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Abstract

Tissue growth experiments on 3D-printed porous scaffolds can be modeled using reaction–diffusion Partial

Differential Equations [PDEs]. We outline one such PDE that models a specific experimental application of

tissue growth, and define the solution to the problem as the density of cells on a given 2-dimensional spatial

domain over time. Experimental results show a distinct sharp moving wave-front, hence, assuming nonlinear

diffusion is more realistic than most models, which assume diffusion to be linear resulting in smooth wave-

fronts. Also observed in experiments are changes to the speed of the leading wavefront as the shape of the

pore filling hole changes. The relationship between front velocity and curvature is known when diffusion

is linear, we aim to extent this and derive a relationship for nonlinear diffusion. A Finite Difference [FD]

method was used to find a solution to the PDE and a velocity–curvature analysis previously performed for

linear diffusion was extended to include nonlinear diffusion. A generalised expression for the asymptotic

prediction for the relationship between velocity and curvature was developed. When compared with local

numerical estimates it was determined that like the previous linear diffusion investigation, the asymptotic

prediction is only valid when the wave-front is in the travelling phase and not when the central pore is being

filled.
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Under the guidance and supervision of Pascal Buenzli, Nina Hadzivukovic developed MATLAB code using

finite difference method to numerically determine and visualise both the linear and nonlinear solutions to

the reaction-diffusion PDEs identified in [2] to accurately model tissue growth. Together they developed a

generalised relationship between velocity and curvature when diffusion is nonlinear, extending velocity curvature

analysis in [8] from linear to nonlinear diffusion.
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1 Introduction

Reaction–diffusion waves in 2-dimensions can be used to model tissue growth in bioscaffolds and have applica-

tions in other important physical, ecological and biological systems. Experimentally it is observed that tissue

growth is heavily influenced by pore geometry. Figure 1 depicts a small subset of experimental images [2] that

capture the shape of the contour of the wave-front as the tissue cells proliferate and migrate over time to fill

the scaffold. In these experiments, the tissues has a well defined sharp front that clearly expands into the free

space as the tissue grows. The density of cells behind the wave-front increases as the wavefront moves towards

the centre of the scaffold and the top view of the gridded scaffold as shown in Figure 1 indicates clear signs that

the initially square wave-front approaches a circle over time.

Figure 1: Images of experimental results of tissue growth on porous 3D printed scaffold. Snapshots are rescaled

to capture the central 3 × 3 pores to highlight cell growth over time. Red line follows the shape of the contours

of the wave-front of the cells which are artificially dyed green for imaging purposes. The type of cell in this

experiment is the osteoblast (bone) and the green is the cytoskeleton. Adapted from [2].

In this pore bridging experiment and in general for similar tissue growing experiments, the rate at which a

wave-front advances strongly depends on the curvature of the contours. Specifically in this experiment, os-

teoblastic cells were seeded onto the perimeter of 3D-printed scaffold square-shaped pores and grown over time

to form quasi-two-dimensional sheets of tissue. The model for tissue growth is assumed to be a continuum

reaction–diffusion model that describes cell density. Considering that experiments involve a very large number

of cells, information about individual cells is averaged to the density. Similar models have been shown to provide

very good approximations of average behaviours even for low cell numbers [2].

In a previous model using the Porous–Fisher equation

ut = ∇ · (D(u)∇u) + F (u)
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with nonlinear diffusion, D(u) = D0u, where D0 is a constant; tissue density u is described as a function of

space and time in the out-of-plane (z) direction as a uniform layer of cells; and F (u) is the reaction term. The

resulting wave-front was sharp, replicating what was observed in experimental results, where movement of the

leading edge of the cell population during migration maintained a well-defined sharp front. Figure 2 shows the

solution to these simulations for different parameters, where the solution u is the normalised density of cells,

white being 100% maximum cell capacity (given the value ’1’) and black is where there are no cells (given the

value ’0’). We define the wave-front as the time-dependent leading curve of the boundary that distinguishes

where the density is nonzero, and travels in the direction of zero density. Where this boundary lies and in

which it direction moves is most obvious in a cross-section taken from a constant x or y. The contours are more

easily understood when looking at a top view of the solution. Each contour traces a constant density on the

wave-fronts such that u(x, y, t) = constant.

Figure 2: Frames from the nondimensionalised mathematical model at even time intervals for different combi-

nations of the parameters taken from [2]

In the experiment the model begins with a square contour and over time as the density increases the wave-

front moves towards the centre of the pore and the contour rounds off to a circle, like in Figure 1. It is

difficult to determine the exact relationship between the curvature of these changing contours and the speed

with which the wave-front moves towards the centre of the pore without further in depth mathematical analysis.

A velocity–curvature relationship is well defined for a similar problem with linear diffusion, where a Fisher-

Kolmogorov-Petrovsky-Piskunovn (Fisher–KPP) model was used, defined by the PDE

ut = D∇2u+ F (u)
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where, similar to the nonlinear KPP-Fisher model, the solution to the PDE is again u(x, y, t), the density; F (u)

is the reaction term; and in this case, because diffusion is linear D = D0, where D = 0 is a constant.

The asymptotic prediction for the relationship is defined as

v(κ) = c−D0κ

where v is the velocity of the wavefront; κ is mean curvature; c is the speed of the travelling wave in the

1-dimensional problem on the infinite domain; and D0 is the diffusivity. Though this relationship is well defined

in the case of linear diffusion D(u) = D0, it remains unknown how this relationship generalises to nonlinear

diffusion D(u) ̸= D0. As experimental results show a sharp tissue-front, it is important for nonlinear diffusion be

included in analysis of velocity–curvature dependence. Figure 3 highlights the difference between the solution

to the problem when diffusion is linear and when diffusion is nonlinear by capturing from a cross-section of

y = 0, the shape of the wave-fronts over time.

Figure 3: Comparing linear and nonlinear diffusion density solution profiles u(x, 0, t) cross section of a square

pore taken at y = 0. Profiles are shown every 1 unit of time

When we consider linear diffusion, the wave-front is smooth and does not have the sharp distinction between

areas with and without cell density that we see in the case when diffusion is nonlinear. In the case of our porous

scaffold experiment, it means tissue growing from opposite sided boundaries in the square will meet in the

middle sooner, and the travelling wave phase of the wave-front lasts for a shorter time and for a shorter spacial

distance on the same domain. Before beginning the velocity curvature analysis it is important to numerically

estimate a well defined solution to the problem in question.

2 Mathematical Model

2.1 Defining the problem with nonlinear diffusion

We consider the single-species reaction diffusion model that describes the spatio-temporal evolution of u;

∂

∂t
u = ∇ · (D(u)∇u) + F (u)
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where u(x, t) ≥ 0 is a density function in space x and time t; D(u) is the diffusivity function, such that

∇ · (D(u)∇u) is the diffusion term; and F (u) is the general reaction term, for example logistic growth, where

F (u) = λu(1− u).

With linear diffusion we assume the diffusivity function to be a constant such that D(u) = D0 where D0

is a constant. When diffusion is nonlinear the diffusivity function D(u) involves the density u. Depending on

the application u may represent the density of chemical species, particles or cells in biological tissue, which

undergo diffusive motion described by the diffusion term ∇ · (D(u)∇u) and increase according to the reaction

term F (u). For the investigated application of tissue growth we assume u to be the normalised density (number

of cells per unit area) such that u ∈ [0, 1], and we assume the domain to be 2-dimensional such that x = (x, y).

We assume the density of tissue cells to be a uniform layer of the same species of cells in the z direction, and

hence cell proliferation to occur in the z direction. The cell migration and hence the wavefront we are interested

in occur in the x−y plane with a sharp front, clearly distinguishing areas with cells and without cells. Numerical

solutions u(x, y, t) will be for this 2D domain.

Tissue growth experiments on porous scaffolds have previously been modeled using the Porous–Fisher equation

[2], where the cell migration is modeled by the diffusion term where the diffusivity function is;

D(u) = D0u : D(0) = 0

A commonly used reaction term F (u) in such applications is the logistic growth term, where;

F (u) = λu(1− u)

We assume D0 > 0 where D0 is the cell diffusivity parameter and λ > 0 where λ is the proliferation rate

parameter.

Both D0 and λ depend on the tissue type in the application as they represent a cells’ individual migratory

and proliferative behaviour, respectively. For the application of osteoblast cells it was followed from previous

literature that D0 = 0.005 and λ = 1

For the tissue growth application we assume the domain to be initially empty, except for the boundary, where we

set u(x, y, 0) = 0 in the interior of the boundary Ω. We assume inhomogeneous Dirichlet boundary conditions,

where we set u(x, y, t) = u∗ at the boundary ∂Ω, in our case u∗ = 1, so;

u|∂Ω = 1

2.2 Discretisation and derivation of numerical solution

Numerical solutions to the presented problem are based on an explicit Finite Difference [FD] scheme, where

forward Euler method is used for time steps and central differences is applied to spatial steps.

uk+
i,j = u(x1, yj , tk), xi = xmin + i∆x, yj = ymin + j∆y, tk = tmin + k∆t
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Forward Euler Method (time step numerical approximation)
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Central Difference Method (spatial step numerical approximation)
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∇ · (D(u)∇u) =
∂
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(
D(u)
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)
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∂u

∂y

)

The discretised problem, rearranged for uk+1
i,j (the solution to the next time-step) becomes

uk+1
i,j = uk

i,j +
∆t

2∆h2
[(Dk

i,j +Dk
i−1,j)u

k
i−1,j + (Dk
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i (1− uk
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Figure 4: Visualisation of the spacial discretisation of the domain, where x is the horizontal direction and y is

the vertical

Accuracy of this simple numerical solution depends on grid size and time-step size, when convergence is observed

we assume the result is computationally stable. Since curvature-dependent evolution’s of interfaces are known

to be more sensitive to spatial discretisation [7, 1], a higher order approximation such as Runge-Kutta methods

was not used for the time steps, rather the simple forward Euler method was used [8]. Spacial discretisation was

in a square grid, as seen in Figure 4 where ∆x and ∆y are equal, so, ∆x = ∆y = h. This was chosen simplify

some of the rearranging. We chose h = 2L/N as it ensures our step-sizes are small enough to give an accurate

numerical solution. We define L = 1 for our domain [−1, 1,−1, 1] and N = 200 as the number of steps between

−L and L. We also use the Courant–Friedrichs–Lewy [CFL] and madD(u) convergence conditions, where for

the simulations we used ∆t = h
8 .
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2.3 Visualisation of the numerical solution

Starting with the known initial conditions the expression for uk+1
i,j , the explicit solution for the next time-step,

was iteratively calculated and the solution at different snapshots over time is visualised in Figure 5. MATLAB

code was written to efficiently and accurately create the plots for cell density within the pore and cross-section

over time.

Figure 5: Snapshots of the solution u(x, y, t) at increasing times, also a cross-section of the solution for the same

times where y = 0, with F (u) = (1u), λ = 1, D0 = 0.005, h = 0.01, t = 0.001 and Dirichlet boundary conditions

u| = 1. Contours u = uc are shown every 0.1 increments for u ∈ [0, 1] in black solid lines.

3 Recreating existing velocity–curvature analysis with linear diffu-

sion

Recreating the figures from the velocity curvature analysis [8], with linear diffusion was the first step into

understanding what was required to find a relationship between velocity and curvature with nonlinear diffusion.

In 2-dimensions it is known that the propagation speed of the travelling wave-fronts changes according to the

curvature of the contours of the wave-fronts, both experimentally and theoretically. Curvature of the contours

the wavefront is a function of space and time [9, 3, 10, 2, 5]. The normal velocity v of travelling fronts is given

by;

v = c−Dκ

according to singular perturbation theories of excitable reaction–diffusion systems, where κ is the mean curvature

of the wave-front and c is the speed of the travelling wave in the corresponding one-dimensional problem on
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an infinite domain [9, 4, 6]. The expression is a theoretical prediction for the spatial location of the travelling

wave-front as a function of time given an initial condition. In moving boundary problems such as our application

of filling a pore in a square scaffold travelling wave-front velocities are used predict the time it will take to fill

the given hole.

For the Fisher-KPP model with linear diffusion, outlines in previous literature, it is known that c = 2
√
Dλ

The theoretical relationship between velocity and curvature is defined by;

v(κ) = w −Dκ, where w =
1

∥∇u∥
[Dunn + F (u)]

where w depends on the local solution u in the normal direction (direction of the traveling wave movement).

When the wave-front is in the travelling wave phase, v(κ) = w−Dκ converges to v(κ) = c−Dκ. That is, before

opposing waves meet and start to fill the hole, we know that w approaches the value c, remembering that c is

the wave-front speed in the 1-dimensional infinite domain problem, such that;

w1D =
1

∥ux∥
[Duxx + F (u)] → c

Given a solution u, the normal speed of the travelling wave-front is numerically estimated by [8];

v =
ut

∥∇u∥
=

1

∥∇u∥
(
D∇2u+ F (u)

)
=

1√
u2
x + u2

y

(Duxx +Duyy + F (u))

And the mean curvature κ is numerically estimated by;

κ = ∇ · ∇u

∥∇u∥
=

uxxu
2
y − 2uxuyuxy + uyyu

2
x[

u2
x + u2

y

]3/2
using second-order centred finite differences for all first-order and second-order derivatives involved.

A script in MATLAB code was created primarily to recreate previous literature plots. Recreated plots are

visually equivalent to literature and validate the simulation code, such that we can be confident subsequent

code created for nonlinear diffusion velocity vs. curvature will be correct, noting that modifications need to be

made to incorporate nonlinear diffusion when D(u) ̸= D0 but D(u) ̸= D0u.

When looking at the velocity vs. curvature plot, in Figure 6 it is clear that the numerical estimation better

follows the trend set by the asymptotic prediction for earlier times. That is, when t = 3 the local estimates

(blue markers) fall closer to v(κ) ≈ c−Dκ the prediction (red line) than for t = 7 and t = 15. This is because

the theoretical prediction is best when the wave is in the traveling wave phase. A cross section of the same time

snapshots in Figure 6 is shown in Figure 7. It is clear that when t = 3 the wave is still in the traveling wave

phase, however at t = 7 and even more so at t = 15 the wave-fronts have already met, and hence the wave is

no longer in the traveling wave phase. For this reason the asymptotic prediction, where the local speed of the

wave-front is approximated by speed of the wave-front for the 1-dimensional problem in the infinite domain, is

no longer accurate, or at least not as accurate as it was for t = 3. This aligns with the results found in previous

literature [8].
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Figure 6: Snapshots of the solution u(x, y, t) at different times. Recreating the curvature dependence of wave-

front speed plots with linear diffusion in a square pore with F (u) = (1u), λ = 1, D = 0.005, h = 0.01, t = 0.001

and Dirichlet boundary conditions u| = 1. Contours u = uc are shown every 0.1 increments for u ∈ [0, 1] in

black solid lines, where yellow is where u = 1 and blue is where u = 0. The asymptotic expression v(κ) ≈ cDκ

where c = 2
√
Dλ is shown in red in the velocity vs. curvature plots, while the local numerical estimations are

shown in blue.

Figure 7: Cross-section of the solution u(x, y, t) where y = 0 at the same times as Figure 6.
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4 Velocity–curvature analysis with nonlinear diffusion

To determine a theoretical expression for the local relationship between the velocity and the curvature of the

wavefront, we begin as in [8] by substituting the expression for the normal speed of the wavefront, into the

PDE.

v = ut

∥∇u∥ into ut = ∇ · (D(u)∇u) + F (u)

Then, we have

v =
1

∥∇u∥
[∇ · (D(u)∇u) + F (u)]

Following similar Laplacian decomposition as described for the case with linear diffusion case [8]. The normal

component of the Laplacian is unn = ∂2u
∂n2 , and the transverse component of the Laplacian is ∇2u − unn. The

transverse component is proportional to the mean curvature of the travelling wavefront κ = ∇ · n, so we have

that

∇2u = unn − κ∥∇u∥

Finally substituting this expression for ∇2u into v = 1
∥∇u∥

[
∇D(u) · ∇u+D(u)∇2u+ F (u)

]
we have the theo-

retical velocity curvature dependence

v(κ, u) = w −D(u)κ,

where

w(u) =
1

∥∇u∥

[
∂

∂n

(
D(u)

∂

∂n
u

)
+ F (u)

]
since; ∇D(u) · ∇u+D(u)unn = ∂

∂n

(
D(u) ∂

∂nu
)
.

For the traveling wave phase when D(u) = D0u we assume the theoretical prediction for the spatial location of

the travelling wave-front as a function of time given an initial condition is again given by

v = c−D(u)κ

in a traveling wave phase, where c is the speed of the travelling wave in the corresponding one-dimensional

problem on an infinite domain, and D(u) = D0u. Here it is clear that v is a function not only of time and

curvature but also of the density u, since D also depends on u. Hence, when the wave-front is in the travelling

phase we can assume that

w → c =

√
D0λ

2

For the numerical estimation, again given a solution u, the normal speed of the travelling wave-front is numer-

ically estimated by

v =
ut

∥∇u∥
, where ut = ∇ · (D(u)∇u) + F (u)
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And the mean curvature κ is again numerically estimated by

κ = ∇ · ∇u

∥∇u∥
=

uxxu
2
y − 2uxuyuxy + uyyu

2
x[

u2
x + u2

y

]3/2
using second-order centred finite differences for all first-order and second-order derivatives involved. The numer-

ical estimations for the local speed and curvature were calculated using a similar MATLAB code structure as for

the linear diffusion case. Code created in MATLAB visualised the results of the simulation and is summarised in

Figure 8. Plot for the solution, cross-section and velocity vs. curvature where created for different time-points

to show the spatial progression of the wave-front of the solution and the velocity curvature relationship over

time.

4.1 Results

Figure 8: Results of the numerical FD method and velocity curvature analysis. Snapshots of the solution over

time. A plot of the solution u(x, y, t), a plot of the cross-section where y = 0 and a plot of the velocity. vs

curvature relationship, comparing numerical local v vs. κ with asymptotic prediction for the 1D infinite domain

problem, for times t = 3, 7, 15, 20

Similar to the previous analysis with linear diffusion, the local numerical estimates (shown as red dots on

the velocity vs. curvature plot) best follow the asymptotic prediction (green surface) when the wave-front is

in the travelling phase. Because diffusion is nonlinear, the wave-front is sharp and though the spatial (x, y)

domain is the same ([−1, 1], [−1, 1]) the wave-fronts traveling from opposite sides do not meet in the middle

to fill the whole till later in time. From the cross-section in Figure 8 it is obvious that even at time t = 15
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the two opposing wave-fronts have not yet met in the middle, and so the numerical local estimates still follow

the asymptotic prediction. It is only at the final snapshot at time t = 20 that we can see the theoretical and

numerical estimates not aligning, since the wave-fronts are no longer in the travelling phase and have in fact

interacted to fill the hole in the centre of the pore.

5 Conclusion and future work

A generalised expression for the velocity of the wavefront in terms of the curvature and the density solution

was developed for the problem where diffusion is nonlinear. This expression provides and explicit relationship

between the curvature and the velocity of a wave-front. From this study into velocity–curvature analysis with

nonlinear diffusion it was found that while the wave-front is in the travelling phase the numerical simulations

align with the theoretical relationship. However, once the wavefront is no longer in the traveling phase and

begins to fill the central hole, at later times, the theatrical prediction no longer approximates the simulation.

This can be seen at time t = 20 in Figure 8. This is similar to results from previous investigations of velocity–

curvature dependence with linear diffusion. Given the asymptotic prediction is only valid for the travelling wave

phase, a model with nonlinear diffusion will generally follow the prediction for longer than a model with linear

diffusion as it has a longer travelling wave phase.

Though visualisations were only created for this specific experimental application, the velocity curvature analy-

sis is generalised and can be easily extended to similar problem by changing the domain; diffusivity constant D0;

proliferation parameter λ; reaction function F (u); diffusivity function D(u); initial conditions; and boundary

conditions. In the future these small modifications can extend findings outlined here to other experimental

applications, perhaps to model other types of tissue growth experiments or other reaction-diffusion applications

all together. Further work must also be done to extent the velocity–curvature relationship to include multiple

species, where the density is not just related to one cell type. Finally, further investigations could be carried

out to include 3D domains, where density is now defined as a fourth dimension and curvature of the wave-front

surface is a tensor.
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