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1 Abstract

The Sun is a magnetic star, generating a magnetic activity cycle with an 11-year period. At the

end of each cycle, the Sun’s large scale poloidal magnetic field reverses its polarity. Throughout

a solar cycle, magnetically active regions form on the Sun’s surface, characterised by areas of

strong magnetic fields with a bipole structure. Joy’s Law is an empirical observation where

these active region bipoles tend to be tilted away from east-west alignment, with the polarity

in the prograde direction closer to the equator. In some models of the solar dynamo, Joy’s

Law is important in reversing the global poloidal magnetic field from one cycle to the next. It

is thought that Joy’s Law is driven by the Coriolis force from the Sun’s rotation because the

active region tilt angle increases with latitude in a similar way to the Coriolis force. However,

it is not fully understood what plasma flows the Coriolis force acts on to produce this tilt.

Our aim is to determine if Joy’s Law is due to flows associated with the magnetic field, or

passively driven by surrounding plasma flows. We calculated the force terms in the equation of

motion for three-dimensional magnetohydrodynamic simulations, including the Coriolis force,

of a submerged magnetic flux tube rising through convection in the near-surface of the Sun.

We found that the tilt induced by the Coriolis force causes a minor increase in the magnetic

tension and magnetic pressure forces. This suggests that Joy’s Law is a passive effect, which

suggests that the tilt behaviour is driven by the surrounding plasma flows.

2 Introduction

The Sun is a magnetic main-sequence star, with an 11-year activity cycle, and rotates with an

average period of 27 days. Throughout an activity cycle, magnetic active regions, characterised

by areas with strong magnetic field with a bipole structure, form on the Sun’s surface. At

the end of each solar activity cycle, the Sun’s large scale poloidal magnetic field reverses its

polarity, which also reverses the polarity of the active region bipoles that form.

2.1 Magnetic Active Regions

Active regions on the surface of the Sun are characterised by areas of strong magnetic flux,

typically 100 Mm in size with magnetic field strength on the order of 100 G [3]. Active regions
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are believed to be caused by coherent magnetic flux tubes deep below the surface, which rise

due to magnetic buoyancy. This forms an Ω-shaped loop and breaks through the photosphere

(the Sun’s surface layer), as illustrated in Figure 1a. In this model, a magnetic bipole structure

can be seen, with upward and downward magnetic flux through the photosphere on each side

of the loop.

(a)

(b)

Figure 1: Left panel: Cartoon model of a submerged magnetic flux tube piercing the surface

of the Sun producing an opposite polarity pair at the surface [8]. Right panel: Observations of

the line-of-sight magnetic field of an active region from NASA’s Solar Dynamics Observatory

Helioseismic and Magnetic Imager (SDO/HMI) [2].

This bipole structure can be seen in magnetogram images of the Sun, which show the line-

of-sight magnetic field with white corresponding to flux coming out of the surface and black

corresponding to flux going into the surface. Figure 1b shows the line-of-sight magnetic field of

an active region with a clear bipole. These concentrated areas of magnetic flux form sunspots,

which are dark, relatively cool spots on the Sun’s surface. Not all active regions produce fully

formed, long-lived sunspots with a central umbra (dark region) and surrounding penumbra, but

all active regions cause enough cooling to produce a darkening on the surface.
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2.2 Joy’s Law

Joy’s law is a statistical law, asserting that sunspot pairs have a preferential tilt towards the

equator, away from east-west alignment. More precisely, the leading sunspot (with respect to

the Sun’s rotation) in an active region bipole is closer to the equator than the following spot

(see Figure 2).

Observational analysis has shown that the tilt described by Joy’s Law acts after the active

region has emerged through the surface [4], in contradiction to traditional thin-flux tube theory

where the tilt is formed below the surface as the flux tube rises [6, 7].

Figure 2: Left panel: Cartoon illustration of Joy’s Law. Right Panel: observed intensity

continuum of the Sun showing sunspots, and the corresponding line-of-sight magnetic field

observation from SDO/HMI [2]. The concentrated regions of magnetic field that form sunspots

within active regions are clear. The red dashed lines indicate the rough axis connecting the

bipoles of the active region which indicates the tilt angle.

The tilt angle of active regions is observed to increase with the latitude of the active region

[1]. [4] showed that this latitudinal dependency is only in the north-south separation of the

bipoles, and not the east-west. This suggests that Joy’s Law is driven by the Coriolis Force

acting on some east-west plasma flows as the active region grows in size and the bipoles separate.

After approximately two days, the active region emergence process ends and it remains at the

fixed tilt angle [4]. The aim of this project is to determine what effect the Coriolis force has on

the force terms in the magnetohydrodynamic equation of motion (see section 3.2), by analysing

numerical simulations of the emergence process. In the following report, I describe my analysis
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of the three-dimensional active region simulations, the methods I implemented to compute the

relevant force terms from the simulated data, and key findings from the comparisons of the

different force terms.

2.3 Statement of Authorship

Data from the MURaM code [5] simulations were produced by William-Roland Batty. All anal-

ysis was performed by the author, Liam Barnes, under the guidance of Dr. Hannah Schunker

and William Roland-Batty. All force term expansions, derivations, analysis code, figures and

results are solely the work of the author.

3 Background

3.1 The Coriolis Force

At a point on the surface of the Sun, we define a cartesian coordinate system (x, y, z), with

East being the positive x-direction, North being the positive y-direction, and z is in the outward

radial direction from the Sun’s centre. This coordinate axis is fixed at a particular point on

the surface as the Sun rotates, and is thus a rotating frame of reference.

The Coriolis Force is a pseudo force experienced by objects moving in a rotating frame of

reference. It is given by:

ac = 2Ω× v = ⟨2vzΩcos θ−2vyΩ sin θ, 2vxΩ sin θ,−2vxΩcos θ⟩

Fc = ρac

(1)

where Fc is the Coriolis Force, Ω is the angular rotation of the frame of reference (in our case

the Sun’s angular rotation rate Ω⊙), θ is the latitude of the area of interest, and v = (vx, vy, vz)

is the velocity of the object within the rotating frame of reference.

If we assume that the contribution of the vertical component (vz) of plasma velocity to the

Coriolis force is negligible, and also neglect the vertical effect of the Coriolis force, we have the

f-plane approximation:

2Ω× v ≈ ⟨−fvy, fvx, 0⟩ (2)
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where f = 2Ω sin θ, which increases in magnitude as the latitude θ increases in magnitude

(−π
2
< θ < π

2
). Areas of strong magnetic field suppress vertical plasma convection (vz), so the

f-plane approximation is valid in our case.

3.2 Magnetohydrodynamics

3.2.1 Fundamental Equations

Magnetohydrodynamics (MHD) is the study of the dynamics of electrically conductive fluids,

such as the plasma near the surface of the Sun. Combining the equations of fluid dynamics and

electromagnetism yields the fundamental equations of MHD:

∂B

∂t
= ∇× (v ×B) + η∇2B (3)

∂ρ

∂t
+∇ · (ρv) = 0 (4)

ρ
dv

dt
= −∇p+ j×B+ ρν

[
∇2v +

1

3
∇(∇ · v)

]
+ Fg (5)

p =
kB
m

ρT (6)

ργ

γ − 1

d

dt

(
p

ργ

)
= −∇ · q− Lr + j2/σ + FH (7)

Eqn. (3) is the induction equation, with B = ⟨Bx, By, Bz⟩ the magnetic field strength vector,

v = ⟨vx, vy, vz⟩ the plasma velocity and η = 1
σµ

the magnetic diffusivity with σ the conductivity

and µ the magnetic permeability.

Eqn. (4) is the continuity equation, with ρ the plasma density.

Eqn. (5) is the equation of motion, with j the current density, ν the kinematic plasma

viscosity and p the plasma pressure.

Eqn. (6) is the ideal gas law, with kB the Boltzmann constant, m the mean particle mass

and T the temperature.

Eqn. (7) is the energy equation, with γ the adiabatic exponent, q the heat flux due to

particle conduction, Lr the net radiation and FH represents all other heating sources.
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3.2.2 Ideal MHD

From the induction equation (Eqn. (3)), we can define the magnetic Reynold’s number Rm =

l0V0

η
, which represents the ratio of the first term on the right (convective term) to the second

term on the right (diffusive term) in (3).

In the ideal limit (ideal MHD), Rm >> 1, and the diffusive term in (3) can be neglected.

In this case, it can be shown that the magnetic field is frozen to the plasma (the magnetic field

moves with the plasma) by Alfvén’s Frozen Flux Theorem [3]. At the Sun’s surface, Rm is in

fact large, and ideal MHD applies.

3.2.3 Equation of Motion and The Lorentz Force

Of particular interest in this project is the equation of motion (Eqn. (5)), which describes how

the plasma moves in response to the various forces. The right hand side of Eqn. (5) contains

the pressure gradient (∇p), the Lorentz force (j × B), viscous stress (ρν
[
∇2v + 1

3
∇(∇ · v)

]
),

and the gravity force (Fg).

The current density j can be eliminated from the Lorentz force using Ampère’s Law j =

∇×B/µ and a vector identity, giving:

j×B =
(B · ∇)B

µ
−∇

(
B2

2µ

)
(8)

The first term on the right hand side of (Eqn. 8) is the magnetic tension force, and the second

term is the magnetic pressure gradient.

The magnetic tension force arises when the magnetic field lines are curved, and acts inwards

towards the centre of curvature to try and straighten the field lines. The magnetic pressure

gradient arises when the magnetic field strength (spacing of the field lines) is non-uniform, and

acts in the direction from how to low flux concentration.

The magnetic tension, magnetic pressure gradient and viscous stress are the main forces of

interest in this project.

4 MURaM Simulations

The Max-Planck-Institute for Aeronomy/University of Chicago Radiation Magneto-hydrodynamics

code (MURaM) is a numerical code that solves the MHD equations in a three-dimensional
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cartesian domain near the surface of the Sun (as outlined in section 3.1) [5].

4.1 Simulation Domain and Initial Conditions

The particular simulations for this project use a domain that is 96 Mm × 96 Mm horizontally

(x, y) and 16 Mm vertically in depth (z), with the surface layer positioned 1 Mm below the top

of the domain. The initial conditions contain a magnetic flux tube artificially inserted approx-

imately 11 Mm below the surface into a background of self-consistently simulated convection.

It is aligned parallel to the x-axis and has a Gaussian strength profile with peak strength

of 5 × 104 G, with a full-width at half-maximum of 1.33 Mm and is set to zero at a radius

of 1.7 Mm. As the simulation runs, the flux tube rises due to imposed magnetic buoyancy,

ultimately emerging through the surface as an Ω-shaped loop and a bipole structure at the

surface.

We analyse the output of two simulations, both with the identical initial conditions described

above, however one accounts for the Sun’s rotation. It does this by including the Coriolis

force (with the f-plane approximation, (Eqn. (2))) in the equation of motion (Eqn. (5)), which

becomes:

ρ
dv

dt
= −∇p+ j×B+ ρν

[
∇2v +

1

3
∇(∇ · v

]
+ Fg − Fc (9)

The second simulation uses an angular rotation Ω = 100Ω⊙, i.e 100 times that of the Sun’s

true rotation speed, Ω⊙, in order to generate a measureable effect in the limited simulation

time as the flux emerges (≈ 16 solar hours).

4.2 Physical Quantities

The simulations covers a volume of 96 Mm × 96 Mm × 16 Mm discretised onto a grid of

1008× 1008× 504 points. At each grid point, and for all 301 timesteps, the simulation outputs

all primary variables required for further analysis. The variables of interest are the three com-

ponents of the magnetic field (Bx, By, Bz), the three components of plasma velocity (vx, vy, vz),

pressure (p), and density (ρ). All quantities are given in centimetre-gram-second (CGS) units,

with magnetic field given in Gauss (G), velocity in cm/s, density in g/cm3 and pressure in

dyn/cm2, (1dyn = 10−5N). For this project, we only analysed the surface slice, so the domain
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Figure 3: Vertical magnetic field component at the surface of the simulation without rotation

(left) and with one hundred times solar rotation (right) 5.5 hrs after the beginning of the

simulation.

of interest is a 1008× 1008 horizontal grid with 301 timesteps (corresponding to approximately

16 hours). This domain can be seen in Figure 3.

5 Computing Force Terms

Writing B = (Bx, By, Bz) and v = (vx, vy, vz), the magnetic tension, magnetic pressure and

viscous stress force terms can be expanded into a form suitable for numerical computation. We

have magnetic tension:

T =
(B · ∇)B

µ
=

1

µ


Bx

∂Bx

∂x
+By

∂Bx

∂y
+Bz

∂Bx

∂z

Bx
∂By

∂x
+By

∂By

∂y
+Bz

∂By

∂z

Bx
∂Bz

∂x
+By

∂Bz

∂y
+Bz

∂Bz

∂z

 =


Tx

Ty

Tz

 (10)

magnetic pressure

Pm = ∇
(
B2

2µ

)
=

1

µ


Bx

∂Bx

∂x
+By

∂By

∂x
+Bz

∂Bz

∂x

Bx
∂Bx

∂y
+By

∂By

∂y
+Bz

∂Bz

∂y

Bx
∂Bx

∂z
+By

∂By

∂z
+Bz

∂Bz

∂z

 =


Pmx

Pmy

Pmz

 (11)

8



and from the viscous stress term ρν
[
∇2v + 1

3
∇(∇ · v)

]
we have

∇2v =


∂2vx
∂x2 + ∂2vx

∂y2
+ ∂2vx

∂z2

∂2vy
∂x2 + ∂2vy

∂y2
+ ∂2vy

∂z2

∂2vz
∂x2 + ∂2vz

∂y2
+ ∂2vz

∂z2



∇(∇ · v) =


∂2vx
∂x2 + ∂2vy

∂x∂y
+ ∂2vz

∂x∂z

∂2vx
∂x∂y

+ ∂2vy
∂y2

+ ∂2vz
∂y∂z

∂2vx
∂x∂z

+ ∂2vy
∂y∂z

+ ∂2vz
∂z2


(12)

To compute the required spatial derivatives, the following fourth-order centred difference

approximations were used:

f ′(x) =
−f(x+ 2∆x) + 8f(x+∆x)− 8f(x−∆x) + f(x− 2∆x)

12∆x
+O(∆x4) (13)

f ′′(x) =
−f(x+ 2∆x) + 16f(x+∆x)− 30f(x) + 16f(x−∆x)− f(x− 2∆x)

12∆x2
+O(∆x4) (14)

The data from the simulations was loaded into Python as numpy arrays, with a 1008 ×

1008 × 301 array for each quantity of interest, which are listed in section 4.2. The difference

formulas (13) and (14) were applied to these arrays, creating new arrays of the same dimension

for each derivative of each quantity. (For example, ∂Bx

∂y
is defined at all 1008×1008 grid points,

for all 301 timesteps.) These derivative arrays were then used to compute the three components

of each force, as shown in Eqns. (10), (11) and (12).

With each force now stored in their own arrays, analysis of the difference force terms in

each simulation were possible. Shown in Figure 4 is the total magnitude of magnetic tension

(|T| = (Tx
2 + Ty

2 + Tz
2)

1
2 ), computed from the Tx, Ty and Tz arrays.

6 Comparing Force Terms

6.1 Masking

It only makes sense to compute the force terms where there is a significant magnetic field

strength. Thus, when comparing the force terms, we first applied a mask to the force arrays.

This mask selects the grid points at each time slice where the vertical component of magnetic

9



Figure 4: Magnitude of the magnetic tension at the surface of the simulation without rotation

(left) and with one hundred times solar rotation (right) 5.5 hrs after the beginning of the

simulation.

field is significant. For this project, the mask selects grid points where |Bz| > 100G. This

mask, at a particular time step for the simulation that includes the Coriolis force, is illustrated

in Figure 5

10



Figure 5: Unsigned vertical magnetic field strength, |Bz|, at the surface of the simulation with

one hundred times solar rotation 5.5 hrs after the beginning of the simulation (left) and the

right shows where |Bz| > 100 G.

6.2 Masked Averages

The force terms in both simulations can now be meaningfully compared within the region of

interest using the masking method in Section 6.1. At each time step, a mask was generated

and applied to each array at the same time step. With this mask applied, the average of

the magnitude of each force was taken and stored in an array. For each force, this generated

an array with 301 entries, each entry corresponding to the masked average of that force at a

particular time step. This was done for both simulations.

Taking the average over these arrays results in a total average magnitude value of each force,

giving a rudimentary summary of the relative sizes of each force term. These total averages are

presented in Figure 6. The error bars represent the temporal standard deviation, indicating

how the average over the mask for each force varies with time.

Figure 6 shows a difference in the magnetic tension and pressure forces between the two

simulations. It is worth noting that both of these forces are proportional to B2. Thus, it is

natural to ask whether this difference is directly attributable to the introduction of the Coriolis

force, or if a difference in the total magnetic field strength between the simulations is causing

this discrepancy. Figure 7a shows the spatial averages of B2 over time for each simulation.
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Figure 6: Mean of the force terms where |Bz| > 100 G from t = 5.5 hrs until tend = 16 hrs for

both simulations without rotation and with one hundred times solar rotation. The uncertainties

are the standard deviation of the mean over time. The simulation with rotation produces

marginally larger magnetic tension and magnetic pressure terms.

The magnetic tension and pressure force averages were then normalised by the total average

of B2 for each simulation in an attempt to eliminate the influence of the differing magnetic field

strength profiles between the two simulations. These normalised averages are shown in Figure

7b.
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(a)
(b)

Figure 7: Left panel: Spatial average of B2 over time. Less flux emerges at the surface for the

simulation including rotation. Right panel: Magnetic tension and magnetic pressure normalised

by the mean of B2 over time and space, indicated by the dashed lines in the left panel, in order

to compare the simulations.

7 Discussion and Conclusion

From Figure 6, the viscous stress (drag) force is the least significant. This is likely attributable

to the fact that plasma convection is inhibited by the strong magnetic field, and viscous stress

is proportional to velocity, so this is perhaps not surprising.

Magnetic tension and, in particular, magnetic pressure appear much more significant than

viscous stress at the bipole, and this is true for both simulations. Furthermore, both forces

are larger in magnitude for the simulation with the Coriolis force. This suggests that the tilt

induced by the Coriolis force has increased the magnetic tension and pressure forces. However,

this difference is not very significant, and the forces in the two simulations are well within

temporal standard deviations of each other, as shown by the error bars in Figure 6.

Upon normalising by B2 (Figure 7b), the difference is actually slightly more significant,

further implying that the Coriolis force is having a direct effect on the magnetic tension and
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pressure forces. The difference is still not hugely significant, and the normalised forces still

remain within temporal standard deviations of each other.

The difference in the magnetic forces between the two simulations does not appear sufficient

to play a major role in the bipole’s observed motion, or lack thereof, in the presence of the

Coriolis force. Additionally, the low amount of viscous stress within the bipole, and the limited

plasma convection, suggests that the Coriolis force is also not acting strongly within the bipole,

as the Coriolis Force is proportional to plasma velocity.

These observations suggest that Joy’s law is a passive phenomenon, with the Coriolis force

acting on the plasma flows surrounding the coherent magnetic bipoles. Including rotational

effects in the simulation increases the magnetic tension and pressure forces a small amount,

but not significantly enough to conclude that the mechanism behind Joy’s Law is magnetically

dominated.

These conclusions relate only to the surface slice of the simulations. Further analysis should

be conducted below the surface slice as the magnetic bipole emerges. Perhaps the Coriolis

force, as well as the magnetic tension, magnetic pressure and viscous stress forces, are playing

a larger role beneath the surface.

The different components (x and y) of each force should also be examined separately, as

this may provide more insight into the mechanism that causes the bipoles to settle at a fixed

tilt.

It is also worth noting that this project focus on simulations with a single, specific initial

state of convection. Running more simulations with different initial conditions of plasma flows

may provide more insight into the general properties of active regions, and perhaps a more

coherent bipole will form in a different pattern of convection. As with all science, the more

data we have, the more confident we can be in the conclusions we draw from it.
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