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Abstract

In this report, we show that if g is a complete SO(n)-invariant Einstein metric on M = Rn

or M = Sn, then, up to scaling, (M, g) is isometric to one of the three model spaces. The
proof uses the Killing-Hopf Theorem and warped product metrics.
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1 Introduction

Smooth manifolds are generalisations of smooth curves and surfaces to higher dimensions. A
Riemannian metric is a mathematical object defined on a smooth manifold which allows us to talk
about distances, angles, and curvatures. A smooth manifold equipped with a Riemannian metric
is called a Riemannian manifold. Arguably, the most famous examples of Riemannian manifolds
are the three model spaces: Euclidean space, the round sphere, and hyperbolic space.

It turns out that every any smooth manifold admits infinitely many Riemannian metrics. Thus,
geometers have been interested in the following question:

Given a smooth manifold M , are there any “distinguished” Riemannian metrics on M?

One interpretation of what it means for a metric to be “distinguished” is having constant curvature.
Two important curvatures associated with any Riemannian metric are the sectional curvature and
the Ricci curvature. A metric having constant sectional curvature implies that it also has constant
Ricci curvature, but the converse is not true in general.

Metrics with constant sectional curvature are well-understood. Indeed, the Killing-Hopf Theo-
rem tells us that, given some standard assumptions, the only Riemannian manifolds with constant
sectional curvature are the three model spaces. In particular, not every smooth manifold admits a
metric with constant sectional curvature.

A metric with constant Ricci curvature is called Einstein. More precisely, a Riemannian metric
g is Einstein if

Ricg = λg, (1)

where Ricg is the Ricci curvature of g, and λ ∈ R is a constant. Equation (1) is called the
Einstein equation. Finding Einstein metrics is difficult: the Einstein equation is a non-linear
partial differential equation.

One way that geometers have been able to find Einstein metrics is by introducing symmetry.
The hope is that symmetry simplifies the Einstein equation. Mathematically, introducing symme-
try comes in two steps: first, we pick a Lie group G acting on our smooth manifold M ; next, we
seek Einstein metrics on M which are invariant under the action of G. These metrics are called
G-invariant.
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This approach has been very successful in finding new Einstein metrics. For example, many
Einstein metrics on the smooth manifold Rn have been found via Einstein solvmanifolds, which are
solvable Lie groups equipped with an Einstein metric which is invariant under left-multiplication
(see [Lau09] for a survey of Einstein solvmanifolds). On the other hand, non-round Einstein metrics
have been found on the n-sphere Sn by considering metrics invariant under particular group actions
(for examples, see [Jen73] and [B9̈8]).

In this report, we consider the case when the group is the special orthogonal group SO(n), and
the smooth manifold is Rn or Sn. Our main result is that this symmetry does not give us any new
Einstein metrics:

Theorem 1.1. Fix n ≥ 2, and let g be a complete SO(n)-invariant Einstein metric on M = Rn
or M = Sn. Then, up to scaling, (M, g) is isometric to one of the three model spaces.

We remark that Theorem 1.1 is well-known to experts. However, to the of best of the author’s
knowledge, a full proof is not written down anywhere in the literature.

This report is organised as follows. In Section 2, we discuss the background material relevant
for the proof of Theorem 1.1. In Section 3.1, we show that any SO(n)-invariant metric on Rn or
Sn can be written as a warped product metric on a dense open subset. In Section 3.2, we show
that on the warped product I ×f Sn−1, the Einstein condition is equivalent to having constant
sectional curvature. Finally, we prove Theorem 1.1 in Section 3.3.

Statement of authorship. All research in this report was done by the stated author. Any
previously established results have been cited appropriately and clearly.

Acknowledgements. I would like to thank my supervisor Dr Ramiro Lafuente for his advice,
encouragement, and guidance. I would also like to thank Adam Thompson for many helpful
conversations.

2 Preliminaries

2.1 Einstein metrics

Let M be a smooth manifold and g a Riemannian metric on M . Let Ricg denote the Ricci
curvature of g. We say that g is Einstein if Ricg = λg for some λ ∈ R. In this case, we say that
the Riemannian manifold (M, g) is an Einstein manifold.

Remark 2.1. Einstein metrics are often called metrics with constant Ricci curvature. This is
because Ricg = λg if and only if Ricg(v, v) = λ for every unit vector v ∈ UM .

Let Secg denote the sectional curvature of g. Recall that we say g has constant sectional
curvature c ∈ R if Secg(Πp) = c for every p ∈M and 2-dimensional subspace Πp ≤ TpM . If g has
constant sectional curvature, then it is Einstein:

Proposition 2.2 ([Lee18, Proposition 8.36]). Let M be a smooth manifold and g a Riemannian
metric on M . Then g has constant sectional curvature c ∈ R if and only if

Rmg =
1

2
c g ? g,

where Rmg denotes the (0, 4)-Riemann tensor of g and ? is the Kulkarni–Nomizu product. In this
case, g is Einstein with Ricg = c(n− 1)g.

The following three examples of Riemannian manifolds are known as the three model spaces.
Each model space is a simply-connected complete Riemannian manifold of constant sectional cur-
vature (and so is in particular Einstein). Fix n ≥ 2.

Example 2.3 (Euclidean space). Consider Rn as a smooth manifold. Let x1, . . . , xn : Rn → R
denote the standard coordinates of Rn. The Euclidean metric g is the Riemannian metric on Rn
defined by

g := (dx1)2 + · · ·+ (dxn)2.
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If we identify each tangent space of Rn with Rn itself in the usual way, then the Euclidean metric
at each point is just the standard inner product on Rn. The Riemannian manifold (Rn, g) is called
Euclidean space. The Euclidean metric has constant sectional curvature 0, and so is Einstein with
Ricg = 0.

Example 2.4 (The round sphere). Let Sn denote the n-dimensional unit sphere, which is the
embedded submanifold of Rn+1 consisting of all points in Rn+1 with Euclidean norm 1. The round
metric g̊ is the Riemannian metric on Sn given by g̊ := ι∗g, where ι : Sn ↪−→ Rn denotes the inclusion
map and g is the Euclidean metric on Rn+1. In other words, the round metric on Sn is just the
Euclidean metric on Rn+1 restricted to the tangent spaces of Sn. The Riemannian manifold (Sn, g̊)
is called the round sphere. The round metric has constant sectional curvature 1 and so is Einstein
with Ricg̊ = (n− 1)̊g.

Example 2.5 (Hyperbolic space). Let Hn denote the upper-half sheet of the two-sheeted hyper-
boloid, which is the embedded submanifold of Rn+1 defined by

Hn :=
{

(x1, . . . , xn+1) ∈ Rn+1
∣∣∣ (x1)2 + · · ·+ (xn)2 − (xn+1)2 = −1, xn+1 > 0

}
.

The hyperbolic metric ğ is the Riemannian metric ğ on Hn given by ğ := ι∗q, where ι : Hn ↪−→ Rn+1

denotes the inclusion map and q denotes the Minkowski metric on Rn+1, which is the Lorentzian
(non-Riemannian) metric on Rn+1 given by

q := (dx1)2 + · · ·+ (dxn)2 − (dxn+1)2.

Here, (xi) denote the standard coordinates on Rn+1. The hyperbolic metric has constant sectional
curvature −1, and so is Einstein with Ricğ = −(n− 1)ğ.

Remark 2.6. As a smooth manifold, hyperbolic space is diffeomorphic to Rn. Thus, the hyperbolic
metric can be viewed as a Riemannian metric on Rn.

The following shows why the three model spaces are so important:

Proposition 2.7 (Killing-Hopf Theorem [Lee18, Theorem 12.4]). Let (M, g) be a simply-connected
complete Riemannian manifold. Suppose g has constant sectional curvature. Then, up to scaling,
(M, g) is isometric to one of the three model spaces.

Are the model spaces the only simply-connected complete Einstein manifolds? The answer is
yes when dimM ≤ 3:

Proposition 2.8 ([Lee18, Corollary 8.28, Problem 8-14]). Let (M, g) be a Riemannian manifold
with dimM ∈ {2, 3}. If g is Einstein, then g has constant sectional curvature.

However, the proposition above does not generalise to higher dimensions. Indeed, there exist
simply-connected complete Einstein manifolds which are not model spaces, (for example, complex
projective space equipped with the Fubini-study metric, or complex hyperbolic space [Bes87, 7.15,
7.17]).

2.2 Warped product metrics

Let (B, gB) and (F, gF ) denote Riemannian manifolds, and let f : B → R+ be a positive smooth
function. The warped product of (B, gB) and (F, gF ) with warping function f , denoted B ×f F , is
the Riemannian manifold defined in the following manner: as a smooth manifold, B ×f F is just
the product manifold B × F . The Riemannian metric g on B ×f F is given by

g := (πB)∗gB + (f ◦ πB)2(πF )∗gF ,

where πB : B × F → B and πF : B × F → F denote the usual projection maps.
We say that (B, gB) is the base manifold and (F, gF ) is the fibre manifold. The metric g is

called the warped product metric. Often we abuse notation and write g = gB + f2gF .
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We now show how the warped product metric evaluates tangent vectors: fix (p, q) ∈ B ×f F ,
and identify T(p,q)(B×F ) ∼= TpB⊕TqF in the usual way. Then for v = (vB , vF ) and w = (wB , wF )
in T(p,q)(B × F ), we have

g(p,q)(v, w) = gB |p(vB , wB) + f(p)2gF |q(vF , wF ).

Remark 2.9. For the rest of the report, we only consider the special case when the base manifold
is an interval I equipped with the Euclidean metric dt2, and the fibre manifold is the (n − 1)-
dimensional round sphere (Sn−1, g̊). In other words, we only consider the warped products of the
form I ×f Sn−1 with warped product metric g = dt2 + f2g̊.

The following three examples show that, on each of the three model spaces, an open dense
subset can be viewed as a warped product I ×f Sn−1. The proofs of the following facts can be
found in [Pet16, Section 1.4.4]. Fix n ≥ 2.

Example 2.10 (Euclidean space). Consider when I = R+ and f(t) = t. Then the warped product
R+×tSn−1 is isometric to Euclidean space minus the origin. An explicit isometry F : R+×tSn−1 →
Rn\{0} is given by

F : (t, s) 7→ ts, F−1 : x 7→
(
‖x‖, x

‖x‖

)
,

where t ∈ R+, s ∈ Sn−1, x ∈ Rn\{0}, and ‖ · ‖ denotes the Euclidean norm on Rn.

Example 2.11 (The round sphere). Consider when I = (0, π) and f(t) = sin(t). Then the
warped product (0, π) ×sin(t) Sn−1 is isometric to the round sphere minus the north and south
poles, which are given by N := (0, . . . , 0, 1) and S := (0, . . . , 0,−1), respectively. An explicit
isometry F : (0, π)×sin(t) Sn−1 → Sn\{N,S} is given by

F : (t, s) 7→
(

sin(t)s, cos(t)
)
, F−1 : (x, xn+1) 7→

(
arccos(xn+1),

x

‖x‖

)
,

where t ∈ R+, s ∈ Sn−1, x ∈ Rn, and xn+1 ∈ R.

Example 2.12 (Hyperbolic space). Consider when I = R+ and f(t) = sinh(t). Then the warped
product R+ ×sinh(t) Sn−1 is isometric to hyperbolic space minus the point P := (0, . . . , 0, 1). An
explicit isometry F : R+ ×sinh(t) Sn−1 → Hn\{P} is given by

F : (t, s) 7→
(

sinh(t)s, cosh(t)
)
, F−1 : (x, xn+1) 7→

(
arccosh(xn+1),

x

‖x‖

)
,

where t ∈ R+, s ∈ Sn−1, x ∈ Rn, and xn+1 ∈ R.

Remark 2.13 (Scaling a warped product metric). Let I be an open interval, let f : I → R be a
positive smooth function, and consider the warped product I×f Sn−1 with warped product metric
g = dt2 + f2g̊. Fix a real number R > 0. Then (I × Sn−1, R2g) is isometric to the warped product

Ĩ ×f̃ Sn−1 with warped product metric dt2 + (f̃)2g̊, where Ĩ := RI and f̃ : Ĩ → R is given by

f̃(t) := R f(t/R). An explicit isometry is given by

F : I × Sn−1 → Ĩ × Sn−1, (t, s) 7→ (Rt, s).

2.3 Smooth actions of SO(n)

A Lie group is an abstract group endowed with a smooth manifold structure such that the mul-
tiplication and inversion maps are smooth. The Lie group of interest in this report is the special
orthogonal group in dimension n, which we denote by SO(n). We define SO(n) to be the Lie group
of all n by n matrices with real entries A which satisfy AA> = In and det(A) = 1. As a smooth
manifold, SO(n) is compact, connected, and has dimension n(n− 1)/2.

4



For the rest of this subsection, let G denote a Lie group and M a smooth manifold. A smooth
(left) action of G on M is a group homomorphism

θ : G→ Diff(M), α 7→ θα

such that the map G ×M → M given by (α, p) 7→ θα(p) is smooth. Here, Diff(M) denotes the
diffeomorphism group of M . Often, we write α · p := θα(p) if there is no ambiguity about the
choice of action θ.

Let θ : G → Diff(M) be a smooth action of G on M . For each p ∈ M , the orbit of p, denoted
by G · p, is the set of all points in M which can be written as α · p for some α ∈ G. The orbits
partition M , and each orbit is an embedded submanifold of M . We say G acts transitively on M
if there is only one orbit.

Next, for each p ∈ M , the isotropy subgroup at p (or the stabiliser of p), denoted Gp, is the
subgroup of G consisting of all α ∈ G such that α · p = p. When G is compact, each isotropy
subgroup is an embedded Lie subgroup of G. The isotropy subgroup Gp acts smoothly and linearly
on TpM via α ·v := dθα(v). By linearly, we mean that v 7→ α ·v is linear for all α ∈ G. This action
of Gp on TpM is called the isotropy representation of θ at p.

The following four examples give smooth actions of SO(n) on various smooth manifolds. Fix
n ≥ 2.

Example 2.14 (SO(n) acting on Rn). The Lie group SO(n) acts smoothly on the smooth manifold
Rn via A · x := Ax. The orbits are the origin and the Euclidean spheres Sn−1(R) for R > 0. Here,
Sn−1(R) denotes the embedded submanifold of Rn consisting of points with Euclidean norm R > 0.
The isotropy subgroup at the origin is SO(n), and the isotropy subgroup at any other point is
(isomorphic to) SO(n− 1).

Example 2.15 (SO(n) acting on Sn). The Lie group SO(n) acts smoothly on the smooth manifold
Sn via A·(x, t) := (Ax, t), where x ∈ Rn and t ∈ R. The orbits are the north pole N := (0, . . . , 0, 1),
the south pole S := (0, . . . , 0,−1), and Sn−1(

√
1− t2)×{t} for t ∈ (−1, 1). The isotropy subgroups

at the north and south poles are both SO(n), and the isotropy subgroup at any other point is
(isomorphic to) SO(n− 1).

Example 2.16 (SO(n) acting on Hn). The Lie group SO(n) acts smoothly on the hyperboloid
Hn as a smooth manifold (see Example 2.5) via A · (x, t) := (Ax, t), where x ∈ Rn and t ∈ R. The
orbits are P := (0, . . . , 0, 1) and Sn−1(

√
t2 − 1) × {t} for t > 1. The isotropy subgroup at P is

SO(n), and the isotropy subgroup at any other point is (isomorphic to) SO(n− 1).

Example 2.17 (SO(n) acting on I×Sn−1). Let I be an open interval. Then SO(n) acts smoothly
on the product manifold I × Sn−1 via A · (t, s) := (t, As), where t ∈ R and s ∈ Sn−1. The orbits
are {t} × Sn−1 for t ∈ I. The isotropy subgroup at any point is (isomorphic to) SO(n− 1).

Let θ : G → Diff(M) be a smooth action, and let N be an embedded submanifold of M such
that α · p ∈ N for any α ∈ G and p ∈ N . Then θ restricts of a smooth action of G on N . Thus,
the action of SO(n) on Rn can be restricted to Rn\{0}, Sn−1(R), Bn(R), and Bn(R)\{0} for any
R > 0. Here, Bn(R) denote the open Euclidean ball of radius R centred at the origin, which consists
of all points in Rn whose Euclidean norm is strictly less than R.

2.4 SO(n)-equivariant maps

Let F : M → N be a smooth map between smooth manifolds, and let G be a Lie group acting
smoothly on M and N . We say that F is G-equivariant if F (α · p) = p · F (p) for all α ∈ G and
p ∈M . If F is a G-equivariant diffeomorphism, then F−1 is also G-equivariant.

We give three examples of SO(n)-equivariant diffeomorphisms which are useful. Fix n ≥ 2.

Example 2.18 (Cylinder to punctured disk). Let I be an interval, and R ∈ (0,∞]. Suppose
h : I → (0, R) is a diffeomorphism. Then the diffeomorphism Φ : I × Sn−1 → Bn(R)\{0} given by

Φ : (t, s) 7→ h(t)s, Φ−1 : x 7→
(
h(‖x‖), x

‖x‖

)
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is SO(n)-equivariant. Here, t ∈ I, s ∈ Sn−1, x ∈ Bn(R)\{0}, and ‖ · ‖ denotes the Euclidean norm
on Rn.

Example 2.19 (Punctured sphere to disk). Consider the unit-sphere Sn, and let N and S denote
the north and south poles of Sn, respectively. Let us identify TNSn with Rn via

∂

∂xi

∣∣∣
N
←→ ei, i = 1, . . . , n,

where ∂/∂x1, . . . , ∂/∂xn+1 is the standard coordinate frame of Rn+1 and e1, . . . , en is the standard
basis of Rn. Under this identification, let expN : Rn → Sn denote the exponential map of the
round metric g̊ at N . Then expN : Rn → Sn is SO(n)-equivariant. Moreover, the restriction
expN : Bn(π)→ Sn\{S} is an SO(n)-equivariant diffeomorphism.

Example 2.20 (Hyperboloid to plane). Consider the hyperboloid Hn as a smooth manifold (see
Example 2.5), and set P := (0, . . . , 0, 1). Let us identify TPHn with Rn via

∂

∂xi

∣∣∣
P
←→ ei, i = 1, . . . , n.

Under this identification, let expP : Rn → Hn denote the exponential map of the hyperbolic metric
ğ at P . Then expP : Rn → Hn is an SO(n)-equivariant diffeomorphism.

2.5 SO(n)-invariant metrics

Let G be a Lie group, M a smooth manifold, and θ : G→ Diff(M) a smooth action. A Riemannian
metric g on M is called G-invariant if θα : (M, g)→ (M, g) is an isometry for all α ∈ G.

Examples 2.21. Fix n ≥ 2. We list examples of SO(n)-invariant metrics:

(i) The Euclidean metric g on Rn is SO(n)-invariant with respect to the action A · x := Ax.

(ii) The round metric g̊ on Sn is SO(n)-invariant with respect to the action A · (x, xn+1) =
(Ax, xn+1).

(iii) The hyperbolic metric ğ on the hyperboloid Hn is SO(n)-invariant with respect to the action
A · (x, xn+1) = (Ax, xn+1).

(iv) Let I be an open interval, and let f : I → R+ be a positive smooth function. Consider the
warped product I ×f Sn−1 with warped product metric g := dt2 + f2g̊. Then g is SO(n)-
invariant with respect to the action A · (t, s) := (t, As).

Remark 2.22. Let G be a Lie group acting smoothly on smooth manifolds M and N . Let F :
M → N be an G-equivariant diffeomorphism. If g is an G-invariant metric on N , then F ∗g is an
G-invariant metric on M .

The above remark implies that SO(n)-invariant metrics on the smooth manifold Hn are in
bijection with SO(n)-invariant metrics on Rn via Example 2.20. Thus, there is no need to study
SO(n)-invariant metrics on the smooth manifold Hn.

Finally, suppose that M = V is a vector space, and G acts linearly on V . An inner product
b(·, ·) on V is called G-invariant if θα : (V, b) → (V, b) is a linear isometry for all α ∈ G. For
example, the standard inner product on Rn is SO(n)-invariant.

3 SO(n)-invariant Einstein metrics on Rn and Sn

3.1 SO(n)-invariant metrics as warped product metrics

The aim of this subsection is to prove the following proposition:

Proposition 3.1. Fix n ≥ 4, and let g be an SO(n)-invariant metric on M = Rn and M = Sn.
Then a dense open subset of (M, g) is isometric to a warped product of the form I ×f Sn−1.
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Recall that Example 2.19 gives an SO(n)-equivariant diffeomorphism between Sn\{S} and
Bn(π). Since the pullback of an SO(n)-invariant metric under an SO(n)-equivariant diffeomor-
phism is again SO(n)-invariant (Remark 2.22), Proposition 3.1 follows immediately from the fol-
lowing proposition:

Proposition 3.2. Fix n ≥ 4, and let g be an SO(n)-invariant metric on Bn(R) where R ∈ (0,∞].
Then (Bn(R)\{0}, g) is isometric to a warped product of the form I ×f Sn−1.

We spend the rest of this subsection proving Proposition 3.2. Recall that SO(n) acts smoothly
and linearly on Rn via A · x := Ax.

Lemma 3.3. Fix n ≥ 1. Let b(·, ·) be an SO(n)-invariant inner product on Rn. Then b is a scalar
multiple of the standard inner product 〈·, ·〉 on Rn.

Proof. Let c > 0 be a real number such that b(e1, e1) = c2, where e1, . . . , en is the standard basis
of Rn. An arbitrary element of Rn can be written as tv, where t ≥ 0 and v ∈ Sn−1. Since SO(n)
acts transitively on Sn−1, there exists A ∈ SO(n) such that v = Ae1. Therefore,

b(tv, tv) = t2b(Ae1, Ae1) = t2b(e1, e1) = t2c2 = c2t2〈v, v〉 = c2〈tv, tv〉,

so b = c2〈·, ·〉, as desired.

Lemma 3.4. Fix n ≥ 2. Let g be an SO(n)-invariant metric on Sn−1. Then g is a scalar multiple
of the round metric g̊ on Sn−1.

Proof. Since SO(n) acts transitively on Sn−1 and both g and g̊ are SO(n)-invariant, it suffices to
show that gN is a scalar multiple of g̊N , where N := (0, . . . , 0, 1) is the north pole. Recall that the
isotropy subgroup atN , denoted SO(n)N , acts smoothly and linearly on TNSn−1 viaA·v := dθA(v),
where θ is the action of SO(n) on Sn−1. Moreover, we have a Lie group isomorphism

SO(n− 1)→ SO(n)N , A 7→
(
A 0
0 1

)
,

so SO(n−1) acts on TNSn−1, and gN is an SO(n−1)-invariant inner product on TNSn−1. Moreover,
the identification

Rn ↔ TNSn−1, ei ↔
∂

∂xi

∣∣∣
N
, i = 1, . . . , n− 1

so SO(n)-equivariant. Under this identification, g̊N is just the standard inner product on Rn and
gN is an SO(n− 1)-invariant inner product on Rn. Thus, gN is a scalar multiple of g̊N , by Lemma
3.3. This completes the proof.

Consider the smooth manifold Rn, and fix p ∈ Rn. For the rest of this subsection, let us identify
the tangent space TpRn with Rn itself through the identification

ei ↔
∂

∂xi

∣∣∣
p
, i = 1, . . . , n.

Note that the identification T0Rn ∼= Rn is SO(n)-equivariant.

Lemma 3.5 (Geodesics passing through the origin). Fix n ≥ 4, fix R ∈ (0,∞], and let g be
an SO(n)-invariant metric on Bn(R). Assume that g0 is equal to the standard inner product on
Rn ∼= T0Rn.

(i) Let J be an open interval containing zero, and let α : J → Bn(R) be a non-constant geodesic
such that α(0) ∈ span{α′(0)}. Then α(t) ∈ span{α′(0)} for all t ∈ J .

(ii) There exists T ∈ (0,∞] and a diffeomorphism h : (0, T ) → (0, R) such that (−T, T ) is the
maximal interval of definition for a unit-speed geodesic on (Bn(R), g) which starts at the
origin, and if γ : (−T, T )→ Bn(R) is such a geodesic, then

γ(t) = h(t)γ′(0) ∀t ∈ (0, T ).
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(iii) Any geodesic passing through the origin intersects the Euclidean spheres Sn−1(r) orthogonally,
where r ∈ (0, R).

Proof of (i). Let α be as in the statement of (i). Let θ denote the action of SO(n) on Bn(R). By
applying a rotation and/or reparameterising α, we can (without loss of generality) assume that
α′(0) = e1. By assumption, α(0) = ce1 for some c ∈ R. For the sake of contradiction, suppose
α(t0) /∈ span{e1} for some t0 ∈ J . Write α(t0) = (u1, . . . , un). Then ui 6= 0 for some i = 2, . . . , n.
Without loss of generality, assume that u2 6= 0. Let A ∈ SO(n) be the matrix

A :=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 In−3

 .

Then α(0) = ce1 = θA(ce1) = (θA ◦ α)(0) and α′(0) = e1 = θA(e1) = (θA ◦ α)′(0), so uniqueness of
geodesics implies that θA ◦ α = α. However, this implies that

(u1, u2, . . . , un) = α(t0) = (θA ◦ α)(t0) = (u1,−u2,−u3, u4, . . . , un),

so u2 = 0, a contradiction.

Proof of (ii). Let γ : J → (Bn(R), g) be the maximal unit-speed geodesic such that γ(0) = 0 and
γ′(0) = e1. By SO(n)-invariance and uniqueness of geodesics, it follows that J = (−T, T ) for some
T ∈ (0,∞]. By (i), we know that for any t ∈ (−T, T ), there exists a real number h(t) such that
γ(t) = h(t)e1. Let h : (−T, T ) → R denote the smooth function t 7→ h(t). Since γ′(t) = h′(t)e1 is
non-zero for any t and h′(0) = 1, we know that h′ is strictly positive, and so h is strictly increasing
on (−T, T ) with h(0) = 0.

Now, consider the restriction of h onto (0, T ). Henceforth, let us abuse notation and denote
this restriction by h : (0, T )→ R. Let us show that the image of h is (0, R). One inclusion is clear:
observe that h(t) is the Euclidean norm of γ(t) for t ∈ (0, T ), so h(t) ∈ (0, R). Next, set

r0 := sup
t∈(0,T )

h(t) = sup
t∈(0,T )

‖γ(t)‖,

where ‖ · ‖ denotes the Euclidean norm on Rn. If r0 = R, then the other inclusion follows from
the Intermediate Value Theorem.

For the sake of contradiction, suppose that r0 < R. Let α : (−2ε, 2ε) → (Bn(R), g) be a unit-
speed geodesic such that α(0) = r0e1, α′(0) = ce1 where c > 0, and ε is chosen to be small enough
so that α does not pass through the origin. By (i), there is a smooth function a : (−2ε, 2ε) → R
such that α(t) = a(t)e1 for all t ∈ (−2ε, 2ε). Then by similar reasoning as before, we find that a
and a′ are strictly positive, so a strictly increasing. Thus, a(−ε) ∈ (0, r0), so by the Intermediate
Value Theorem, there is some t0 ∈ (0, T ) such that h(t0) = a(−ε). Thus, γ(t0) = α(−ε). Moreover,
γ′(t0) = h′(t0)e1 and α′(−ε) = α′(−ε)e1 are linearly dependent unit vectors (with respect to g)
whose first coordinate is positive. Thus, γ′(t0) = α′(−ε). Next, let β : (t0−ε, t0 +3ε)→ (Bn(R), g)
be the unit-speed geodesic defined by β(t) := α(t− t0 − ε). Then observe that

β(t0) = α(−ε) = γ(t0), and β′(t0) = α′(−ε) = γ′(t0).

Thus, by uniqueness of geodesics, β and γ agree on their common domain. Since γ is maximal, we
know that t0 + 2ε ∈ (−T, T ). However, this is a contradiction, because the Euclidean norm of γ is
bounded above by r, but

‖γ(t0 + 2ε)‖ = ‖α(ε)‖ = a(ε) > r0.

Thus, the image of h is (0, R). Since h is injective, we know h : (0, T ) → (0, R) is a bijec-
tion. Since h′ is positive, the Inverse Function Theorem implies that h : (0, T ) → (0, R) is a
diffeomorphism. Part (ii) now follows easily from SO(n)-invariance.
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Proof of (iii). By (ii), we know that the Riemannian exponential map of (Bn(R), g) at the origin
is given by

exp0 : Bn(T )→ Bn(R), 0 7→ 0, tv 7→ h(t)v,

where t ∈ (0, T ) and v ∈ Sn−1. Thus, exp0 is a diffeomorphism because its inverse is given by

(exp0)−1 : Bn(R)→ Bn(T ), 0 7→ 0, rv 7→ h−1(r)v,

where r ∈ (0, R) and v ∈ Sn−1. Therefore, for each r ∈ (0, R), the Euclidean sphere Sn−1(r) is a
geodesic sphere of (Bn(R), g) centred at the origin. Part (iii) now follows immediately from the
Gauss Lemma [Lee18, Theorem 6.9].

Proof of Proposition 3.2. Fix n ≥ 4, and let g be an SO(n)-invariant metric on Bn(R), where
R ∈ (0,∞]. Since rescaling a warped product of the form I ×f Sn−1 gives a warped product of the
same form (see Remark, 2.13), we can assume that g0 is the standard inner product on Rn ∼= T0Rn
by Lemma 3.3.

Let T and h be as in the statement of (ii) in Lemma 3.5. Set I := (0, T ), and let Φ : I×Sn−1 →
Bn(R)\{0} denote the SO(n)-equivariant diffeomorphism given by Φ : (t, s) 7→ h(t)s. It remains
to show that the SO(n)-invariant metric ĝ := Φ∗g is a warped product metric.

For each t ∈ I, observe that the map Ft : {t} × Sn−1 → Sn−1 given by (t, s) 7→ s is an
SO(n)-equivariant diffeomorphism. Therefore, since any SO(n)-invariant metric on Sn−1 is a
scalar multiple of the round metric (Lemma 3.4), we know that

ĝ|{t}×Sn−1 = f(t)2(Ft)
∗g̊,

where ĝ|{t}×Sn−1 is the metric on {t} × Sn−1 induced by ĝ, f(t) > 0 is some real number, and g̊ is
the round metric on Sn−1. Let f : I → R be the function given by t 7→ f(t). Let α : I → I × Sn−1

be the smooth curve given by t 7→ (t, e1). Fix a unit vector v ∈ Te1Sn−1 with respect to the round
metric g̊, and let V be the smooth vector field along α given by V (t) = (0, v). Then

ĝα(t)(V (t), V (t)) = ĝ(t,e1)((0, v), (0, v)) = f(t)2g̊e1(v, v) = f(t)2 ∀t ∈ I,

so f is smooth.
Finally, fix (t, s) ∈ I × Sn−1. Let γ : I → I × Sn−1 be the smooth curve given by t′ 7→ (t′, s),

and observe that γ′(t) = (d/dt|t, 0). In fact, γ is a unit-speed geodesic with respect to ĝ because
Φ ◦ γ is a unit-speed geodesic with respect to g by (ii) of Lemma 3.5. Fix an arbitrary vector
(c d/dt|t, v) in T(t,s)(I × Sn−1) ∼= TtR⊕ TsSn−1, where c ∈ R. Then by (iii) of Lemma 3.5, we find

ĝ(t,s)

((
c ddt
∣∣
t
, v
)
,
(
c ddt
∣∣
t
, v
))

= c2ĝ(t,s)

((
d
dt

∣∣
t
, 0
)
,
(
d
dt

∣∣
t
, 0
))

+ ĝ(t,s) ((0, v) , (0, v))

= c2 + f(t)2g̊s(v, v).

Thus, ĝ = dt2 + f2g̊, as desired.

3.2 The Einstein condition on I ×f Sn−1

The aim of this subsection is to prove the following proposition:

Proposition 3.6. Let I be an open interval, and let f : I → R be a positive smooth function.
Consider the warped product I ×f Sn−1 with warped product metric g := dt2 + f2g̊. Suppose g is
Einstein. Then g has constant sectional curvature.

We proceed by studying the curvature formulae of I ×f Sn−1. Let us first fix some notation:
let ∂t denote the smooth vector field on I ×f Sn−1 given by ∂t|(t,s) := (d/dt|t, 0). For each
X ∈ X(Sn−1), let XL denote the smooth vector field on I ×f Sn−1 given by XL|(t,s) := (0, Xs).
Let R, Rm, Ric, and sec denote the (1,3)-Riemann curvature of g, the (0,4)-Riemann curvature of
g, the Ricci curvature of g, and the sectional curvature of g, respectively. Let t : I × Sn−1 → I
denote the usual projection map. If h : I → R is a smooth function, let us write h(t) := h ◦ t.
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Lemma 3.7. Fix X,Y, Z ∈ X(Sn−1). The (1,3)-Riemann curvature of I ×f Sn−1 is given by

R(∂t, X
L)∂t =

f ′′(t)

f(t)
XL,

R(∂t, X
L)Y L = −f

′′(t)

f(t)
g(XL, Y L)∂t,

R(XL, Y L)∂t = 0,

R(XL, Y L)ZL =
1− (f ′(t))2

f(t)2

(
g(Y L, ZL)XL − g(XL, ZL)Y L

)
.

Proof. See [Che17, Proposition 3.2] or [Pet16, Section 4.2.3].

Lemma 3.8. Fix X,Y ∈ X(Sn−1). The Ricci curvature of I ×f Sn−1 is given by

Ric(∂t, ∂t) = −(n− 1)
f ′′(t)

f(t)
,

Ric(∂t, X
L) = 0,

Ric(XL, Y L) =

(
− f ′′(t)

f(t)
+ (n− 2)

1− (f ′(t))2

f(t)2

)
g(XL, Y L).

Proof. See [Che17, Proposition 3.3], [Pet16, Section 4.2.3], or [Bes87, Proposition 9.106].

Proof of Proposition 3.6. Fix a point (t, s) ∈ I ×f Sn−1. Recall that the sectional curvature at
(t, s) is given by

sec(v, w) :=
Rm(v, w,w, v)

g(v, v)g(w,w)− g(v, w)2
,

where v, w ∈ T(t,s)(I × Sn−1) ∼= TtR⊕ TsSn−1 are linearly independent vectors. Write

v = a∂t|(t,s) + xL, and w = b∂t|(t,s) + yL,

where a, b ∈ R, x, y ∈ TsSn−1, xL := (0, x), and yL := (0, y). Then, by a long but straightforward
computation using the formulae for R (Lemma 3.7), we find that

Rm(v, w,w, v) = −f
′′(t)

f(t)

(
a2g(yL, yL) + b2g(xL, xL)− 2ab g(xL, yL)

)

+
1− (f ′(t))2

f(t)2

(
g(xL, xL)g(yL, yL)− g(xL, yL)2

)
.

On the other hand,

g(v, v)g(w,w)− g(v, w)2 = a2g(yL, yL) + b2g(xL, xL)− 2ab g(xL, yL)

+ g(xL, xL)g(yL, yL)− g(xL, yL)2.

Thus, we are done if we show that c = − f
′′

f = 1−(f ′)2

f2 for some constant c ∈ R.
Since g is Einstein, we know that Ric = λg for some constant λ ∈ R. The formulae for the

Ricci curvature (Lemma 3.8) imply that

λ = −(n− 1)
f ′′

f
= −f

′′

f
+ (n− 2)

1− (f ′)2

f2
.

Rearranging shows that
λ

n− 1
= −f

′′

f
=

1− (f ′)2

f2
.

This completes the proof.
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3.3 Proof of the main theorem

We are now ready to prove Theorem 1.1. We restate the theorem for the reader’s convenience:

Theorem 1.1. Fix n ≥ 2, and let g be a complete SO(n)-invariant Einstein metric on M = Rn
or M = Sn. Then, up to scaling, (M, g) is isometric to one of the three model spaces.

Proof. By assumption, we know that (M, g) is complete and simply-connected. Thus, by the
Killing-Hopf Theorem (Proposition 2.7), it remains to show that (M, g) has constant sectional
curvature. Since Einstein implies constant sectional curvature in dimension 2 and 3 (Proposition
2.8), we can assume that n ≥ 4. Then by Proposition 3.1, there exists a dense open subset U
of (M, g) such that (U, g) is isometric to an Einstein warped product of the form I ×f Sn−1. On
I ×f Sn−1, Einstein implies constant sectional curvature (Proposition 3.6). Thus, g has constant
sectional curvature c ∈ R on U . Proposition 2.2 implies that on U , we can write

Rmg =
1

2
c g ? g.

Now, since Rmg and 1
2c g?g are (in particular) continuous mapsM → T (0,4)TM between Hausdorff

topological spaces which agree on a dense subset, they must be equal. Therefore, Proposition 2.2
implies that g has constant sectional curvature on M .
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