to the right shift operator on ℓ2.

Here are some basic properties of the Toeplitz operators.
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Lemma 13. If Tϕ is a Toeplitz operator

(a) ||Tϕ|| = ||ϕ||∞

(b) T ∗
ϕ = Tϕ

Proof. Proof of these results can be found in (Mart́ınez-Avendaño and Rosenthal 2007).

2.3 Spectrum

In applications, it is usually important to solve Toeplitz equations Tϕf = g, and to discuss the existence

and uniqueness of solutions. On finite-dimentional spaces, problems like this boil down to characterising its

eigenvalues. However Toeplitz operators on the infinite-dimensional space may have no eigenvalues. It is

therefore necessary to define the spectrum as a more generalised notion of the eignevalues.

Definition 14. For a bounded linear operator on a Hilbert space, A ∈ B(H), the resolvent of A, denoted

ρ(A) is the set of all complex numbers λ such that A− λ is one-to-one and onto; the spectrum of A, denoted

σ(A), is the set of all complex numbers λ such that A− λ is not invertible, i.e., σ(A) = C \ ρ(A)

There are various subsets of the spectrum, for example:

• λ is an eigenvalue of A if Af = λf for some non-zero f (i.e., A − λ is not one-to-one). The set of all

eigenvalues of A is called the point spectrum of A, denoted Π0(A).

• The approximate point spectrum is the set Π(A) of complex numbers λ such that there exist a

sequence {fn} of unit vectors satisfying {||(A− λ)fn|| → 0} as n → ∞.

Below are some basic properties of the spectrum.

Lemma 15. .

(a) (Spectral radius formula). r(A) := sup{|λ| : λ ∈ σ(A)} = limn→∞ ||An|| 1
n . In particular, r(A) ≤ ||A||.

(b) σ(A∗) = {λ : λ ∈ σ(A)}

(c) Π0(A) ⊆ Π(A) ⊆ σ(A)

Proof. Proof of these results can be found in (Conway 1990).

3 Spectral theorem for Toeplitz operators

In this section, we will discuss the spectra of ’well-behaved’ Toeplitz operators, specifically those with H̃∞ or

continuous symbols.
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3.1 Analytic symbols

Definition 16. A Toeplitz operator Tϕ is called an analytic Toeplitz operator if ϕ ∈ H̃∞ (and hence will

have analytic extension to D).

The spectrum of analytic Toeplitz operator is characterised as follow:

Theorem 17. For an analytic Toeplitz operator Tϕ̃, ϕ̃ ∈ H̃∞, the spectrum is σ(Tϕ) = ϕ(D) where ϕ is the

analytic extension of ϕ̃ onto D.

Proof. Recall H̃2(S1) is isomorphic to H2(D), so the spectrum will be preserved if we regard Tϕ as acting on

H2(D) with symbol ϕ ∈ H∞(D). Also note that Tϕf = Pϕf = ϕf , since ϕ ∈ H∞ ⊆ H2.

We will firstly show that σ(Tϕ) ⊆ ϕ(D). Suppose λ /∈ ϕ(D), there exist ϵ > 0 such that |ϕ(z) − λ| ≥ ϵ for

all z ∈ D, then 1
ϕ−λ is defined on D and 1

ϕ−λ ∈ H∞, since | 1
ϕ−λ (z)| ≤

1
ϵ . Hence, T 1

ϕ−λ
is well-defined and

(Tϕ − λ)−1 = T 1
ϕ−λ

, and so λ /∈ σ(Tϕ).

Next, we will show ϕ(D) ⊆ σ(Tϕ). Consider λ = ϕ(z), for some z ∈ D; for all g = (Tϕ − λ)f , g(w) =

(ϕ(w)− λ)f(w) = 0. Hence Tϕ − λ is not surjective and λ ∈ σ(Tϕ).

Example 1 - Shift operators (continued)

The right shift operator Teiθ is analytic, we can apply the theorem to find its spectrum: σ(Teiθ ) = D, since the

images of D under the identity map eiθ is D. We will prove this from definition in the next subsection.

On the other hand, the left shift operator σ(Te−iθ ) is not analytic, but we have another spectral theorem for

Toeplitz operator with continuous symbols.

3.2 Continuous symbol

To examine spectra of Toeplitz operators with continuous symbols, it requires the concept of a winding number.

Definition 18. Let γ be a continuous closed curve on S1 (γ : [0, 1] → C), and let a ∈ C \ ran(γ). We define

the winding number of γ about a:

Wnda γ =
θa(1)− θa(0)

2π

where θa : [0, 1] → R is defined such that for

fa : [0, 1] → S1 : fa(u) =
γ(u)− a

|γ(u)− a|
,

fa(u) = eθ(u).

Informally, it is just the number of times that the curve winds around a point.

Then, we have the following theorem that completely describes the spectrum of a Toeplitz operator with a

continuous symbol.
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Theorem 19. Let ϕ be a continuous function on S1, then

σ(Tϕ) = ran ϕ ∪ {a ∈ C : a /∈ ran ϕ and Wndaϕ ̸= 0}

Proof. Proof of this theorem can be found in (Mart́ınez-Avendaño and Rosenthal 2007).

We shall see a simple application to clarify the theorem.

Example 2

Consider Tϕ, where ϕ(z) = −2iz3 − 3z2 +2iz−1 − z−2 + z−3 which is clearly continuous. Then the spectrum of

Tϕ is given by ϕ(S1) together with the region where the winding number is non-zero (Figure [1]).

Figure 1: left: image of ϕ and winding number for each region; right: the spectrum of Tϕ

.

Example 1 - Shift operators (continued)

Recall the shift operators, the theorem says σ(Teiθ ) = D = σ(Te−iθ ), since the images of S1 under the identity

map eiθ and the conjugate map e−iθ are both S1, and the set of points with non-zero winding number is D for

both curves (Figure [2]); S1 ∪ D = D.

Figure 2: Range of the symbols for Teiθ and Te−iθ

We will verify this from the definition of the spectrum.
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Proof. We will firstly consider Te−iθ . We have that ||Te−iθ || = ||e−iθ||∞ = 1 (Lemma 13a), and the spectral

radius formula (Lemma 15a) implies that |λ| ≤ ||Te−iθ || = 1, ∀λ ∈ σ(Te−iθ ), hence σ(Te−iθ ) ⊆ D.

For the reverse inclusion, consider first λ ∈ D, clearly f =
∑∞

n=0 λ
neinθ ∈ L2. Then,

Te−iθf = PMe−iθf = P (

∞∑
n=−1

λnei(n−1)θ) =

∞∑
n=0

λn+1einθ = λf,

Hence λ ∈ Π0(Te−iθ ) ⊆ σ(Te−iθ ).

Now, we will show that S1 ∈ Π(Te−iθ ) ⊆ σ(Te−iθ ): consider λ = eiα ∈ S1, we can construct a sequence of unit

vectors {fn}n∈N in H̃2 such that ||(Te−iθ − λ)fn|| → 0: each fn has Fourier coefficient

f̂n =

(
1√
n
eiα,

1√
n
e2iα, ...,

1√
n
eniα, 0, 0, 0, ...

)
.

Then

||(Te−iθ − eiα)fn||2 =

∞∑
j=0

|f j+1
n − eiαf j

n|2 =
1

n
→ 0

Finally, for Teiθ , by Lemma 13b)

σ(Teiθ ) = σ(T ∗
e−iθ ) = {λ : λ ∈ σ(e−iθ)} = D

We also computed the spectrum of a Toeplitz operator which bears significant in applications. In signal process-

ing or control theory, a Toeplitz matrix A represents a time-invariant map, since Ai−1,j = Ai,j+1; an analytic

Toeplitz operator (with lower-triangular matrix) represents a causal system (the output depends on past and

current inputs but not future inputs), Toeplitz operator with an upper-triangular matrix represents an anti-

causal system (output depends only on future values).

Example 2 - Rational transfer function

In signal processing, a transfer function provides description of the input-output relation for a linear time invari-

ant dynamical system system, which can be regarded as the transfer function acting as a symbol for a Toeplitz

operator.

For example, Consider the rational transfer function, ϕ(z) = 1
1−kz , where k ∈ C \ {0, 1}, ϕ ∈ L∞(S1).

For 0 < |k| < 1, ϕ is analytic, and ϕ has Fourier series
∑∞

n=0 k
neinθ, that is, the inverse Fourier transform is

ϕ̂ = (..., 0, 0, 1 , k, k2, k3, ...)

9



Hence, the Toeplitz operator Tϕ has matrix representation:

Tϕ =



1 0 0 0
. . .

k 1 0 0
. . .

k2 k 1 0
. . .

k3 k2 k 1
. . .

. . .
. . .

. . .
. . .

. . .


In fact, the matrix representation of all analytic Toeplitz operator is lower triangular (Mart́ınez-Avendaño and

Rosenthal 2007).

ϕ maps the unit disc to the disc centres at 1
1−|k|2 with radius |k|

1−|k|2 . Hence σ(Tϕ) = ϕ(D) = D
(

1
1−|k|2 ,

|k|
1−|k|2

)
.

Proof. See the proof for theorem [17].

On the other hand, for |k| > 1, ϕ /∈ H∞:

ϕ(eiθ) =
1
ke

−iθ

1
ke

−iθ − 1
= (−1

k
e−iθ)

∞∑
n=0

1

kn
e−inθ = −

∞∑
n=1

1

kn
e−inθ =

−1∑
n=−∞

−kneinθ

The Toeplitz operator Tϕ has matrix representation:

Tϕ =



0 − 1
k − 1

k2 − 1
k3

. . .

0 0 − 1
k − 1

k2

. . .

0 0 0 − 1
k

. . .

0 0 0 0
. . .

. . .
. . .

. . .
. . .

. . .


ϕ maps the unit circle to the circle centred at 1

|k|2−1 with radius |k|
|k|2−1 .

Nevertheless, ϕ is continuous and Theorem [19] implies that σ(Tϕ) = D
(

1
|k|2−1 ,

|k|
|k|2−1

)
. We shall also verify

this result.

Proof. Note that if we restrict ϕ to ϕ : C \ { 1
k} → C \ {0}, it is bijective.

We will firstly show that ϕ(S1) ⊆ σ(Tϕ). For λ ∈ ϕ(S1), we have ϕ(w) = λ for some w ∈ S1. But for all

g = (Tϕ − λ)f , g(w) = (ϕ(w)− λ)f(w) = 0. Hence Tϕ − λ is not surjective and λ ∈ σ(Tϕ).

Now, we will prove that D
(

1
|k|2−1 ,

|k|
|k|2−1

)
⊆ σ(Tϕ). Firstly, 0 /∈ σ(Tϕ), since Tϕf does not depend on f0,

so Tf is not injective. For λ ∈ D
(

1
|k|2−1 ,

|k|
|k|2−1

)
\ {0}, we can also show that Tϕ − λ is not injective. Let

10



λ = ϕ(w) for some |w| > 1 and (Tϕ − 1
1−kw )f = 0 for some f =

∑∞
n=0 fne

inθ ∈ L2:

1
kf1 +

1
k2 f2 +

1
k3 f3 + ...

1
kf2 +

1
k2 f3 + ...

1
kf3 + ...

...

+
1

1− kw


f0

f1

f2
...

 = 0

Solving simultaneously yields fn+1 = 1
wfn for all n ≥ 0. Note that | 1w | ≤ 1 and so (f0,

1
wf0, (

1
w )2f0, ...) ∈ ℓ2 for

all f0 which means ker(Tϕ − λ) ̸= {0}.

Finally, we will prove that σ(Tϕ) ⊆ D
(

1
|k|2−1 ,

|k|
|k|2−1

)
. Consider λ ∈ C \ D

(
1

|k|2−1 ,
|k|

|k|2−1

)
, then λ = ϕ(w) for

some |w| < 1. By similar argument as in the previous paragraph, with (f0,
1
wf0, (

1
w )2f0, ...) ∈ ℓ2 iff f0 = 0

in this case as | k
kw | > 1. Hence ker(Tϕ − λ) = {0}. To show surjectivity, it suffices to show that for every

orthonormal basis en of H2, there exists a f ∈ H2, such that (Tϕ − λ)f = en. This is clear: just pick

f(eiθ) = − 1
k (1− kw)2ei(n−1)θ + (1− kw)einθ for each n ∈ N.

4 Spectrum of General Toeplitz operator

The spectrum of a general Toeplitz operator (with discontinuous symbol) is usually hard to compute. One can

instead look at the numerical range of Toeplitz operators to gain insight into its spectrum.

Definition 20. The numerical range of an operator A ∈ B(H), denoted W (A) is the subset of the complex

plane

W (A) = {⟨Af, f⟩ : f ∈ H, ||f || = 1}.

Note that the nuemrical range is a convex subset of the complex plane (Toeplitz-Hausdorff Theorem).

For any arbitrary operator, the spectrum is contained in the closure of the numerical range:

Theorem 21. For every operator A ∈ B(H), σ(A) ⊆ W (A)).

For a Toeplitz operator, there is more we can say about that connection between its spectrum and numerical

range.

4.1 Numerical range of Toeplitz operator

We will start with a definition.

Definition 22. For a set X, the convex hull of X, denoted Conv(X), is the smallest convex set containing

X; the closure of the convex hull, Conv(X), is called the closed convex hull.

11



For a (general) Toeplitz operators, we have a complete description of the numerical range in terms of its

spectrum:

Theorem 23. For ϕ ∈ L∞

W (Tϕ) = Conv(σ(Tϕ))

In particular, W (Tϕ) = Int(Conv(σ(Tϕ)) (”Int” denotes ”interior”)

Proof. Proof of this theorem can be found in (Klein 1972).

Example 1 - Shift operators (continued)

Theorem [23] implies that W (Teiθ ) = D = W (Te−iθ ). We will also verify this from the definition.

Proof. We will firstly consider Te−iθ . Let f ∈ L∞ with ||f ||∞ = 1.

|⟨Te−iθf, f⟩| ≤ ||Te−iθf ||∞||f ||∞ = ||Te−iθf ||∞ ≤ ||Te−iθ ||H2 = 1.

Hence W (Te−iθ ) ⊆ D. Suppose now |⟨Te−iθf, f⟩| = 1, this implies Te−iθf = λf for some |λ| = 1, i.e, λ is an

eigenvalue. But
∞∑

n=0

fne
i(n+1)θ =

∞∑
n=0

λfne
inθ =⇒ |fn+1| = |fn| ∀n ∈ N

contradicting ||f ||∞ = 1. Hence W (Te−iθ ) ⊆ D

For the reverse inclusion, let λ ∈ D, from previous investigation of this example we know λ ∈ Π0(Te−iθ ), that

is, Te−iθg = λg for some g ̸= 0. Let f = g
||g||∞ , then ||f ||∞ = 1 and ⟨Te−iθf, f⟩ = λ, and λ ∈ W (Te−iθ )

Finally, for Teiθ ,

⟨Teiθf, f⟩ = ⟨f, T ∗
eiθf⟩ = ⟨Te−iθf, f⟩

Hence, W (Teiθ ) is the complex conjugate of W (Te−iθ ) which is also D.

There are two simple but useful results regarding the numerical range derived in the proof above:

Lemma 24. For A ∈ B(H):

a) W (A∗) = W (A)

b) Π0(A) ⊆ W (A)

4.2 Computational method

Although being able to provide information about the spectrum of Toeplitz operator with discontinuous symbol,

the numerical range is still a challenge to compute analytically in general. In this project, we experimented using

a computer program to simulate points in the numerical range: given a Toeplitz operator, we take truncation

of size n of its (singly infinite) Toeplitz matrix, denote T tr
ϕ and randomly generate unit vectors of size n, frand;

12



then we compute and plot ⟨T tr
ϕ frand, frand⟩, yielding a subset of Tϕ.

Figure [3] shows the points generated by this program verifying the numerical range for the right shift op-

erator.

Figure 3: simulated points in the numerical range of Teiθ .

We then use the same program on a Toeplitz operator with discontinuous symbol, whose spectrum and numerical

is unknown.
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Example 3 - discontinuous symbol

Consider Tϕ, where

ϕ(eiθ) =

e2iθ + 2i θ ∈ [0, π)

e2iθ − 2i θ ∈ [π, 2π)

The image of ϕ is shown in Figure [4a]. We calculated the Fourier coefficients of ϕ which defines the matrix of

Tϕ:

ϕ̂n =


2
nπ [1− (−1)n] n ̸= 0, 2

0 n = 0

1 n = 2

The simulation is provided in Figure [4b].

Figure 4: (left) Image of the symbol ϕ; (right) simulated points in the numerical range of a Toeplitz operator

with discontinuous symbol ϕ.

An important caveat to note is that, one weakness of using the numerical range to study the spectrum is that

it only detects the convex hull, and so we don’t know whether regions between parts of the spectrum will be

also in the spectrum. In this example, it appears that the region in-between the two disconnected circles (the

red dots) is in the numerical range, however, we cannot determine if it is part of the spectrum, since excluding

it will not change the convex hull of the two circles.
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5 Conclusion and Future Direction

In this report we summarised existing results for well-understood Toeplitz operators and their spectra, and pro-

vide concrete examples to verify the theorems. We discussed methods of finding the spectra of general Toeplitz

operators, including investigating the connection of the numerical range of a Toeplitz operator to its spectrum,

and using numerical method with computer programs.

Future studies may continue to explore the spectrum of general Toeplitz operators, attempt to provide a

complete description given some constraints, such as having piecewise continuous symbols, and investigate the

applicability of this computational method to more complicated Toeplitz operators.
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Appendix - code

%define the symbol by its Fourier series

syms x

y=piecewise(x~=0 &x~=2, 2/(pi*x)*(1-(-1)^x), x==0, 0, x==2, 1)

nu =100;%no.points for each truncation size

figure

grid on

for j = 2:10 %truncation size

%create truncated Toeplitz matrix:

A=[];

for n=0:j-1

a=transpose(subs(y,x,-n:-n+j-1));

A = [A,a];

end

%first set of points - using randomly generated unit vectors with

uniformly distributed angles

B = exp(1i*2*pi*rand(j,nu)).*randn(j,nu); %generate nu points with

length j

for i=1:nu

g=B(:,i)/norm(B(:,i));

l=dot(A*g,g);

plot(real(l),imag(l),'.','Color ', 'r')

hold on

end

%second set of points - using unit vectors where arguments in

consecutive coordinate is differ by a (random) constant

%this is to resolve the issue for the first set of unit vector generated

giving points with vanishing magnitude as truncation size increases

v = ones(j,nu)/sqrt(j);

for t = 1:nu

r = randi ([ -100 100],1,1);

u = diag(ones(1,j).*exp(1i*100* pi *[0:1/(r*(j-1)):1/r]))*v(:,t);

s = dot(u,A*u);
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plot(real(s),imag(s),'.','Color ','b')

hold on

end

A=[];

end

xlabel('Re( )')

ylabel('Im( )')

hold off
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