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Abstract

Urn schemes and their many generalisations are a key element of study for random processes with

reinforcements. We study and analyse a new balanced Pólya urn scheme with countably infinite colour set

introduced in [3]. We discuss convergence results with the approach provided by [1], which represents the

observed sequence of colors in terms a branching Markov chain on a random recursive tree. Our main goal

is to calculate the expectation and variance of the contents of the urn to have a better understanding of the

long run behaviour of our model.
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1 Introduction

1.1 Background

Pólya urn schemes are a class of fundamental probability models with a long history tracing back to the work

of Eggenberger and Pólya [5] and extending to present research. The standard general model begins with balls

of different colours in an urn, and at each step a ball is drawn randomly from the urn and returned along with

the addition or removal of some prescribed number of balls of each colour. In previous papers, multiple classes

of models under different settings have been studied in the literature, such as the classical work by Blackwell

and MacQueen where the urn scheme is allowed to have a continuum of colours [4], and the infinite colour

generalisation of balanced urn schemes associated with random walks on Zd [1, 2].

The popularity of these models stems from the fact that variations of the basic Pólya urn reinforcement

mechanism are utilised in a diverse range of fields, including biology, computer science, and statistics. For

instance, the Pólya urn model can represent a Dirichlet process, which is commonly employed in statistical

Bayesian inference to characterise prior knowledge about the distribution of random variables. Additionally,

the Pólya urn scheme has become increasingly relevant in branching phenomena and processes that involve

a random tree structure. As a result, it has been applied to epidemics and other spreading phenomena that

exhibit branching patterns within a population.; for more details, see Pemantle [9] and Mahmoud [7].

Previous studies have explored Pólya urn models with colours indexed by a finite set. To analyse finite

colour urn models, researchers typically use a few standard methods based on martingale techniques, stochastic

approximations, and embed-dings into continuous time pure birth processes. These analyses heavily rely on

the Perron-Frobenius theory of matrices with positive entries [12] and the Jordan Decomposition of finite
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dimensional matrices [6]. However, until recently, there has been limited development of the infinite color

generalisation of the Pólya urn scheme. The main obstacle in this case is that the techniques applied for finite

urn models are not available when the colour set is infinite. To overcome this issue, we adopt an alternative

path that leverages the Grand Representation Theorem (Theorem 3.1). The key contribution of this theorem

is to establish a correspondence between the observed sequence of colors and the underlying branching Markov

chain sequence for general urn schemes. By bypassing standard martingale and matrix theoretic techniques, we

can derive asymptotic results. Further discussion on this topic is presented in Section 3. The following section

defines the model and presents our primary findings.

1.2 Model

In this report, we use the model introduced in [3] and will focus on the case where the set of colours, denoted

by S, is countably infinite. As for the infinite dimension replacement matrix R := (R(i, j))i,j∈S , we assume

that each row sum is equal and finite. It is conventional to take R to be a stochastic matrix, where, instead of

representing the number of balls, each entry R(i, j) > 0 is treated as the proportion of balls of colour j to be

placed in the the urn when the colour of the selected ball is i (see [2] for details).

We denote the random configuration of the urn at time n ≥ 0 by Un := (Un,v)v∈S , which is an infinite vector

with non-negative entries. Without losing generality, we suppose there are t balls in the urn at the beginning

and thus we start with a non-random initial configuration U0 with finite total mass denoted by t. Then we

define the random configuration Un such that, if Zn represents the randomly chosen colour at the (n + 1)-th

draw, then the conditional distribution of Zn given all past configurations U0, U1, ..., Un only depends on Un.

Formally, for all z ∈ S,

P(Zn = z | Un, Un−1, ..., U0) =
Un,z

n+ t
, (1)

and, starting with a non-random U0, we define (Un)n≥0 ⊂ ℓ1, recursively as

Un+1 = Un +RZn
, (2)

where RZn
denotes the Zn-th row of the matrix R. Note that for every colour v ∈ S, the corresponding

row R(v, ·) represents a probability distribution, so in each time step we add a mass 1 vector to the current

configuration. Consequently, it can be observed easily that∑
v∈S

Un,v =
∑
v∈S

[
U0,v +R(Z0, v) +R(Z1, v) + · · ·+R(Zn−1, v)

]
=
∑
v∈S

U0,v +
∑
v∈S

R(Z0, v) +
∑
v∈S

R(Z1, v) + · · ·+
∑
v∈S

R(Zn−1, v) = t+ n,

and 1 is a well-defined probability measure. Further, 1 can be interpreted as a draw from urn with the random

configuration Un. So the law for each drawn colour is decided fully by the newest updated configuration. From

this viewpoint, it is natural for us to relate the urn model to Markov chain model since they both share the

idea of the well-known Markov property which frequently appears in stochastic process analysis. Intuitively,
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the asymptotic properties of the urn model defined as such are determined by the asymptotic properties of the

associated Markov chain. In fact, in [1, 8], the authors have shown in rigorous proof that the drawn colour

sequence (Zn)n≥0 has same law as that of a branching Markov chain with transition matrix R, initial distribution

U0

t and defined on the random recursive tree. In Section 3.1, we provide the details of this representation.

Before introducing the main result, two assumptions on the replacement matrix R are required.

Assumption 1.1. The replacement scheme R is a stochastic matrix and is irreducible, aperiodic and positive

recurrent, so consequently the associated Markov Chain has a unique stationary distribution π satisfying πR = π

and is ergodic, that is, for any u, v ∈ S,

lim
n→∞

Rn(u, v) = πv.

Assumption 1.2. The associated Markov chain is assumed to be uniformly ergodic, namely there exists positive

constants, 0 < ρ < 1 and C > 0, such that for any time n ≥ 1 and for any states u, v ∈ S,

|Rn(u, v)− πv| ≤ Cρn.

Remark 1.3. Assumption 1.1 means that no matter which state the chain starts from, if we run the Markov

chain for long enough time, then the probability of the chain to end up with colour v is going to the stationary

distribution πv.

Remark 1.4. Assumption 1.2 states that, throughout the process, the probability running the chain from colour

u and end up with v in n step of time will converge to πv at a uniformly bounded rate.

1.3 Main Results

As mentioned in the introduction, reflected from the real-world application, there are some frequently asked

questions about the infinite urn model. What is the proportion of colour v ball in the urn at time n? What

is the number of times the colour v is chosen up to time n? For example, mathematical models of population

genetics can be considered equivalent to urn models, as genes in the population correspond to balls in the urn,

and genetic type of a gene corresponds to the color of the ball [11]. In particular, geneticists may be interested in

what is the proportion for a particular type of gene appearing in the gene sequence asymptotically. This attracts

our attention towards the long run behaviour of random variables such as Nn,v :=
∑n

i=0 1{Zi=v} denoting the

number of times the colour v is chosen up to time n.

Consider an urn model (Un)n≥0 as defined by the Section 1.2 with colours indexed by a countably infinite

set S and with assumptions 1.1 and 1.2 both satisfied. In our project we produce some convergence results with

the help of the idea from proofs in [3] and derive the long-run behaviour as stated in the form of the following

theorem,

Theorem 1.5. For any v ∈ S, let Nn,v :=
∑n

i=0 1{Zi=v}, denote the number of times the colour v is chosen

up to time n. Then, as n→∞,

E

( Nn,v

n+ 1

)
→ πv. (3)
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Var
( Nn,v√

n+ 1

)
→ πv(1− πv). (4)

This complements the Law of Large Number result from [3], and we make the following conjecture:

Conjecture 1.6. For any v ∈ S, let Nn,v :=
∑n

i=0 1{Zi=v}, denote the number of times the colour v is chosen

up to time n. Define the standardised random variable by

Xn,v =
Nn,v − (n+ 1)πv√
(n+ 1)πv(1− πv)

.

Then, as n→∞,

Xn,v
d→ N (0, 1)

where N (0, 1) is the standard Normal random variable.

The structure of the document is as follows: Section 2 provides an introduction to the fundamental concept

of the random recursive tree, which serves as the foundation for our branching Markov process. In Section 3,

we present the Grand Representation Theorem, which connects two models and demonstrates how we employ

model coupling to convert problems from one model to the other. In Section 4, we present our findings on

convergence, supported by expectation and variance calculations. Section 5 proposes two potential approaches

for future work in proving the conjecture regarding the Central Limit Theorem result. Lastly, in Section 6, we

provide proofs of the key lemmas.

2 Branching Processes

With only the model described in Section 1.2, it is not clear how to analyse Nn,v and provide answer to the

questions in subsection 1.3. Fortunately, we can define a new model which is highly aligned with the current

urn model and consists of two ingredients: the random recursive tree (Section 2.1) and the branching Markov

chain (Section 2.2). This model is embellished, keeping track of more information, and thus the related problem

can be analysed more easily.

2.1 Random Recursive Trees

We construct random recursive tree sequence of trees (Tn)n≥1. Tn has n+2 vertices, where o is the root, and the

other vertices are denoted as {w0, w1, ..., wn}, where the increasing subscripts indicate the order in which they

are attached to the tree. The root o is given initial weight t > 0, and every other node has weight 1. Initially,

we start with T−1 which only consists of the root o. Then, to construct the sequence of trees (Tn)n≥−1, at time

n+ 1 we add one new node wn to the tree in each step such that

1. P (the parent of wn in Tn−1 is the root o) = t
n+t+1 ,

2. P (the parent of wn in Tn−1 is wj) =
1

n+t+1 , for j = 0, 1, . . . , n− 1.

Define the infinite random recursive tree as

T :=
⋃

n≥−1

Tn (5)
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Figure 1: Markov Property
Figure 2: Branching Property

2.2 Branching Markov Processes

Recall that S is the set of colours. Let ∆ /∈ S be a symbol (can be considered as dummy variable). Define a

stochastic process (Wn)n≥−1 with state space S ∪∆ starting at the root o and at a position W−1 = ∆ , and

for any n ≥ 0 and for any v ∈ S,

P(Wn = v |Wn−1,Wn−2, ...,W−1; Tn) =


U0(v)

t , if ←−wn = o,

R(Wj , v), if ←−wn = wj ,

(6)

where ←−wn is the parent of wn in RRT Tn. Such stochastic process is called a branching Markov chain (also

called BMC) on the random recursive tree T . Note that the Markov process has the following two properties

inherently embedded in the definition of Wn:

• Markov property: Since the probability distribution of the current Wn only depends on the information

about the parent node for the corresponding wn in the tree, the evolution of the Markov process in next

time step depends only on the present state and does not depend on past history with respect to the

genealogy of the tree. In other words, given all the past history, the next state is dependent on the past

and present only through the present state.

• Branching property: Once the information about the least common ancestor is given, the two child

branches develop independently with each other. The Wn’s are a population in which each member of the

population independently produces offspring.

Remark 2.1. The Markov chain has the replacement matrix R as its transition matrix.
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2.3 Bounded Covariance

As mentioned in the introduction, uniform ergodicity of the branching Markov chain gives uniform convergence

to its limiting stationary distribution. Combining this with definitions of the RRT and BMC, a nice property

of the chain can be obtained, mentioned as Lemma 3.2 in [3]. The lemma bounds the covariance between two

random variables in the chain having the same colour given the tree, which helps us interpret how the nodes

correlated with each other when the tree expands and grows. Before diving into such result, it is necessary to

introduce some graph theory preliminaries.

Definition 2.2. Let d(x, y) denote the graph distance between nodes wx and wy in the RRT Tn, representing

the number of edges between nodes x and y. In particular, suppose o is the root, then d(o, x) is the depth of

wx, which we also denote by d(x).

Definition 2.3. Let Tn be a random recursive tree (RRT). Let L(x, y) denote the least common ancestor for

the vertices wx, wy ∈ Tn in the RRT, which is the nearest parent node shared by wx and wy.

Lemma 2.4. (Lemma 3.1 in [3]) Given the RRT Tn, we have for some suitable constant C > 0,

Cov(Wx = v,Wy = v | Tn) ≤ Cρmax(d(x,L(x,y),d(y,L(x,y)) ≤ Cρ
d(x,y)

2 , (7)

where ρ is as in Definition of uniform ergodicity so 0 < ρ < 1.

Remark 2.5. This implies, once the nodes wx and wy in the RRT are far away enough from each other, the

covariance for the corresponding random variables Wx and Wy to take the colour v will be bounded by a very

small number. So, given the tree, many parts of the random variables Wn are going to behave like pairs of

independent Bernoulli random variables.

Remark 2.6. Lemma 2.4 relies totally on the BMC properties and RRT structure and thus has nothing to do

with the urn model yet.

3 Model Coupling

3.1 Grand Representation Theorem

Theorem 3.1. Let (Zn)n≥0 denotes the infinite sequence of randomly chosen colours at each draw from the

urn. Let (Wn)n≥0 be the branching Markov chain defined as above. Then,

(Zn)n≥0
d
= (Wn)n≥0. (8)

This representation theorem enables us to transfer the focus and interest on Zn to the research on Wn, since

the two sequences of random variables have the same distributions as processes. This is a fairly strong statement

indicating that any limiting distributional statements for Wn will hold the same for the limiting behaviour of

the Zn’s, and any collections of subset of indices from these two sequences will have the same distribution not

only point-wise but also in terms of the joint distributions.
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Remark 3.2. By the Grand representation theorem, we can solve the problems mentioned in Section 1.3 by

dealing with random variable Wi instead of Zi and utilise the graph properties given by the random recursive

tree structure to enable further analysis.

Remark 3.3. The indicators 1{Wi=v} are not strictly independent with each other, thus, through the process of

calculating the quantities and proving the Central Limit Theorem, we need to be careful about the dependency.

4 Convergence Results

Before we state our results, there is a lemma that will be frequently used in the proofs later.

Lemma 4.1. Let v ∈ S be some colour. For n ≥ 0 and i = 0, 1, 2..., n, we have∣∣∣ P(Wi = v|Tn)− πv

∣∣∣≤ Cρd(i) (9)

where C > 0 is some constant.

Remark 4.2. This implies, once a node wi in the RRT exists far enough away from the root o, the probability

for the corresponding random variables Wi to take the colour v will be very close to πv. Thus, when the tree

grows large in the long run, most of the random variables Wn, except those whose corresponding wn’s are near

the root, are expected to have almost identical Bernoulli distribution with the probability of taking colour v to

be approximately πv.

Additionally, in this section, when calculating the expectation and variance for the variable of interest, it

often requires us to bound the expectation of the sum for terms ρd(x) and ρd(x,y), which basically generated

by the upper bound (on the right hand side of the inequality) in Lemma 2.4 and Lemma 4.1. Therefore, it is

necessary to introduce another lemma dealing with such asymptotic behaviour, which is stated as follows:

Lemma 4.3. (Lemma 3.2 in [3]) Let T ′

n := Tn \ {o} = {w0, w1, ..., wn} be the set of n + 1 vertices excluding

the root. Fix r with 0 < r < 1 and define

An = An(r) := E

 ∑
wx∈T ′

n

rd(x)

 , (10)

Bn = Bn(r) := E

 ∑
wx,wy∈T ′

n

rd(x,y)

 . (11)

Then, for some constant C (possibly depending on r and t) and all n ≥ 1,

An ≤ Cnr, (12)

Bn ≤


Cn2r if 1

2 < r < 1,

Cn log(n+ 1) if r = 1
2 ,

Cn if 0 < r < 1
2 .

(13)

8



4.1 Expectation

We first prove 3 from Theorem 1.5.

E

( Nn,v

n+ 1

)
=

1

n+ 1

n∑
i=0

E[E(1{Wi=v}|Tn)] by double expectation law (a.k.a. the ‘tower property’)

=
1

n+ 1

n∑
i=0

E[P({Wi = v}|Tn)− πv + πv]

=
1

n+ 1
E

n∑
i=0

(P({Wi = v}|Tn)− πv) +
1

n+ 1

n∑
i=0

πv

≤ 1

n+ 1
E

n∑
i=0

(Cρd(i)) + πv by Lemma 4.1

=
C

n+ 1
An(ρ) + πv ≤

Cnρ

n+ 1
+ πv by Lemma 4.3

Since 0 < ρ < 1, then when n goes to ∞, Cnρ

n+1 goes to 0, and thus we obtain E(
Nn,v

n+1 )→ πv as n→∞.

4.2 Variance

As mentioned in Remark 2.5 and Remark 4.2, when we run the chain for a time period long enough, it is

reasonable to consider that the random variables {Wi}i=0,1,2,..,n given the tree Tn are some almost independent

identical Bernoulli trials with ‘success probability’ approximately πv. Such inference is also closely related with

the uniform ergodicty assumption which is very crucial for our investigation of the long-run behaviour of the

urn model. Thus, it is intuitively natural to claim that πv(1 − πv) would be a good guess for the variance of

V ar(
Nn,v√
n+1

) as n→∞. First, we decompose the variance by the conditional variance formula,

Var
( Nn,v√

n+ 1

)
=

1

n+ 1
E[Var(Nn,v|Tn)] +

1

n+ 1
Var[E(Nn,v|Tn)]

=
1

n+ 1
E

[
Var

( n∑
i=0

1{Wi=v}|Tn
)]

+
1

n+ 1
Var

[
E

( n∑
i=0

1{Wi=v}|Tn
)]

We delegate the tasks to two lemmas explaining how each component of the variance converge in the long run.

The detailed proofs can be found in Section 6.

Lemma 4.4. Given the branching Markov chain Wn defined on the random recursive tree Tn as in Section 2,

as n→∞,

1

n+ 1
E

[
Var

( n∑
i=0

1{Wi=v}|Tn
)]
→ πv(1− πv). (14)

Lemma 4.5. Given the branching Markov chain Wn defined on the random recursive tree Tn as in Section 2,

as n→∞,

1

n+ 1
Var

[
E

( n∑
i=0

1{Wi=v}|Tn
)]
→ 0. (15)

Combining the results in Lemma 4.4 and 4.5 together, shows that, when n→∞,

Var(
Nn,v√
n+ 1

) =
1

n+ 1
E

[
Var

( n∑
i=0

1{Wi=v}|Tn
)]

+
1

n+ 1
Var

[
E

( n∑
i=0

1{Wi=v}|Tn
)]
→ πv(1− πv)
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5 Discussion

After we calculate the expectation and variance, it is conventional to take one step forwards to the Central

Limit Theorem result, which should explain how fast
Nn,v

n+1 converges to the stationary distribution πv as stated

in 1.5. By standardisation, we define

Xn,v :=
Nn,v − (n+ 1)πv√
(n+ 1)πv(1− πv)

.

Note that Xn,v has expectation converging to 0 and variance (also standard deviation) converging to 1 as

n→∞, this can be derived easily from the results in Section 4.1 and 4.2,

E [Xn,v] =
n+ 1√

(n+ 1)πv(1− πv)
E

(
Nn,v

n+ 1
− πv

)
=

n+ 1√
(n+ 1)πv(1− πv)

(
E

(
Nn,v

n+ 1

)
− πv

)
→ 0.

Var[Xn,v] = V ar

[
Nn,v − (n+ 1)πv√
(n+ 1)πv(1− πv)

]
=

1

πv(1− πv)
Var

(
Nn,v√
(n+ 1)

)
→ 1.

Our goal is to show that the distribution of Xn,v converges to the standard normal distribution as n → ∞.

After exploring multiple possible approaches of proving the equivalence of distributions, we reckon the method

of moments and the Stein’s method are the most suitable to work with in our case. We will introduce how these

approaches work in general and how they fit into our model.

5.1 Method of Moments

The method of moments is a technique for proving the distributions of two given random variables are the same,

based on matching all of their moments. According to method of moments, we need to show, for all k ∈ N

lim
n→∞

E(Xk
n,v) = E(Z

k) (16)

where Z
d
= N (0, 1) is the standard Normal random variable.

This means, to apply such method, all moments for Xn,v are required to be calculated and compared with

those of Z. From the calculation by using moment generating function, we know that the odd moments of Z

are all zero, and the even moments can be expressed as

E(Z2n) =
(2n)!

2n · n!
where n ∈ N

So, one possible solution is to show all sums of products involving odd order terms will eventually vanish, and

that only some terms with specific arrangements and order contained in the even moments will be contribute,

and turn out to be in the same form as that of the even moments of standard Normal distribution. This process

involves in the calculation of not only single variable terms with higher power but also the mixed terms such as

Xi,vXj,vXk,v where i ̸= j ̸= k, so the work can be quite burdensome.

5.2 Stein’s Method

Stein’s method is a technique that can quantify the error in the approximation of one distribution by another

in a variety of metrics. For the random variables X and Y which have µ and ν as their probability measures

10



respectively, the general metric can be denoted as dH(X,Y ). More specifically,

dH(X,Y ) = sup
h∈H
|Eh(X)−Eh(Y )|. (17)

where H is some family of ‘test’ functions.

There are mainly two components for the method. First, it requires a framework to convert the problem

of bounding the error in the approximation of some distribution of interest by another familiar well-known

distribution, into a problem of bounding the expectation of a certain functional of the random variable of

interest. Second, we need techniques to bound the expectation appearing in the first component, and such step

is called ‘auxiliary randomisation’.

For example, if we have a bunch of locally dependent random variables such as Wn’s in our BMC, then by

deciding a proper dependency neighbourhood and restricting a domain for the test functions, then the difference

between sum of these random variables and another distribution can be quantified. Section 3.2 of [10] provides

a useful theorem which quantifies the heuristic that a sum of many locally dependent random variables will be

approximately normal, which states as follows:

Theorem 5.1. Let X1, ..., Xn be random variables with E[X4
i ] < ∞, E[Xi] = 0, σ2 = Var(

∑
i Xi), and

define W =
∑

i Xi/σ. Let the collection (X1, ..., Xn) have dependency neighbours Ni, i = 1, ..., n, with D :=

max1≤i≤n |Ni|. Then for Z, a standard normal random variable,

dW (W,Z) ≤ D2

σ3

n∑
i=1

E|Xi|3 +
√
26D

3
2

√
πσ2

√√√√ n∑
i=1

E[Xi]4. (18)

where a collection of random variables (X1, ..., Xn) has dependency neighbourhoods Ni ⊂ {1, ..., n}, i = 1, ..., n,

if Xi is independent of {Xj}j /∈Ni
, and dW is the Wasserstein metric.

According to such theorem, if we can bound the sum of third moments, fourth moments and also be careful

when dealing with the intermediate terms and matching the terms in Taylor’s expansion, then we are able to

give an upper bound for the discrepancy between our distribution and the standard normal distribution.

5.3 Analogous Results of Moments

It is worth noticing that, in both methods, the higher order moments of Xn,v are required to be calculated and

expressed into an exact formula. This comes down to how we can utilise the formerly defined RRT and BMC

model to tackle the problem. Inspired by Lemma 2.4 on bounding the covariance, it is natural to think about

establishing some analogues to such results when we proceed the further calculation in moments higher than

two. We can first start with case where k = 3 and try to show some valid analogues of Lemma 2.4, where one

possible lemma can be,

Lemma 5.2. Suppose nodes wi, wj , wk are in Tn such that L(i, j) is the furthest away from the root among all

pairwise least common ancestors of the nodes. Then,∣∣∣ P (Wi = v,Wj = v,Wk = v | Tn)− π3
v

∣∣∣≤ C
(
ρ

d(i,j)
2 + ρmax(

d(i,k)
2 ,

d(j,k)
2 )
)
. (19)

11



Similar to the idea in Lemma 4.3, after producing such an upper bound for the joint probability, we can then

investigate the asymptotic behaviour for the sum of expectation of the terms on the right hand side of inequality

19, by first writing down the inductive formula and then solving for the exact mathematical expression of the

sum of expectation.

6 Proofs

6.1 Proof for Lemma 4.1

Proof. Given that the branching Markov chain Wn is defined as follows, for any k ≥ 0 and v ∈ S,

P(Wk = v |Wk−1,Wk−2, ...,W−1; Tk) =


U0(v)

t if ←−wk = o

R(Wj , z) if ←−wj = wj

Every time we trace back to the parent node of the current node, either multiply with R(Wj , ·) if the parent is

not root, or multiply simply by U0/t if the parent is the root. So recursively we get the distribution of Wx for

some existing node wx in the RRT Tn. So by induction, tracing back through the tree with one node each time

until hitting the root, we know, for i = 0, 1, .., n,

E[1{Wi=v}|Tn] = P(Wi = v | Tn) =
U0

t
·Rd(i)(v) =

∑
z∈S

U0(z)

t
·Rd(i)(z, v) (20)

Also, by uniform ergodicity, there exists positive constants, 0 < ρ < 1 and C > 0, such that for any time

n ≥ 1 and for ant states u, v ∈ S,

|Rn(u, v)− πv| ≤ Cρn. (21)

And since the initial configuration is defined such that
∑

v∈S U0,v = t, then∑
z∈S

U0(z)

t
= 1. (22)

So, having the above facts, combine them together we know∣∣∣ P(Wi = v|Tn)− πv

∣∣∣ = ∣∣∣ (∑
z∈S

U0(z)

t
·Rd(i)(z, v)

)
− πv

∣∣∣= ∣∣∣ ∑
z∈S

U0(z)

t
·Rd(i)(z, v)−

∑
z∈S

U0(z)

t
πv

∣∣∣
=
∣∣∣ ∑
z∈S

U0(z)

t
·
(
Rd(i)(z, v)− πv

) ∣∣∣≤ ∑
z∈S

U0(z)

t
·
∣∣∣ Rd(i)(z, v)− πv

∣∣∣
≤ (
∑
z∈S

U0(z)

t
) · Cρd(i) = Cρd(i)

So, we have ∣∣∣ P(Wi = v|Tn)− πv

∣∣∣≤ Cρd(i).

Rewrite it in terms of orders:

P(Wi = v|Tn) = πv +O(ρd(i)),

where O(ρd(i)) indicates some term which grows no faster than ρd(i) up to some constants.

12



6.2 Proof for Lemma 4.4

Proof. Since the indicator random variables 1{Wi=v}|Tn are not independent, the variance of the sum consists

of two parts: the sum of variance and the sum of covariance between each pair of distinct random variables,

1

n+ 1
Var

( n∑
i=0

1{Wi=v}|Tn
)
=

1

n+ 1

n∑
i=0

Var
[
1{Wi=v}|Tn

]
+

1

n+ 1

∑
i̸=j

Cov
(
Wi = v,Wj = v|Tn

)
. (23)

The expectation of the covariance part is easy to deal with by applying Lemma 2.4,

1

n+ 1
E

[∑
i ̸=j

Cov
(
Wi = v,Wj = v|Tn

)]
≤ 1

n+ 1
E

∑
i ̸=j

Cρd(i,j)/2

 <
C

n+ 1
E

 ∑
x,y∈T ′

n

ρd(x,y)

 =
C

n+ 1
Bn(ρ)

for some constant C.

By Lemma 4.3, even in the worst case, the highest order of n in Bn(ρ) is no more than 1. Thus, as n→∞, the

term on the right hand side of the inequality will vanish, so the strictly bounded left hand side will go to zero

as well.

Then we turn to the sum of variance part and try to solve for its expectation. Note that, conditioned on the

RRT Tn, each of the random variable 1{Wi=v} is a Bernoulli random variable, so that

1{Wi=v}|Tn =

1 w.p. P(Wi = v|Tn)

0 w.p. 1−P(Wi = v|Tn)

Then, we know

Var
(
1{Wi=v}|Tn

)
= P(Wi = v|Tn)(1−P(Wi = v|Tn)).

Due to this fact, and since we have shown that the second part in equation 23 contribute nothing, to prove the

lemma it is equivalent to show that as n→∞,∣∣∣ 1

n+ 1
E

(
n∑

i=0

P(Wi = v|Tn)(1−P(Wi = v|Tn))

)
− πv(1− πv)

∣∣∣→ 0. (24)

The left hand side of equation 24 can be expanded and simplified as follows

LHS =
∣∣∣ 1

n+ 1
E

n∑
i=0

[
P(Wi = v|Tn)−P(Wi = v|Tn)2

]
− πv + π2

v

∣∣∣
=
∣∣∣ 1

n+ 1
E

n∑
i=0

[
P(Wi = v|Tn)−P(Wi = v|Tn)2 − πv + π2

v

] ∣∣∣
=
∣∣∣ 1

n+ 1
E

n∑
i=0

[
(P(Wi = v|Tn)− πv)− (P(Wi = v|Tn)2 − π2

v)
] ∣∣∣

≤ 1

n+ 1
E

n∑
i=0

∣∣∣ P(Wi = v|Tn)− πv

∣∣∣ + 1

n+ 1
E

n∑
i=0

∣∣∣ P(Wi = v|Tn)2 − π2
v

∣∣∣
Since from Lemma 4.1 we know, P(Wi = v|Tn) = πv +O(ρd(i)) then

P(Wi = v|Tn)2 = π2
v +O(ρd(i)) +O(ρ2d(i)) = π2

v +O(ρd(i)) +O((ρ2)d(i)) = π2
v +O(ρd(i))

13



the last equation holds because 0 < ρ2 < 1 so term O((ρ2)d(i)) can be combined into the term O(ρd(i)). Go

back to the inequalities, we have

LHS ≤ 1

n+ 1
E

n∑
i=0

O(ρd(i)) +
1

n+ 1
E

n∑
i=0

O(ρd(i))

=
2

n+ 1

n∑
i=0

E

[
O(ρd(i))

]
=

2

n+ 1
An(ρ) ≤

2

n+ 1
Cnρ

where 0 < ρ < 1 and C is a constant.

As n→∞, 1
n+1Cnρ → 0, which implies that the left hand side of equation 24 vanishes to 0 as n→∞.

Thus, combined with the covariance component, we have finished the proof, which gives∣∣∣ 1

n+ 1
E

[
Var

( n∑
i=0

1{Wi=v}|Tn
)]
− πv(1− πv)

∣∣∣→ 0

as n→∞.

6.3 Proof for Lemma 4.5

Proof. Similar to the idea in proof of Lemma 4.4, the variance in Lemma 4.5 can be decomposed into two parts

1

n+ 1
Var

[
E

( n∑
i=0

1{Wi=v}|Tn
)]

=
1

n+ 1

n∑
i=0

Var
[
E

(
1{Wi=v}|Tn

)]
+

1

n+ 1

∑
i ̸=j

Cov
[
E(1{Wi=v}),E(1{Wj=v})|Tn

]
=

1

n+ 1

n∑
i=0

Var
[
P

(
Wi = v|Tn

)]
+

1

n+ 1

∑
i ̸=j

Cov
[
P(Wi = v),P(Wj = v)|Tn

]
For the variance part, since adding and subtracting constants does not effect the variance, then

1

n+ 1

n∑
i=0

Var
[
P

(
Wi = v|Tn

)]
=

1

n+ 1

n∑
i=0

Var
[
P

(
Wi = v|Tn

)
− πv

]
=

1

n+ 1

n∑
i=0

Var
[
O(ρd(i))

]
≤ 1

n+ 1

n∑
i=0

E

[
O((ρd(i))2)

]
=

1

n+ 1

n∑
i=0

E

[
O(ρd(i))

]
≤ 1

n+ 1
Cnρ where 0 < ρ < 1 and C is a constant.

As n→∞, 1
n+1Cnρ → 0, which implies that the sum of variance also goes to 0 as n→∞.

Next, the covariance part can be expanded by the expectation formula

Cov
[
P(Wi = v),P(Wj = v)|Tn

]
= E

[
P(Wi = v|Tn)P(Wj = v|Tn)

]
−E

[
P(Wi = v|Tn)

]
·E
[
P(Wj = v|Tn)

]

14



where

E

[
P(Wi = v|Tn)P(Wj = v|Tn)

]
= E

[(
P(Wi = v|Tn)− πv

)(
P(Wj = v|Tn)− πv

)
+ πv

(
P(Wi = v|Tn) +P(Wj = v|Tn)

)
− π2

v

]
= E

[(
O(ρd(i))

)(
O(ρd(j))

)
+ πv

(
O(ρd(i)) +O(ρd(j)) + 2πv

)
− π2

v

]
= E

[
O(ρd(i)+d(j)) + πv

(
O(ρd(i)) +O(ρd(j))

)
+ π2

v

]
= E

(
O(ρd(i)+d(j))

)
+ πvE

(
O(ρd(i)) +O(ρd(j))

)
+ π2

v .

and we also have

E

[
P(Wi = v|Tn)

]
= E

[
P(Wi = v|Tn)− πv

]
+ πv = E

(
O(ρd(i))

)
+ πv

so

E

[
P(Wi = v|Tn)

]
·E
[
P(Wj = v|Tn)

]
=
(
E

(
O(ρd(i))

)
+ πv

)(
E

(
O(ρd(j))

)
+ πv

)
= E

(
O(ρd(i))

)
E

(
O(ρd(j))

)
+ πvE

(
O(ρd(i)) +O(ρd(j))

)
+ π2

v .

Then we can cancel the shared terms

E

[
P(Wi = v|Tn)P(Wj = v|Tn)

]
−E
[
P(Wi = v|Tn)

]
·E
[
P(Wj = v|Tn)

]
= E

(
O(ρd(i)+d(j))

)
−E
(
O(ρd(i))

)
E

(
O(ρd(j))

)
.

Thus, as a result of these,

1

n+ 1

∑
i ̸=j

Cov
[
P(Wi = v),P(Wj = v)|Tn

]
=

1

n+ 1

∑
i ̸=j

E

[
P(Wi = v|Tn)P(Wj = v|Tn)

]
−E

[
P(Wi = v|Tn)

]
·E
[
P(Wj = v|Tn)

]
=

1

n+ 1

∑
i ̸=j

E

(
O(ρd(i)+d(j))

)
− 1

n+ 1

∑
i ̸=j

E

(
O(ρd(i))

)
E

(
O(ρd(j))

)

<
1

n+ 1
E

∑
i ̸=j

Cρd(i,j)/2


<

C

n+ 1
E

 ∑
x,y∈T ′

n

ρd(x,y)

 =
C

n+ 1
Bn(ρ)

By Lemma 4.3 again, even in the worst case, the highest order of n in Bn(ρ) is no more than 1. Thus, as

n→∞, the term on the right hand side of the inequality will vanish, so the strictly bounded left hand side will

go to zero as well.

So, in conclusion, the proof gives that as n→∞

1

n+ 1
Var

[
E

( n∑
i=0

1{Wi=v}|Tn
)]
→ 0.
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