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Abstract

Primary doctrines provide a way to add structure presenting first order logic to an underlying category.

An elementary doctrine is a primary doctrine that has a notion of equality. In [Pas12], Pasquali showed

that there is a cofree construction adding elementary structure to primary doctrines. We can generalise to

doctrines to fibrations to get a proof relevant presentation of first order logic. We show that a similar cofree

construction adds elementary structure to primary fibrations.
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1 Introduction

This report describes how equality can be handled in a proof relevant presentation of first order logic through

category theory. The construction studied in this report was first explored by Pasquali in [Pas12], in which

he showed that equality can be added cofreely to a presentation of first order logic through category theory,

called a primary doctrine. We generalise the notion of a primary doctrine to a primary fibration in which the

“witnesses” of proofs are part of the structure. We show that Pasquali’s construction generalises naturally to

this setting.

In section 2 we define primary doctrines and outline Pasquali’s construction. In section 3 we define primary

fibrations and generalise the notions of equality and equivalence relations. In section 4 we generalise Pasquali’s

construction to primary fibrations.

2 Background

2.1 Doctrines

A category can be regarded as a setting for some (restricted) mathematics to take place, by regarding our objects

as sets and our morphisms as functions. We can further this view by adding extra structure to a category to

describe possible predicates on each object in order to present a system of first order logic on our base category.

Formally speaking

Definition 2.1. A primary doctrine is a product preserving contravariant functor P : Cop → ISL from a

category C with all finite products to the category of inf-semilattices [Pas12].

Example 2.2. The functor

P : Setop → ISL,

given by

P(X) = {x : x ⊂ X},

and

P(f) = f−1,

is a primary doctrine. For each set X we have an associated collection of sets P(X), which should be thought

of as predicates on elements X. In particular if q ∈ P(X) then we say q(y) is true for y ∈ X if y ∈ q. There are

many predicates over R, one being Q. The predicate Q(x) is true for x ∈ R exactly when x is rational.

Example 2.3. The functor

O : Topop → ISL,

given by

O((X,T)) = T,
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and

O(f) = f−1

is a primary doctrine. We think about this in a similar way to last time: for every space X we have a collection

of predicates on elements of X. However this time the predicates only exist with respect to the topology of

our space X. If X is a discrete space then the predicates are the same as our last example. If X is indiscrete

then there are two predicates, one which is always true and one which is always false. In the case of the usual

topology on R there are many predicates, however there is no predicate that is true precisely when x ∈ R is

rational, because Q is not open.

2.2 Equality in Doctrines

Definition 2.4. If P : Cop → ISL is a primary doctrine and A is an object in C then an equality predicate

[Pas12][Jac98] over A is an object δA such that:

1. The functor Λ : P (A) → P (A×A) given by Λ(p) = π∗
1p ∧ δA is a left adjoint to ∆∗

A

2. For every object X in C, the functor MX : P (X ×A) → P (X ×A×A) given by MX(p) = π∗
1,2p ∧ π∗

2,3δA

is a left adjoint to (IdX ×∆A)
∗

To understand why we call δA an “equality” predicate lets first unpack condition 1 for the doctrine P. As

Λ is a left adjoint to ∆∗
A, for any two predicates p ∈ P (A) and q ∈ P (A×A) we have Λ(p) ≤ q in P (A×A) iff

p ≤ ∆∗
A(q) in P (A). Introducing variables we have that the first condition of the adjunction corresponds to

∀x, y. Λ(p)(x, y) =⇒ q(x, y),

and the second is

∀z. p(z) =⇒ ∆∗
A(q)(z).

With our definition of Λ, the first condition is now

∀x, y. (π∗
1p)(x, y) ∧ δA(x, y) =⇒ q(x, y),

or more simply

∀x, y. p(x) ∧ δA(x, y) =⇒ q(x, y).

Similarly, our second condition becomes

∀z. p(z) =⇒ q(z, z).

Hence condition 1 says

∀x, y. p(x) ∧ δA(x, y) =⇒ q(x, y) ⇔ ∀z. p(z) =⇒ q(z, z).

For this reason, we write x =A y for δA(x, y). In this notation, we have

∀x, y. p(x) ∧ x =A y =⇒ q(x, y) ⇔ ∀z. p(z) =⇒ q(z, z).

3



Writing this in natural deduction notation we get

z : A, p(z) ` q(z, z)

x : A, y : A, p(x), x =A y ` q(x, y)
.

The second condition describes a similar property. Starting similarly, for any two predicates p ∈ P (X ×A)

and q ∈ P (X × A × A) we have MX(p) ≤ q in P (X × A × A) iff p ≤ (IdX ×∆A)
∗(q) in P (X × A). Once we

introduce variables, x ∈ X and y, z ∈ A we have that the left hand side of the iff is equivalent to

∀x, y, z. MX(p)(x, y, z) =⇒ q(x, y, z),

and the right hand side is equivalent to

∀x, y. p(x, y) =⇒ (IdX ×∆A)
∗(q)(x, y).

Unpacking the first condition we have

∀x, y, z. (〈π1, π2〉∗p ∧ 〈π2, π3〉∗δA)(x, y, z) =⇒ q(x, y, z),

which simplifies down to

∀x, y, z. p(x, y) ∧ y =A z =⇒ q(x, y, z).

Similarly, the right hand side of the iff is simply

∀x, y. p(x, y) =⇒ q(x, y, y).

In natural deduction notation, we have

x : X, y : A, p(x, y) ` q(x, y, y)

x : X, y : A, z : A, p(x, y), y =A z ` q(x, y, z)
.

We can see this condition is very similar to the previous, and if C has a terminal object then taking X = 1

gives us the previous condition.

Example 2.5. In the primary doctrine given by the power set functor P : Setop → ISL, every set A has an

equality predicate given by δA = {(a, a) : a ∈ A}.

Example 2.6. In the primary doctrine given by the open set functor O : Topop → ISL, some objects do not

have equality predicates [Pas12].

Prop 2.7. If δA and δ′A are two equality predicates for A in the doctrine P , then δA ∼= δ′A in P (A).

Proof. Let δA and δ′A be two equality predicates for A and Λ and Λ′ given by Λ(p) = π∗
1p∧δA and Λ′(p) = π∗

1p∧δ′A
respectively. As we have Λ a ∆∗

A and Λ′ a ∆∗
A, and since adjoints are unique upto natural isomorphism, we

have an isomorphism ηX : Λ(X)
∼−→ Λ′(X). In particular Λ(>A) ∼= Λ′(>A) giving us δA ∼= δ′A.

Definition 2.8. A primary doctrine is an elementary doctrine when every object in the base category has an

equality predicate.
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2.3 Adding Equality Cofreely

In [Pas12] Pasquali showed we can cofreely add equality to a primary doctrine. Informally speaking the con-

struction described adds equality by forming a new doctrine where the objects in the base are pairs (A, ρ) where

A is an object of our original base category and ρ is an equivalence relation on A. The predicates are the

predicates on A which respect ρ.

Definition 2.9. If P is a primary doctrine and A is an object of our base category, then ρ in P (A× A) is an

equivalence relation if ρ satisfies

reflexivity >A ≤ ∆∗
Aρ

symmetry ρ ≤ π∗
2,1ρ

transitivity π∗
1,2ρ ∧ π∗

2,3ρ ≤ π∗
1,3ρ

Prop 2.10. Equality predicates are equivalence relations.

Proof. Identical to lemma 3.6.

The cofree construction described in [Pas12] can then be defined.

Definition 2.11. If P : Cop → ISL is a primary doctrine, we define the category QP . An object in QP is a

pair (A, ρ) where A is an object of C and ρ is an equivalence relation on A. A morphism from (A, ρ) to (B, σ)

is a morphism in C from A to B such that ρ ≤ (f × f)∗σ. For a given equivalence ρ on A we define a suborder

Desρ of P (A) by taking the predicates α ∈ P (A) such that π∗
1(α) ∧ ρ ≤ π∗

2(α). Finally we define the doctrine

PD : Qop
P → ISL by PD((A, ρ)) = Desρ.

Theorem 2.12. The doctrine PD is an elementary doctrine. Furthermore the assignment P 7→ PD is the right

adjoint to the forgetful functor from elementary doctrines to primary doctrines.

Proof. See [Pas12].

3 Primary Fibrations

For a Primary Doctrine P : Cop → ISL, an object A ∈ C, and predicates α, β ∈ P (A), there is at most one

morphism between α and β, which is interpreted as an implication. Primary fibrations relax this condition to

allow any number of morphisms between α and β, which are thought of as witnesses of proofs of the implications.

Formally

Definition 3.1. A primary fibration P : Cop → FPCat is a product preserving contravariant functor from

a base category C with all finite products to FPCat, the category of categories with all finite products, and

product preserving functors as morphisms.

We can then define the category PF of primary fibrations.
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Definition 3.2. The category of primary fibrations has, as objects, primary fibrations, and as morphisms

between P : Cop → FPCat and Q : Dop → FPCat pairs (F, f), where F : C → D is a product preserving

functor and f : P → Q ◦ F op is a natural transformation,

Cop

FPCat

Dop

F op

P

Q

f

.

3.1 Equality Predicates in Fibrations

We can define equality predicates analogously to doctrines.

Definition 3.3. If P : Cop → FPCat is a primary fibration and A is an object of C, then an object δA together

with a map rA : 1 → ∆∗δA form an equality predicate if for every object C ∈ C, and propositions α ∈ P (C ×A)

and β ∈ P (C ×A×A), the functions JA,C,α,β

P (C ×A×A)(π∗
1,2α× π∗

2,3δA, β)

P (C ×A)(α× π∗
2∆

∗δA, π
∗
1,2,2β)

P (C ×A)(α, π∗
1,2,2β)

JA,C,α,β

π∗
1,2,2

(−)◦(Id×π∗
2rA)

,

are invertible (cf [EPR20] [HS98]).

Definition 3.4. An elementary fibration is a primary fibration P : Cop → FPCat, together with an equality

predicate for every object A ∈ C. A morphism (F, f) of primary fibrations between elementary fibrations is

elementary if f(δA) = δFA and f(rA) = rFA. The category of elementary fibrations is the subcategory of the

category of primary fibrations in which every object and every morphism is elementary.

3.2 Equivalence Relations in Fibrations

In the case of doctrines, we defined an object ρ ∈ P (A×A) to be an equivalence relation if > ≤ ∆∗ρ, ρ ≤ π∗
2,1ρ,

and π∗
1,2ρ ∧ π∗

2,3ρ ≤ π∗
1,3ρ. Equivalently we could have phrased these conditions as P (A)(>,∆∗ρ) = {≤},

P (A×A)(ρ, π∗
2,1ρ) = {≤}, and P (A×A)(π∗

1,2ρ∧ π∗
2,3ρ, π

∗
1,3ρ) = {≤} where ≤ is the unique morphism between

any two predicates over an object. However, in fibrations there is no such unique choice. As such, equivalence

relations in fibrations require an explicit choice of morphisms (together with some coherency conditions).
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Definition 3.5. If P is a primary fibration and A is an object in the base of P , then an equivalence relation

on A is an object ρ ∈ P (A× A), together with a morphism called the identity e : 1 → ∆∗ρ, a morphism called

the inverse map i : ρ → π∗
2,1ρ, and a map called the multiplication1 map m : π∗

1,2ρ × π∗
2,3ρ → π∗

1,3ρ, such that

the following diagrams commute:

Associativity

π∗
1,2ρ× π∗

2,3ρ× π∗
3,4ρ π∗

1,3ρ× π∗
3,4ρ

π∗
1,2ρ× π∗

2,4ρ π∗
1,4ρ

Id×π∗
2,3,4m

π∗
1,2,3m×Id

π∗
1,3,4m

π∗
1,2,4m

,

Inverses
π∗
2,1ρ× ρ π∗

2,2ρ

ρ 1

ρ× π∗
1,2ρ π∗

1,1ρ

π∗
2,1,2m

〈i,Id〉

!

〈Id,i〉

π∗
2e

π∗
1e

π∗
1,2,1m

,

Identity

ρ× 1 ρ× π∗
2,2ρ

ρ ρ

1× ρ π∗
1,1,2ρ× ρ

Id×π∗
2e

π∗
1,2,2m〈Id,!〉

Id

〈!,Id〉

π∗
1e×Id

π∗
1,1,2m

.

For conciseness we write the tuple (ρ,m, i, e) as ~ρ, when the choice of m, i, and e is not ambiguous.

Lemma 3.6. If P : Cop → FPCat is a primary fibration, and A is an object with an equality predicate (δA, rc),

then (δa, J
−1
A,A,π∗

1,2δA,π∗
1,3δA

(Id), J−1
A,1,1,π∗

2,1δA
(rA), rA) is an equivalence relation.

Proof. The coherence conditions follow by the invertibility of JA,C,α,β . Associativity follows by taking C = A×A,

α = π∗
1,2δA × π∗

2,3δa, and β = π∗
1,4δA. Other conditions follow similarly. As J is a bijection we have that this is

the unique equivalence relation for our equality predicate.
1Note that the order of variables is backward to what we would expect for mutliplication.
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4 Fibrations of Descent Data

4.1 The Category of Quotients

Definition 4.1. For a primary fibration P : Cop → FPCat we define the category of quotients QP . Objects

are given by pairs (A, ~ρ) where ~ρ is an equivalence on A. Morphisms are given by pairs (f, g) : (A, ~ρ) → (B,~σ)

where f : A → B in C and g : ρ → (f × f)∗σ in P (A×A), such that the following diagrams commute:

Multiplication Preservation

π∗
1,2ρ× π∗

2,3ρ π∗
1,3ρ

(f × f × f)∗π∗
1,2σ × (f × f × f)∗π∗

2,3σ (f × f × f)∗π∗
1,3σ

mρ

π∗
1,2g×π∗

2,3g π∗
1,3g

(f×f×f)∗mσ

Identity Preservation
1A ∆∗ρ

f∗1B f∗∆∗σ

eρ

! ∆∗g

f∗eσ

.

4.2 Descent Data

Definition 4.2. If P : Cop → FPCat is a primary fibration, we define the category of descent data, Des~ρ for

an object A ∈ C and an equivalence relation ~ρ on A. The objects of Des~ρ are pairs (α, F ) where α ∈ P (A) and

F : π∗
1α× ρ → π∗

2α such that the following diagrams commute:

Functor Identity
α α× 1A α×∆∗ρ

α

〈Id,!〉

Id

Id×e

∆∗F

Functor Composition

π∗
1α× π∗

1,2ρ× π∗
2,3ρ π∗

2α× π∗
2,3ρ

π∗
1α× π∗

1,3ρ π∗
3α

π∗
1,2F×Id

Id×m π∗
2,3F

π∗
1,3F

.

Morphisms in Des~ρ from (α, F ) to (β,G) are given by maps η : α → β in P (A) such that

π∗
1α× ρ π∗

2α

π∗
1β × ρ π∗

2β

F

π∗
1η×Id π∗

2η

G

commutes.
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4.3 The Descent Fibration

Definition 4.3. If P : Cop → FPCat is a primary fibration then we define the descent fibration of P to be the

primary fibration PD : Qop
P → FPCat taking objects to their descent categories.

Prop 4.4. The descent fibration is a primary fibration.

Proof. If P : Cop → FPCat is a primary fibration, then QP has products given by (A×B, ~ρ�~σ) where ~ρ is an

equivalence relation on A and ~σ is an equivalence relation on B. The equivalence relation

~ρ� ~σ = (θ,mθ, iθ, eθ)

on A×B is given by

θ = π∗
1,3ρ× π∗

2,4σ,

mθ = π∗
1,3,5mρ × π∗

2,4,6mσ,

iθ = π∗
1,3iρ × π∗

2,4iσ,

and

eθ = 〈iρ, iσ〉.

As C has a terminal object, and P preserves all finite products, there is a unique groupoid structure on 1C,

hence QP has a terminal object. Similarly, Desρ inherits products and terminal objects from the fibres of P .

Finally, as P preserves products, PD must as well.

Prop 4.5. The descent fibration is an elementary fibration and the equivalence relation induced by the equality

predicate on an object (A, ~ρ) is ~ρ.

Proof. We claim that the equality predicate on an object (A, ~ρ), where ~ρ = (ρ,m, i, e) is ((ρ, c), e), where

c : π∗
1ρ× ρ� ρ → π∗

2ρ is conjugation, given by

c(l, (f, g)) = m〈i ◦ π2,m ◦ 〈π1, π3〉〉.

The function J−1
A,C,(α,F ),(β,G) is given by

J−1
A,C,(α,F ),(β,G)(f) = π∗

1,2,2,1,2,3G ◦ 〈f ◦ π1, 〈π∗
1e◦!, π∗

2e◦!, π2〉〉.

By uniqueness of the groupoid structure, we have that the groupoid for the equality predicate on (A, ~ρ) is

~ρ.

Prop 4.6. If P is an elementary fibration, α ∈ P (A) is a predicate on A, and g : π∗
1α× δA → π∗

2α is the unique

map such that J(g) = Idα, then (α, g) ∈ Des ~δA
.

Proof. The coherency conditions follow immediately.

Prop 4.7. In the fibration PD, if (α, g) ∈ Des~ρ then J−1(Id(α,g)) = g.
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Proof. This follows from the fact that g preserves the identity.

Corollary 4.8. The fibration PD is universal, in the sense that the assignment P 7→ PD determines the right

adjoint to the forgetful functor from elementary fibrations to primary fibrations.

Proof. If U : PD → P is the inclusion map, then we can observe from the previous lemmas that for any primary

morphism R → P there is a unique morphism such that the following diagram commutes

R PD

P

U

.

5 Conclusions and Future Work

There are many possible ways to strengthen this result. The first is to generalise the objects studied. In this

report we regard FPCat as a 1-category, when it is best regarded as a 2-category. Taking this view we should

define primary fibrations as pseudo functors from a base category to the 2-category of categories with all finite

products.

Another natural question to ask is what other structure can we (co)freely add to a fibration. If the base

category has exponential objects we can naturally talk about higher order logic on the base category. For this

reason we could investigate fibrations of the free cartesian closure of our base category. We can also investigate

how to present other structure through fibrations. In [DR21] Dagnino and Rosolini describe modal logic through

doctrines. A natural question to ask is if we can also present modal logic on fibrations, and if a modal structure

can be added freely.

Finally we can try and use fibrations to study objects in a base category based on which axioms they satisfy.

For example, the predicates for a space X in the open set doctrine O satisfy excluded middle iff X is discrete.

We can also characterise connectivity conditions logically. An interesting question is if we can also study other

geometric structures, such as iterated function systems, through fibrations.
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