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Abstract 
Climate change’s impact on phenological patterns is a critical area of ecological research, 

especially concerning the timing of biological events such as the first flowering day (FFD) 

of plant species. This study investigates the FFD of 81 Australian flower species over 31 

years to understand the effects of climate factors with a particular focus on the Millennium 

Drought period. Utilising time series clustering and Rank Biased Overlap (RBO) metric, the 

FFD data was analysed to identify changes in phenological patterns and stability of 

flowering sequences over time.  

 

The time series clustering performed reveals distinct clusters, suggesting variability in FFD 

patterns that correspond to different climatic periods, including the significant Millennium 

Drought. The RBO analysis demonstrated moderate to high similarity in the flowering order 

across years, depending on whether the periods being compared were drought or non-

drought periods.    

 

The results implicate climate change in the alteration of FFD and suggest potential 

ecological consequences, such as challenges for agricultural management. This report 

also identifies limitations in the historical scope of the data, and advocates for the 

incorporation of a broader range of flower species and ecosystems, along with more 

recent data to allow more impactful future research, such as the production of predictive 

models. Overall, the findings made contribute to understanding how climate change 

affects plant phenology and underscore the need for adaptive strategies to combat climate 

change. 
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Introduction and 
Background 

Phenology, as defined by Keatley and Hudson (2010), encompasses the study of life cycle 

phases in flora and fauna, including events such as the blossoming of plants, crop 

maturation, insect emergence and bird migration. This discipline examines the interplay 

between these phenological phenomena and climatic variables, investigating how the 

timing of these recurrent events is influenced by climatic changes (Hudson & Keatley, 

2010; Keatley et al., 2013; Schwartz 2003). Temporal changes in phenology, primarily 

driven by global warming, are broadly acknowledged as the most significant indicator of 

worldwide environmental transformation (Hassan et al. 2023). Such phenological markers, 

notably the timing of the flowering and animal migration, exhibit significant sensitivity and 

vulnerability to climatic variations, including temperature, light intensity, precipitation, and 

humidity levels. Often, research in this field focuses on specific indicators, like the first 

flowering day (FFD), rather than capturing the full spectrum of phenological occurrences 

(CaraDonna et al. 2014).  

 

Phenological milestones play a critical role in understanding ecological dynamics and 

biodiversity, prompting numerous studies on the subject. For instance, research 

highlighting a 250-year analysis of the initial bloom dates of 405 plant species in the UK 

revealed that, over the past 25 years, the onset of the first blooms advanced by 2.2-12.7 

days compared to any similar period since 1760, correlating closely with average 

temperature increases. A temperature rise of one degree Celsius is associated with an 

earlier first flowering date by approximately five days (Amano 2010). Additionally, the 

average blooming time of three shrub species, as determined by the Spring Phenology 

Index (SPI) from 1963-2009, showed that the most recent 30-year SPI advanced by 2.1-

6.3 days compared to any previous 30-year interval before 1970, according to an SPI time 

series reconstructed for 1834-2009 in eastern China. This SPI was found to correlate 

significantly with February to April temperatures, with a one-degree Celsius increase 
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temperature advancing the SPI by 3.1 days (Ge 2014). Observation records from 1981 to 

2017 for three species of lilac and honeysuckle indicated that the predictiveness of the 

spring index for vegetative and reproductive phenology varies across species and latitudes 

(Gerst 2020). 

 

The FFD metric represents the day count January 1st until the observed first bloom of a 

species within a year. It is a critical observation in phenology, signifying a major phase in a 

plant’s lifecycle that modulates its interaction with the surrounding environment (Ehrlén 

2015; Keatley, Hudson, & Leemaqz 2018). Given susceptibility of phenological events to 

climatic alterations, shifts in the FFD are anticipated (Hudson, 2018a). A study by Bock et 

al (2014) found that the first flowering date herbaceous plants is postponed with increasing 

altitude, indicating temperature and photoperiod dependencies. Observations across five 

plant communities at varying altitudes revealed that higher temperatures and reduced 

rainfall are linked to earlier flowering periods (Prevéy 2020). 

 

While European research has demonstrated how climate change impacts plant flowering 

times and FFD (Hudson, 2018a, 2018b), data on alterations in flowering sequences in 

Australia remains scarce, underscoring the need for further investigation in the 

Australasian context (Hudson, 2011; Hudson, 2010; Keatley et al. 2013). Understanding 

the sensitivity of a plant’s flowering commencement and cessation to historical drought 

conditions can facilitate predictions on future plant responses to potential droughts. This 

report places particular emphasis on the variations in FFD during and following the drought 

years of 1996/7 to 2009/10 compared to non-drought years, along with other observable 

shifts in patterns. The significance of studying FFD and flowering order (FO) lies in its 

broad ecological implications, encompassing increased competition among plants for soil 

nutrients, adverse effects on bee populations and pollination processes, consequences for 

the food availability of foragers, and repercussions for the agricultural sector. Such 

changes in FFD or FO can have profound impacts on the intricate balance on ecosystems, 

affecting both flora and fauna and, by extension, the services they provide to human 

societies.  
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Within the Australian context, significant concerns have been raised regarding climate 

change, a situation underscored by a dearth of research focused on FFD despite its 

importance. Cole (2017) and Marchin (2015) have demonstrated that climate change 

markedly influences phenological events, affirming its prominence as a pressing issue in 

Australia. However, to date, only a limited number of studies, including those by Keatley, 

Hudson & Leemaqz (2018) and Hudson et al. (in preparation), have specifically analysed 

FFD. Australia’s vulnerability to extreme weather, amplified by global climate changes, has 

led several severe drought periods, notably the Millennium Drought from 1997 to 2009. 

This drought had a widespread and prolonged impact on most of southern Australia, 

particularly affecting the densely populated southeast and southwest regions. Initially 

concentrated in Victoria and Tasmania, by 2001, the drought had extended across 

southern Australia (Van Dijk et al. 2013). 

 

 
Figure 1: Millenium Drought (1997 to 2009) rainfall deciles. 

 
The goal of this report is to delve into the effects of climate change, with a particular focus 

on the Millennium drought period by analysing the FFD of a selection of Australian flower 

species. This will be accomplished by using techniques such as time series clustering and 

Rank Biased Overlap (RBO). The Methodology section will provide the theory and details 

of how this was accomplished along with further detail on the dataset and software tools 

used to implement the analysis techniques. The findings made from the analysis of the 

data will be presented in the Results section. Following this, the implications of the results 
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are explored in the Discussion section. Finally, a Conclusion section will summarise the 

key findings made with potential future research avenues outlined.  

 

Statement of Authorship 
The workload was divided as follows: 

• Dillon Batdorf analysed this data using Python, and produced all results and 
interpretations written in this report. 

• Professor Irene Hudson (Mathematical Sciences, STEM College, RMIT) supervised 
the project, providing project direction, assisted with interpreting results, and 

proofread the report. 

• Dr. Marie Keatley (Applied Chemistry and Environmental Science, STEM College, 

RMIT), provided the data used in this project. 

 

Methodology 
This section of the report delineates the approach employed to examine the effects of 

climate change on the first flowering day (FFD) of Australian flower species, focusing on 

the Millennium Drought period. Utilising methods such as time series clustering and Rank 

Biased Overlap (RBO), this study aims to identify patterns in flowering times and assess 

shifts in species’ flowering order relative to climatic changes. This section will detail the 

theoretical basis, implementation, and rationale behind these analytical techniques, and 

outline the software tools used. By integrating these methodologies, the research 

endeavours to offer a comprehensive analysis of how climate variations influence plant 

phenology, thereby contributing to our understanding of ecological responses to 

environmental stressors. 
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Data 
The dataset used is a combination of two separate datasets that have been used in 

numerous studies focused on determining flowering changes in Australia (Keatley & 

Hudson 2018). The dataset contains yearly data from 1984 to 2014. One of the main parts 

of the data is the First Flowering Day (FFD) of 81 Australian native flower species. The 

FFD is the number of days since January 1st of each year when the flower species have 

first bloomed. The other part of the data relates to climate data related to the region of this 

datasets flower species. The climate measures in this dataset include maximum 

temperature, minimum temperature, rainfall, radiation, vapor pressure and radiation. All 

the variables present in the dataset are annual measures ranging from 1984 to 2014.  

 

Analysis Techniques 
Time Series Clustering 

 

Clustering represents a technique in data mining that groups together similar datapoints 

into related or uniform categories, without prior understanding of the category definitions 

(Rai & Singh 2010). Clusters are created by assembling items based on their high degree 

of similarity to others within the same cluster, and their low similarity to items in different 

clusters. This method is valuable for exploratory data analysis because it reveals patterns 

within the unlabelled dataset though the objective categorisation of data into similar 

groupings (Aghabozorgi, Seyed Shirkhorshidi & Ying Wah 2015). Time series data, a form 

of temporal data, inherently exhibits high dimensionality and encompasses a large volume 

of data (Rani & Sikka 2012). Clustering complex entities is especially beneficial as it 

facilitates the uncovering of intriguing patterns within time series datasets. The use of time 

series clustering in this report is for the purpose of pattern discovery, to generate insights 

into how climate variations may be influencing plant phenology. 

 

While there are many time series clustering methods that can be employed, this report 

focuses on the use of non-probabilistic partitional clustering algorithms. As outlined by 
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Holder et al. (2024) this algorithm begins by selecting example cases whose purpose is to 

characterise a cluster, which is commonly known as the initialisation stage. Following the 

selection of these example cases, an updating process begins, where the examples are 

refined in an iterative manner until a convergence condition has been met. The algorithm 

that is used in this report is the k-medoids clustering algorithm. The k-medoids algorithm 

will carry out the partitional clustering steps until the value of the clustering objective 

function becomes stable (Han & Kamber 2012). The clustering objective function that aims 

to minimise Total Deviation (TD) is given as follows: 

 

 

(1) 

� � 𝑑𝑑(𝑥𝑥𝑐𝑐 , 𝑒𝑒𝑖𝑖)
𝑥𝑥𝑐𝑐∈𝐶𝐶𝑖𝑖

𝑘𝑘

𝑖𝑖=1
 

(2) 

𝑠𝑠 =  40 +  2𝑘𝑘 

where k is the number of clusters, 𝐶𝐶𝑖𝑖 is the set of cases in the ith cluster, d is the 

dissimilarity measure, 𝑥𝑥𝑐𝑐 is a case in cluster 𝐶𝐶𝑖𝑖 and 𝑒𝑒𝑖𝑖 is the exemplar (representative) of 

cluster 𝐶𝐶𝑖𝑖 (Holder, Guijo-Rubio & Bagnall 2023).  

 

The initialisation technique used in this report is known as random initialisation, which 

works by choosing the initial cluster centres from the dataset at random. The decision to 

implement this technique was due to its popularity (Holder, Middlehurst & Bagnall 2024). 

The distance measure, used in this report is the move-split-merge (MSM) distance 

measure as research has shown it to be the most effective distance function (Holder, 

Middlehurst & Bagnall 2024). The number of clusters selected for the clustering model in 

this report is 5. Only the flowering data is used to create the model, with the climate 

variables being excluded. 
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Rank-Biased Overlap (RBO) 
Rank-Biased Overlap (RBO) is a method that allows the comparison of two ranked lists 

(Webber, Moffat & Zobel 2010). A numerical value between zero and one is generated to 

quantify the similarity between the ranked lists. A value of zero is expected if each list does 

not share any elements, while a value of one, indicates that each list shares the same 

elements, and they are all in the same order. In this case, lists ordered from earliest to 

latest median FFD for each cluster is generated, with RBO metrics for all ten cluster 

combinations determined. The purpose of doing this is to quantify the amount of change in 

flowering days across clusters which in the case of this report, are groups of years that 

exhibit similar FFD patterns.  

 

Software Tools 
To perform these tasks, the Python programming language is utilised. Within the Python 

programming language, the aeon library is used to create the time series clustering model, 

while the pandas library is used to create tables. The Python libraries matplotlib and 

seaborn were used to create visualisations.  

 

Results 
In this section the results of the time series clustering and RBO metrics will be displayed 

and interpreted. As mentioned previously, the focus will be on the Millennium Drought 

period of approximately 1996/7 – 2009/10.  

Time Series Clustering 
Table 1 displays the results of the cluster model, which has allocated each year of the FFD 

data to a cluster. Cluster 0 (Red) appears frequently in the early 1990s and again in 2000, 

2001, and 2010. Cluster 1 (Green) is seen in consecutive years from 1985 to 1986. Cluster 

2 (Blue) appears throughout the time span including in consecutive years from 2002 to 

2005, during the Millennium Drought. Cluster 3 (Orange) is most frequently observed in 
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consecutive years from 2006 to 2009, towards the end of the Millennium drought. Cluster 4 

is relatively rare, only appearing in 1996, and 2001.  It is clear from this output that the 

Millennium Drought period coincides with a shift in clusters. Cluster 0 is prevalent in the 

years preceding the drought while Clusters 2 and 3 are more prevalent in the middle and 

end of the drought.  

 
Table 1: Assignment of Years to Clusters Based on Time Series Clustering of First Flowering Day (FFD) Data from 1984 

to 2014 
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Rank-Biased Overlap (RBO) 
Table 2 displays the results of the RBO metrics for the median FFD values of each cluster 

ranked from earliest FFD to latest FFD. The closer to 1 the RBO value is the higher its 

concordance.  Table 2 shows a RBO value of 0.907 which indicates a high concordance. 

This value signifies a significant maintenance of species rank order between Cluster 0 

(predominantly spanning the years of 1991-1994, before the drought) and Cluster 2 

(predominantly spanning the years 2002-2005, six years into the drought). Furthermore, 

there is a relatively good concordance of RBOs, indicating the maintenance of species 

rank order between Cluster 2 (predominantly spanning the years 2002-2005, six years into 

the drought) and Cluster 3 (predominantly 2006-2009, the latter part of the drought), with a 

value of 0.891. A similar pattern of relatively good concordance in RBOs is observed on 

the maintenance of species rank order between Cluster 2 and Cluster 4 (years 1996 and 

2001), with a value of 0.873. However, it is important to note that the RBO values suggest 

that the ranks of Cluster 1 (years 1985-1987), before the drought) are not highly 

concordant with Clusters 2, 3, and 4. This discrepancy illustrates the disruption caused by 

the drought.  
Table 2 : Rank-Biased Overlap (RBO) Metrics Comparing the Median First Flowering Day Sequences Between 

Clustered Years 
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Discussion 
This report examined the first flowering day (FFD) of 81 Australian flower species over 31 

years, employing time series clustering and Rank Biased Overlap (RBO) to elucidate the 

effects of climate change with a focus on the Millennium Drought. The results unveiled 

distinctive clusters, indicating variability in FFD patterns, and RBO analysis suggested 

relative stability in FFD patterns when clusters made up of years from or close to drought 

periods were compared with each other, while there were clear shifts when comparing 

clusters made up of years far away from drought periods when compared to clusters made 

up of years from drought periods.  

 

The time series clustering results indicated periods of phenological congruity and 

divergence. Notably, years within the Millennium Drought (1997-2009) were often grouped 

into distinct clusters compared to the pre- and post- drought years, implying a potential 

reshaping of flowering patterns by extended arid conditions. The RBO scores highlighted a 

moderate similarity between flowering ranks, with the highest similarity between the 

clusters that consist of drought years and the lowest similarity between clusters made up 

of non-drought years and clusters containing drought years. This suggests that climatic 

influences such as droughts may cause ecological disruptions such as when flowers 

bloom. It may also be inferred that while the general ranking of the flowering days may be 

conserved, individual species’ responses to climate stressors may lead to notable shifts in 

phenological synchrony.  

 

Shifts in flowering time can have profound impacts on society, particularly in agriculture. 

For instance, the control of flowering time strongly influences grain yield in crops (Wu et al. 

2023). This indicates that there is a great need to understand how and why flowering time 

is changing. This report is limited in its reliance on historical data, with the most recent 

year in the dataset being 2014. The lack of recent data means there may be further 

insights missing regarding the way flower species are responding to the change in climate. 

Additionally, the analytical methods used, while robust, offer a simplified view on what are 

complex ecological interactions.  
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Conclusion 
This investigation into the first flowering day (FFD) of various Australian flower species 

over a span of 31 years has illuminated the subtle yet significant influences of climate 

change on phenological events. Through the application of time series clustering, distinct 

periods were identified, reflecting changes in FFD patterns potentially driven by climatic 

factors such as the Millennium Drought. Rank-Biased Overlap (RBO) analysis further 

underscored these findings, revealing variation in flowering species across certain different 

clusters of years. Collectively, these results underscore the dynamic interplay between 

climate and phenological timings.  

 

Future research should focus on expanding the scope of phenological studies to include a 

broader range of species and ecosystems. This, combined with the addition of more recent 

data would allow the creation of sophisticated predictive models that incorporate a 

multitude of factors would allow for better preparation for the societal changes that will be 

brought by climate change. It should also be noted that future work on investigating the 

maintenance or otherwise on the rank order of FFD over time will involve upper and lower 

copula threshold methods (Hudson et al. 2022; Tursunavelia et al 2019) Ultimately, this 

research highlights the urgency for the scientific community and policymakers to address 

the repercussions of climate change on natural systems.  
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