
Random Walks and their Applications

to Mathematical Physics

Liam Wood-Baker
Supervised by Andrea Collevecchio, Kais Hamza

Monash University



Abstract

This report is a summary of the first chapter of Markov Processes: Theorems and Problems by Dynkin

and Yushkevich (1969). It introduces key ideas, notation, and theorems in the study of Random Walks in a

fashion which is accessible to the undergraduate student.

1 Introduction

A random walk is a random process wherein a particle moves through a discrete lattice by making one-unit

jumps. This paper will explore the behaviour of such random walks, culminating in a criterion which determines

whether or not a set of points will receive infinitely many visits from the particle.

Statement of Authorship

This report is built on the work of Dynkin and Yushkevich. Special thanks to Andrea Collevecchio and Kais

Hamza for assisting me with some of the particularly difficult parts of the text.

2 Symmetric Random Walk

Consider a particle moving along the integer-valued points of the x-axis by making one-unit jumps. If at each

jump the probability of moving to the left or to the right are equal, then we say that the particle executes a

symmetric random walk on a line.

We will show that a particle starting from an arbitrary position will with probability one eventually reach

any other state. It is sufficient to show that a particle leaving any state will at some point reach 0. Let π(x) be

the probability of hitting 0 from a point x. Clearly π(0) = 1, and by the Law of Total Probability,

π(x) =
1

2
π(x− 1) +

1

2
π(x+ 1) (1)

for x ̸= 0. Consider the graph of π(x) on x = 0, 1, 2, . . .. It follows from equation (1) that

π(x)− π(x− 1) = π(x+ 1)− π(x),

In other words, the slope of the line joining π(x − 1) to π(x) is the same as that of the line joining π(x) to

π(x+1), for any x = 1, 2, . . .. Therefore, all of the points on the graph π(x) lie on a straight line. Since π(0) = 1,

this line must go through the point (0, 1). If the gradient of this line were positive (or negative), then for some

sufficiently large x we would have π(x) > 0 (or π(x) < 0). But π(x) is a probability, so cannot escape [0, 1].

Therefore, π(x) = 1 for all x ≥ 0.

Due to the symmetry of the random walk, we can make the same argument for x = 0,−1,−2, . . ., and find

likewise that π(x) = 1 for all x ≤ 0. We conclude that for any initial state, the probability of eventually reaching

zero is one.

We now consider a generalisation of the random walk on a line: a random walk on an l-dimensional integer

valued lattice H l. If e1, . . . , el is an orthonormal basis of an l-dimensional space, and x1, . . . , xl are integers,
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then the lattice H l consists of points of the form

x = x1e1 + · · ·+ xnen

Any point which neighbours x will be of the same form, but with a single x value incremented or decremented

by one. Thus, each point on the lattice has 2l neighbours, and at each step of a random walk the particle has

a 1
2l chance of moving to any one of those neighbours.

3 The Transition Function

Let X(0) represent the initial position of a particle in a random walk, and X(n) represent its position after n

steps (n = 1, 2, 3, . . .). In the course of a random walk, the probability of some event A taking place depends on

the point x from which the walk began. Call this probability Px(A). If ξ is the random variable corresponding

to the distribution Px, then call the expected value of this random variable Ex[ξ].

Let p(n,x,y) be the probability that a particle leaving x will, in precisely n steps, reach y:

p(n,x,y) = Px(X(n) = y).

p(n,x,y) is called the transition function. Some obvious properties are that p(0,x,x) = 1, p(0,x,y) = 0 for

x ̸= y, and
∑

y∈Hl p(n,x,y) = 1. The quantity∑
y∈B

p(n,x,y) = Px(X(n) ∈ B)

where B is some set in l-dimensional space, is called the transition probability from x to B in n steps.

An important property of the random walk is that the the jumps ξk = X(k)−X(k − 1) (k = 1, 2, . . . ) are

independent (with each other and with the starting position X(0)) and identically distributed. In particular,

any of the vectors ξk assumes with probability 1
2l one of the values ±e1, . . . ,±el. We use this fact to derive an

integral representation for p(n,x,y).

Let θ(x) be defined as follows: if the vector x = x1e1 + · · · + xlel, then θ(x) = θ1x1 + · · · + θlxl (θ(x) is

called a linear form). We make use of the characteristic function of the random vector X(n), which we will call

F (θ):

F (θ) = Ex[e
iθ(X(n))] =

∑
y

p(n,x,y)eiθ(x). (2)

Our strategy is to multiply both sides of equation (2) by e−iθ(z), where z is a point on H l, and then integrate

over an appropriate region Q = {θ(z) : |θi| ≤ π for all 1 ≤ i ≤ l}. Consider the following integral,∫
Q

eiθ(y)−iθ(z)dθ =

∫ π

−π

· · ·
∫ π

−π

ei[θ1(y1−z1)+···+θl(yl−zl)]dθ1 . . . dθl

=

∫ π

−π

· · ·
∫ π

−π

l∏
k=1

eiθk(yk−zk)dθ1 . . . dθl

=

l∏
k=1

∫ π

−π

eiθk(yk−zk)dθk , as each θk is independent of the others.
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If y = z, then yk = zk for each k between 1 and l, and so each integrand is equal to 1. Integrating 1 over the

region [−π, π] yields 2π, so we are left with

l∏
k=1

(2π) = (2π)l.

On the other hand, if y ̸= z, then

l∏
k=1

∫ π

−π

eiθk(yk−zk)dθk =

l∏
k=1

∫ π

−π

cos((yk − zk)θk) + i sin((yk − zk)θk)dθk

=

l∏
k=1

[
1

yk − zk
sin((yk − zk)θk)−

i

yk − zk
cos((yk − zk)θk)

]π
−π

,

notice that because y and z are points on the integer-valued lattice H l, the value of yk − zk must be an integer.

Therefore, after the substitution θk = ±π, we can guarantee that sin((yk − zk)θk) = 0. Since cos((yk − zk)θk) =

cos(−(yk − zk)θk), we conclude that

∫
Q

eiθ(y)−iθ(z)dθ =

(2π)l for y = z

0 for y ̸= z

.

Returning to equation (2), we multiply by e−iθ(z) and integrate over Q. Keep in mind that the series∑
y p(n,x,y)eiθ(y) contains only finitely many nonzero terms, since in n steps a random walk can visit no more

than (2l)n states. Thus, ∫
Q

F (θ)e−iθ(z)dθ =

∫
Q

∑
y

p(n,x,y)eiθ(y)e−iθ(z)dθ

=
∑
y

p(n,x,y)

∫
Q

eiθ(y)−iθ(z)dθ

=
∑
y

p(n,x,y) ·

(2π)l for y = z

0 for y ̸= z.

Since the sum vanishes for any y ̸= z, we see that

p(n,x, z) =
1

(2π)l

∫
Q

F (θ)e−iθ(z)dθ. (3)

Let ξk be the jump at the kth step. Then X(n) = X(0) +
∑n

k=1 ξk, and

F (θ) = Ex[e
iθ(X(n))] = Ex[e

iθ(X(0)+
∑n

k=1 ξk)] = Ex

[
eiθ(X(0))

n∏
k=1

eiθξk

]
.

Since X(0) = x with probability one, and the random vectors ξk are independent and identically distributed,

F (θ) = eiθ(x)Ex[e
iθ(ξ1)]n. (4)

Consider Φ(θ) = Ex[e
iθ(ξ1)]. Since ξ1 takes any of the values ±e1, . . . ,±el with probability 1

2l ,

Φ(θ) =
1

2l

l∑
m=1

(
eiθm + e−iθm

)
=

1

2l

l∑
m=1

(cos(iθm) + i sin(iθm) + cos(−iθm) + i sin(−iθm))

=
1

l

l∑
m=1

cos(θm)

(5)
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Substituting these results into equation (3) and replacing z with y, we obtain

p(n,x,y) =
1

(2π)l

∫
Q

eiθ(x−y)Φn(θ)dθ. (6)

4 Behaviour of the walk as n → ∞

We now assume that l ≥ 3. We will show that the length of the vector X(n) tends to infinity with probability

one as n → ∞. A set B in the lattice H l is recurrent if πB(x) = 1 for all x ∈ H l, i.e., if the probability of

reaching H from x is one, and nonrecurrent if πB(x) < 1. We will show that any bounded set is nonrecurrent.

Consider a sequence of trials consisting of random walks initiated from a point x, in which the nth trial is a

success if X(n) = y, and a failure otherwise. Then the probability of success in the nth trial is p(n,x,y), and

g(x,y) =

∞∑
n=0

p(n,x,y) (7)

represents the expected number of visits to the point y.

We will prove that

g(x,y) < ∞. (8)

The function Φ(θ) defined by equation (5) is continuous, and |Φ(θ)| < 1 on all of Q except at points of the form

(±nπ, . . . ,±nπ) where n = 0 or 1. Therefore, starting with equation (7),

g(x,y) =

∞∑
n=0

p(n,x,y)

g(x,y) =

∞∑
n=0

1

(2π)l

∫
Q

eiθ(x−y)Φn(θ)dθ from (6), and therefore

(2π)lg(x,y) =

∞∑
n=0

∫
Q

eiθ(x−y)Φn(θ)dθ.

Since |eiα| ≤ 1 for any real α,

(2π)lg(x,y) ≤
∞∑

n=0

∫
Q

|Φn(θ)|dθ.

We now make use of the fact that |Φ(θ)| < 1. The sum
∑∞

n=0 |Φn(θ)| is a geometric series which converges

absolutely, and thus

(2π)lg(x,y) ≤
∫
Q

1

1− |Φ(θ)|
dθ. (9)

To show the convergence of this integral, consider a neighbourhood, U , of the point θ = (0, . . . , 0), in which

0 < cos θm ≤ 1− θ2m
4

(To see that such a neighbourhood must exist, consider the Taylor Series expansion of cos). Plugging this into
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equation (5) we see that

|Φ(θ)| = Φ(θ) =
1

l

l∑
m=1

cos(θm)

≤ 1

l

l∑
m=1

(
1− θ2m

4

)

= 1− 1

4l

l∑
m=1

θ2m

Consequently, ∫
U

1

1− |Φ(θ)|
dθ <

∫
U

4l

θ21 + · · ·+ θ2l
dθ

We show the convergence of this integral by switching to (l-dimensional) polar co-ordinates,∫
U

4l

θ21 + · · ·+ θ2l
dθ =

∫
U

4l

r2
rl−1 sinl−2(φ1) sin

l−3(φ2) . . . sin(φl−2)drdφ1dφ2 . . . dφl−1.

The integral can be split into one-dimensional integrals in each variable. Each integral with respect to one of

the angles φ is finite, which leaves only the integral with respect to r. If a is the radius of a sphere which

completely contains U , then ∫ a

0

4l

r2
rl−1dr =

∫ a

0

4lrl−3dr < ∞,

so long as l ≥ 3, which we have assumed earlier. That this integral is finite implies that the integral∫
U

4l

θ21 + · · ·+ θ2l
dθ

is also finite. An analogous argument shows the convergence of the integral (9) in the neighbourhoods of the

points θ = (±π, . . . ,±π). Thus, ∫
Q

1

1− |Φ(θ)|
dθ < ∞. (10)

This proves the inequality (8), i.e., that we will with probability one visit the point y only finitely many

times. Since the choice of y is arbitrary, a particle on a random walk therefore has a probability one of occupying

any given point on the lattice only finitely many times. The probability is one, therefore, that for any bounded

set of lattice points, there will come a time after which the particle will never visit that set again.

We now prove the nonrecurrence of any bounded set B. First, suppose that B is recurrent. For any initial

state x, and any n, the probability of the event An = {The particle visits B after the nth step} is∑
y

p(n,x,y)πB(y),

the probability of reaching some other point y in n steps, and from there visiting B. But B is recurrent, so

πB(y) = 1 for any y on the lattice. So this probability is simply∑
y

p(n,x,y),
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which is equal to one by the law of total probability. Therefore, the particle is guaranteed to visit B after time

n, for any n. But this contradicts the fact that the particle will with probability one at some time leave B and

not return, and so we have by contradiction that any bounded set must be nonrecurrent.

It follows from equations (9) and (10) that the series

eiθ(x−y)
∞∑

n=0

Φn(θ)

can be integrated term-by-term over Q. Therefore,

g(x,y) =

∞∑
n=0

1

(2π)l

∫
Q

eiθ(x−y)Φn(θ)dθ =
1

(2π)l

∫
Q

eiθ(x−y)
∞∑

n=0

Φn(θ)dθ =
1

(2π)l

∫
Q

eiθ(x−y)

1− Φ(θ)
dθ (11)

This result can be used to prove that

g(x,y) ∼ c

|x− y|
for |x− y| → ∞, c > 0. (12)

However, the proof is too lengthy to include here. The full proof is available in Appendix 1 of Dynkin and

Yushkevich.

5 Harmonic Functions and another Definition of Recurrence

Let f be a function on the points of the lattice H l. We define the operator, P , as follows:

Pf(x) = Ex [f(X(1)] =
∑
y

p(1,x,y)f(y). (13)

P is called the “(one-step) shift operator”, or, since moving a step in each direction is equally likely, the

“averaging operator”

Pf(x) =
1

2l

∑
k

f(x+ ek),

where k = ±1,±2, . . . ,±l, and e−k = −ek. We call a function f harmonic if Pf = f , and superharmonic if

Pf ≤ f . It is clear from the definition that any constant function will be harmonic. We will show that any

bounded harmonic function is constant.

Let f be a bounded, harmonic function on H l. It is quite easy to show that f is constant if f achieves a

maximum at some point y0. Call the 2l neighbouring points y1, . . . ,y2l. Since f is harmonic,

Pf(y0) = f(y0) =
1

2l

2l∑
k=1

f(yk)

1

2l

2l∑
k=1

(f(yk)− f(y0)) = 0.

In other words, the mean of the numbers f(y0)−f(yk) is equal to zero. Now, consider the quantity f(y0)−f(yk)

for a particular k. It cannot be that f(y0) − f(yk) < 0, as f(y0) is the maximum value of f . But if none
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of these numbers can be negative, and their average is zero, then none of them can be positive either. Thus,

f(y0) = f(yk). Therefore, the set of points at which f reaches its maximum includes not only the points in

that set, but also all of their neighbours. But then it must also include all of those neighbours’ neighbours, and

so on. The set of points at which f reaches its maximum is therefore the entirety of H l, and so f is constant.

But what if f does not have a maximum? Since f is bounded, it has a least upper bound M , and for any

ε > 0 there is a point y at which f(y) ≥ M − ε. If y′ is a point neighbouring y, then we can show that

f(y′) ≥ M − 2lε. Since f is harmonic and bounded,

f(y) =
1

2l

∑
k

f(y + ek) ≥ M − ε

In order to minimise f(y′), we set the value of f at each other neighbour of y to the largest value it can possibly

take: M . Then,

f(y) =
1

2l
(f(y′) + (2l − 1)M) ≥ M − ε

f(y′) ≥ M − 2lε

Hence, if M > 0, then we can pick a chain of points y0, y1 = y0 + e1, y2 = y1 + e1, . . . , yn = yn−1 + e1 such

that, for any number N ,

s = f(y0) + f(y1) + · · ·+ f(yn) ≥ N

Keeping f as an arbitrary bounded harmonic function, define φ(x) = f(x+ e1)− f(x). φ is also harmonic and

bounded, but for φ the sum

s = φ(y0) + φ(y1) + · · ·+ φ(yn)

= f(y0 + e1)− f(y0) + f(y1 + e1)− f(y1) + · · ·+ f(yn + e1)− f(yn)

= f(y1)− f(y0) + f(y2)− f(y1) + · · ·+ f(yn + e1)− f(yn)

= f(yn + e1)− f(y0)

cannot exceed twice the upper bound of f . But we have showed that for any harmonic function with a positive

least upper bound, a chain of points can be chosen such that s is greater than any number. Therefore, the exact

upper bound of φ cannot be positive. This implies that, for any x,

φ(x) = f(x+ e1)− f(x) ≤ 0.

An analogous argument (considering the greatest lower bound instead of the least upper bound) shows that

f(x+ e1)− f(x) ≥ 0.

From which we conclude that f(x+e1) = f(x). As our choice of e1 is arbitrary, it follows that f(x+ek) = f(x)

for any k.

Let πB(x) be the probability, starting from x, of visiting the set B infinitely often. This probability must

be equal to the probability of, starting from x, taking one step, and then visiting B infinitely often. That is to
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say,

πB(x) =
∑
y

p(1,x,y)πB(y),

i.e., that πB is harmonic. πB is bounded, so by the above proof it must be constant. We will show that it is

equal to one or zero depending on whether B is recurrent or nonrecurrent. First, suppose B is nonrecurrent.

Let q(n,y) be the probability that, starting from x, the particle making its first visit to B by arriving at a

point y in B at time n. If πB(x) is the probability of, starting from x, visiting B (at any time), then

πB(x) =

∞∑
n=0

∑
y∈B

q(n, y).

In order to visit B infinitely many times, the particle must first visit B once, and then visit B infinitely often

after that. Thus,

πB = πB(x) =

∞∑
n=0

∑
y∈B

q(n, y)πB(y) =

∞∑
n=0

∑
y∈B

q(n, y)πB = πB(x)πB . (14)

Recall that B is nonrecurrent, i.e., that there exists an x for which πB(x) < 1. Since πB(x) and πB are both

between zero and one, and πB = πB(x)πB , the only possible value of πB is zero.

Conversely, suppose that B is recurrent. Then the probability of the event CN = {the particle never visits

B after the nth step} is equal to zero for any n ≥ 0 and any point x. Therefore,

1− πB(x) = Px{The particle will visit B only a finite number of times}

= Px{C0 ∪ C1 ∪ . . . }

≤ Px{C0}+ Px{C1}+ . . .

= 0

Therefore, πB = 1. We can draw from this an equivalent characterisation of recurrence. A set B is recurrent

if a particle starting from any point of the lattice visits B infinitely often with probability one. If, however,

the probability of this event is less than one for some x, then it must be equal to zero for all x, and B is

nonrecurrent.

6 Potential

Recall the operator P from Section 5, and let φ be a positive function on the lattice H l. We define the potential

of the function φ as

Gφ = φ+ Pφ+ P 2φ+ . . . . (15)

As well as being the discrete analogue of Newtonian potential, this quantity also has a straightforward proba-

bilistic interpretation. In fact,

Pnφ(x) =
∑
y

p(n,x,y)φ(y) = Ex[φ(Xn))]. (16)
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We prove this by induction. For n = 0, equation (16) reduces to φ(x) = φ(x), and for n = 1 it reduces to the

definition of the operator P (recall equation (13)). Suppose that equation (16) has been proved for some n ∈ N.

Then,

Ex[φ(X(n+ 1)] =
∑
y

p(n+ 1,x,y)φ(y) , by definition,

=
∑
z

p(1,x, z)

[∑
y

p(n, z,y)φ(y)

]

=
∑
z

p(1,x, z) [Pnφ(z)] , by the induction hypothesis,

= Pn+1φ(x).

So, equation (16) is true for n+ 1 as well. It follows that

Gφ(x) =

∞∑
n=1

Ex[φ(X(n))] = Ex

∞∑
n=1

[φ(X(n))] (17)

This equation leads us to the following important interpretation of potential: Let every hit at the point y bring

a payoff φ(y). Then Gφ(x) is the mean value of the payoff obtained during a random walk of a particle with

starting point x.

We now show that if f = Gφ and τ is the time of the first visit of the particle to B, where B is a set in the

lattice H l, then

f(x)− Ex[f(X(τ))] = Ex

[
τ−1∑
k=0

φ(X(k))

]
. (18)

If we divide the path of the particle up in to the part before time τ and the part after time τ , then we can

write that

f(x) = Ex[φ(X(0)) +X(1)) + · · ·+X(τ − 1))] + Ex[φ(X(τ)) +X(τ + 1)) + . . . ]. (19)

In this expression, the first term represents the average payoff during the random walk prior to visiting B, and

the second term the average payoff after the first visit. To obtain (18), we need to show that

Ex[φ(X(τ)) + φ(X(τ + 1)) + . . . ] = Exf(X(τ)).

We will make use of the probability q(n,y) = P(τ = n,X(n) = y) (that is, the probability that the first visit to

B takes place at time n, when the particle visits the point y ∈ B). We have that

Ex[φ(X(τ + k))] =
∑
n,y

q(n,y)Ey[φ(X(k))]

∑
n

q(n,y) = Px(X(τ) = y),

where n ranges from 0 to ∞, and y spans all the points in B. Starting from the left hand side,

Ex[φ(X(τ)) + φ(X(τ + 1)) + . . . ] = Ex

[ ∞∑
k=0

φ(X(τ + k))

]
=

∞∑
k=0

Ex[φ(X(τ + k))].
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Using the first property of q(n,y),

∞∑
k=0

Ex[φ(X(τ + k))] =

∞∑
k=0

∑
n,y

q(n,y)Ey[φ(X(k))] =
∑
n,y

q(n,y)

∞∑
k=0

Ey[φ(X(k))].

Recalling equation (17), and then applying the second property of q(n,y), we see that

∑
n,y

q(n,y)

∞∑
k=0

Ey[φ(X(k))] =
∑
n,y

q(n,y)f(y) =
∑
y

Px(X(τ) = y)f(y) = Ex [f(X(τ))] ,

which is precisely the result we require.

7 Excessive Functions

Recall that a function f is called superharmonic if Pf ≤ f . An excessive function is a superharmonic function

that is non-negative. Furthermore, if φ is a non-negative function and f = Gφ, then

f − Pf = (φ+ Pφ+ P 2φ+ . . . ) + P (φ+ Pφ+ P 2φ+ . . . ) = φ ≥ 0

If f − Pf ≥ 0, then f is superharmonic, thus the potential of any non-negative function is superharmonic

We will show that any excessive function is equal to the sum of a non-negative harmonic function and the

potential of a non-negative function. Let f be an excessive function, and let φ = f − Pf , noting that φ is

non-negative. It follows that

f = φ+ Pf

= φ+ P (φ+ Pf)

= φ+ Pφ+ P 2(φ+ Pf)

. . .

= φ+ Pφ+ P 2φ+ · · ·+ Pn−1φ+ Pf.

(20)

Notice that

φ+ Pφ+ P 2φ+ · · ·+ Pn−1φ = f − Pnf ≤ f,

in other words, that

Gφ = φ+ Pφ+ P 2φ+ · · ·+ Pn−1φ+ · · · < ∞.

Equation (20) implies that h = limn→∞ Pnf exists and that

f = Gφ+ h. (21)

Since Ph = h, i.e., h is harmonic, we are done.

An example of an excessive function is πB(x), the probability of visiting a set B. Consider the sequence of

events given by

An = {The particle visits the set B after the nth step}.
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Clearly A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ . . .. Notice also that Px(A0) = πB(x). It follows from Equation (16) that

Px(An) =
∑
y

p(n,x,y)πB(y) = PnπB(x). (22)

In particular, PπB(x) = Px(A1) ≤ Px(A0) = πB(x), hence πB is excessive. We can therefore apply the

expansion (20) to the function πB(x). Let πB(x) = limn→∞ PnπB(x), and φB(x) = πB(x)− PπB(x), then

πB(x) = GφB(x) + πB(x). (23)

According to Equation (22),

πB(x) = lim
n→∞

Px(An) = Px

( ∞⋂
n=0

An

)
.

Thus, πB(x) is the probability that the particle will visit B at arbitrarily remote times, i.e., that it will visit

B infinitely often. We have already encountered this probability in Section 5, where we showed that it is

identically equal to zero if B is nonrecurrent, and identically equal to one if B is recurrent. Consequently, if B

is nonrecurrent, then πB(x) = GφB(x). It follows from Equation (22) that

φB(x) = πB(x)− PπB(x) = Px(A0)− Px(A1) = Px(A0 \A1).

That is to say that φB(x) is the probability, starting from x, of the particle initially being inside B, and then

leaving B) in the first step. This probability can only be nonzero if x ∈ B, and similarly, outside of B the

function φB is equal to zero.

The same argument, only starting with PnφB(x), shows that P
nφB(x) = Px(An \An+1). Therefore,

πB(x) = GφB =

∞∑
n=0

PnφB ,

i.e., that the probability of visiting B finitely many times is equal to the sum of the probabilities of visiting B

for the last time in the nth step.

It follows from Equation (18) that if f = Gφ (φ ≥ 0) and τ is the time of the first visit to the set B, then

Ex[f(X(τ))] ≤ f(x). (24)

We can see from Equation (21) that this inequality is valid for any bounded excessive function

8 Capacity

The Newtonian potential is closely related to the notion of capacity. We develop an analogous formulation for

functions defined on the lattice H l. Let f = Gφ, B be a subset of H l, and τ be the time of the first visit to B.

We investigate the class KB of all functions φ ≥ 0 that are equal to zero outside of B and such that Gφ ≤ 1.

For the function f = Gφ, where φ ∈ KB , Equation (18) takes the form

f(x) = Ex[f(x(τ))] (25)
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(since φ is equal to zero outside of B). It follows from the inequality f ≤ 1 that Ex[f(x(τ))] ≤ Px(τ < ∞) =

πB(x). Therefore,

f(x) ≤ πB(x) (26)

As we saw in the previous section, if B is nonrecurrent, then πB = GφB , where φB = πB − PπB ∈ KB . We

call πB the equilibrium potential, φB the equilibrium distribution, and define the capacity of the set B as

C(B) =
∑
y

φB(y). (27)

If B is recurrent, then the concept of capacity cannot be met (since if πB = 1, then φB = 1 − 1 = 0). Recall

that all finite sets are nonrecurrent.

We now state an extremal property of the equilibrium distribution φB (the discrete analog of Gauss’ Theo-

rem). Let a set B be nonrecurrent. We show that for any function φ ∈ KB ,∑
y

φ(y) ≤
∑
y

φB(y) = C(B). (28)

∑
y φ(y) is called the total charge corresponding to the distribution φ. This inequality tells us that the capacity

of a nonrecurrent set B is definable as the maximum total charge concentrated on B whose potential does not

exceed one.

For the proof of (28), we introduce the notation

(f1, f2) =
∑
y∈B

f1(y)f2(y).

It can be shown fairly straightforwardly that

(Gf1, f2) = (f1, Gf2).

Utilizing this, together with the fact that πB(x) = 1 for x ∈ B, Equation (23), and the fact that Gφ ≤ 1 for

φ ∈ BK , we show that∑
y

φ(y) = (φ, 1) = (φ, πB) = (φ,GφB) = (Gφ,φB) ≤ (1, φB) = C(B).

9 The Recurrence Criterion

We now establish a necessary and sufficient condition for the recurrence of a subset, B, of a three-dimensional

lattice. This condition is formulated in terms of capacity, and can be extended with little difficultly to l > 3.

It will turn out that the recurrence of B depends on how the number of points of B falling within a sphere

of radius r grows as r → ∞. Consider an expanding sequence of spheres with radii r = 1, 2, 22, . . . , 2k, . . .. We

denote by Bk the part of the set B which falls between the kth and the (k+1)th spheres (more precisely, the

set of those x ∈ B for which 2k−1 < |x| ≤ 2k).

The set Bk is finite, hence for it the capacity C(Bk) is defined. The following criterion holds:

12



The set B is recurrent if and only if the following series diverges

∞∑
k=0

C(Bk)

2k
. (29)

First, we prove the necessity of this condition, i.e., that if the series (29) converges, then Bk is nonrecurrent.

So, suppose that the series (29) converges. We first show that, along with the series (29), the following series

also converges:
∞∑
k=0

πBk
(0) (30)

To do this, we will use the asymptotic estimate given at the end of Section 4,

g(x,y) ∼ Q

|x− y|
(|x− y| → ∞), (31)

where Q ∈ R. It follows from (31) that there exists an N > 0 such that for all y ∈ Bk, k > N ,

g(0,y) ≤ 2Q

|y|
. (32)

πBk
is the equilibrium potential of the set Bk. Recalling that Bk is finite, we make use of our finding in

Section 7 that for a finite set A, πA = GφA, where φA is the equilibrium distribution on the set A. Therefore,

πBk
(0) = GφBk

(0) =

∞∑
n=0

PnφBk
(0).

Then,

∞∑
n=0

PnφBk
(0) =

∞∑
n=0

∑
y

p(n,0,y)φBk
(y) =

∑
y

( ∞∑
n=0

p(n,0,y)

)
φBk

(y) =
∑
y

g(0,y)φBk
(y).
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We now show that the series (29) dominates the series (30):

πBk
(0) =

∑
y

g(0,y)φBk
(y)

≤
∑
y

2Q

|y|
φBk

(y) , by (32)

≤
∑
y

2Q

2k−1
φBk

(y) , since |y| > 2k−1∀y ∈ Bk, and φBk
(y) = 0∀y ̸∈ Bk

=
Q

2k−2

∑
y

φBk
(y)

= 4Q
C(Bk)

2k
, since

∑
y

φBk
(y) is just the definition of the capacity of Bk

We conclude that the series (29) dominates the series (30), correct to a constant factor, and therefore that the

series (30) converges. We now make use of the set

Bn =
∞⋃

k=n

Bk

Note that the event {The particle visits Bn} is exactly the union of the events {The particle visits Bk}, k =

n, n+ 1, . . .. Therefore,

πBn
(0) ≤

∞∑
k=n

πBk
(0)

Then for sufficiently large n we have that πBn
(0) < 1, so the set B = Bn is nonrecurrent. Since the set

B = B \ B is finite, it is also nonrecurrent. Therefore, to prove that B is nonrecurrent, we need only to prove

that the union of two nonrecurrent sets is itself nonrecurrent.
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For this purpose, we recall the alternate definition of recurrence given in Section 5, wherein a set is recurrent

if a particle visits that set a finite number of times with probability one. Since the intersection of two events of

probability one is itself an event of probability one, and the particle has probability one of visiting both B and

B a finite number of times, it follows that the same is true of their union B = B ∪ B. Therefore, the set B is

nonrecurrent.

This concludes the proof of necessity, so we now move on to proving the sufficiency of the recurrence

condition, i.e., that if the series (29) diverges, then B is nonrecurrent.

Suppose the series (29) diverges. We decompose it into four series, each with indices that are equal modulo

four, ∑
k

C(B4k)

24k
,
∑
k

C(B4k+1)

24k+1
,
∑
k

C(B4k+2)

24k+2
,
∑
k

C(B4k+3)

24k+3
.

Since the sum of these series diverges, at least one of them must also diverge. Let us suppose for the sake of

definiteness that the following series does so: ∑
k

C(B4k)

24k
. (33)

Let Sk be the set of points between the two spheres of radius 24k−2 and 24k−2 + 1 (that is, the set of all

y ∈ H l such that 24k−2 ≤ |y| ≤ 24k−2 + 1).

Notice that the set B4k is contained between the layers Sk and Sk+1. Since the distance of the particle from

the origin cannot change by more than one in a single step, the particle cannot pass from one side of Sk to the

other without occupying a state within Sk at least once. The length of X(n) goes to infinity with probability

one, so the particle must pass through all the layers Sk enclosing the initial state X(0). We investigate the event

Ak = {The particle visits B4k between the time of the first visit to Sk and the time of the first visit to Sk+1}.
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We show that for all sufficiently large k,

Py(Ak) ≥ Q1
C(B4k)

24k
, for y ∈ Sk, (34)

where Q1 > 0 does not depend on y or k.

Let Dk = {The particle visits B4k after the time of the first visit to Sk+1.}. If a particle on a random walk

leaves y ∈ Sk and later visits B4k, then either Ak or Dk must occur. Therefore,

πB4k
(y) ≤ Py(Ak) + Py(Dk).

Additionally,

P(Dk) = P(The particle visits B4k after the time of the first visit to Sk+1)

= P(The particle visits Sk+1 without visiting B4k) · P(The particle visits B4k from Sk+1)

≤ P(The particle visits B4k from Sk+1)

≤ max
z∈Sk+1

πB4k(z).

It follows from the inequality P(Dk) ≤ maxz∈Sk+1
πB4k(z) that

Py(Ak) ≥ πB4k
(y)− max

z∈Sk+1

πB4k(z). (35)

Recall once again that πB4k
is the equilibrium potential of B4k, and that πB4k

= GφB4k
, where φB4k

=

πB4k
− PπB4k

. Note that, for y ∈ H l,

πB4k
(y) = GφB4k

(y) =

∞∑
n=0

PnφB4k
(y) =

∞∑
n=0

∑
u∈Hl

p(n,y,u)φB4k
(u) =

∑
u∈Hl

g(y,u)φB4k
(u).

Substituting this in to Equation (35),

Py(Ak) ≥
∑
u∈Hl

g(y,u)φB4k
(u)− max

z∈Sk+1

∑
u∈Hl

g(z,u)φB4k
(u)

By taking out appropriate minima and maxima as common factors from each sum, we can maintain the inequality

(keep in mind that φB4k = 0 everywhere outside of B4k):

Py(Ak) ≥
(

min
y∈Sk,u∈B4k

g(y,u)

) ∑
u∈Hl

φB4k
(u)−

(
max

z∈Sk+1,u∈B4k

g(z,u)

)
max

z∈Sk+1

∑
u∈Hl

φB4k
(u)

=

(
min

y∈Sk,u∈B4k

g(y,u)

)
C(B4k)−

(
max

z∈Sk+1,u∈B4k

g(z,u)

)
C(B4k) , since C(B4k) =

∑
y

φB4k
(y)

= C(B4k)

(
min

y∈Sk,u∈B4k

g(y,u)− max
z∈Sk+1,u∈B4k

g(z,u)

)
.

We now apply the asymptotic estimate of g(x,y) given by (31). For sufficiently large k, and y ∈ Sk,

5

6
· Q

|x− y|
≤ g(x,y) ≤ 7

6
· Q

|x− y|
.

It follows that

Py(Ak) ≥ C(B4k)

(
min

y∈Sk,u∈B4k

5

6
· Q

|y − u|
− max

z∈Sk+1,u∈B4k

7

6
· Q

|z − u|

)
.

16



We see from the relative position of the sets Sk, B4k, andSk+1 that

|y − u| ≤ 24k−2 + 1 + 24k ≤ 2 · 24k

|z − u| ≥ 24k+2 − 24k = 3 · 24k.

Consequently, for sufficiently large k

Py(Ak) ≥ C(B4k)

(
5

6
· Q

2 · 24k
− 7

6
· Q

3 · 24k|

)
=

1

36
· C(B4k)

24k
.

This completes our proof of the inequality (34).

We pick a number m such that the initial state x lies inside the layer Sm and the inequality (34) is satisfied

for all k ≥ m. We denote by τk the time of the first visit to the layer Sk. The opposite of the event Ak is the

event Ak = {In the interval of time [τk, τk+1], the particle does not visit B4k }. It follows from Equation (34)

that

Px

(
Ak

)
≤ 1−Q1

C(B4k)

24k
,

and that this bound holds regardless of the values of τk or X(τk), or of the path taken by the particle before

τk. Therefore,

Px

(
Am ∩Am+1 ∩ · · · ∩Am+s

)
≤

m+s∏
k=m

(
1−Q1

C(B4k)

24k

)
,

where s is any positive integer. We define

qk(n,y) = Px(τk = n,X(τk) = y, Am ∩Am+1 ∩ · · · ∩Ak−1),

i.e., that the first visit to Sm occurs at time n, where X(n) = y ∈ Sm, and that between its first visit to any

two layers Si and Si+1, the particle does not visit B4i for all i = m,m+ 1, . . . , k − 1. Then,

Px

(
Am ∩Am+1 ∩ · · · ∩Ak

)
=
∑
n,y

qk(n,y)Py(Ak)

≤
∑
n,y

qk(n,y)

(
1−Q1

C(B4k)

24k

)
= Px(Am ∩Am+1 ∩ · · · ∩Ak−1)

(
1−Q1

C(B4k)

24k

)
.

(36)

We are now ready to prove the recurrence of B. We start by making use of the inequality (36).

Px

( ∞⋂
i=m

Ai

)
= lim

k→∞

(
Px

(
Am ∩Am+1 ∩ · · · ∩Ak

))
≤ lim

k→∞

(
Px(Am ∩Am+1 ∩ · · · ∩Ak−1)

(
1−Q1

C(B4k)

24k

))
= Px

( ∞⋂
i=m

Ai

)
lim
k→∞

(
1−Q1

C(B4k)

24k

)
.

Recall that the series
∑

Q1
C(B4k)

24k
diverges, so Q1

C(B4k)
24k

> 0 for any k, no matter how large. Therefore,

lim
k→∞

(
1−Q1

C(B4k)

24k

)
< 1.
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But then the only possible value of Px

(⋂∞
i=m Ai

)
is zero. From this it follows that

Px

( ∞⋃
i=m

Ai

)
= 1− Px

( ∞⋂
i=m

Ai

)
= 1− 0 = 1.

Hence, the particle with probability one visits one of the sets B4k, each of which belongs to B. Thus, B is

recurrent.

10 Recurrence of a Set Situated on the Axis

We now make use of the recurrence criterion developed in the previous section to try and imagine what recurrent

and nonrecurrent sets of a three-dimensional lattice look like.

Firstly, any subset of a nonrecurrent set must itself be nonrecurrent, and if a set contains a recurrent subset,

then that set must also be recurrent. Furthermore, we know that any bounded set is nonrecurrent.

Let the position of the random walk X(n) = (X1(n), X2(n), X3(n)). We will show that the co-ordinate plane

X3 = 0 is a recurrent set. At any point during the random walk, there is a 1
6 chance of the particle moving

in a particular direction. Therefore, the probability that, at any step, X3 remains unchanged is 2
3 . So, the

probability that X3 will remain unchanged for k steps in a row is
(
2
3

)k
. Since

lim
k→∞

(
2

3

)k

= 0,

there is zero probability that X3 remains unchanged forever. In other words, X3 must eventually change. Due

to the symmetry of the random walk, when X3 does change it will be incremented by one with probability 1
2 ,

and decremented by one with probability 1
2 . Therefore, the random process X3 differs from the one-dimensional

symmetric random walk described at the beginning of Section 2 only in the fact that X3 can get stuck in any

state for a finite amount of time. While this property will change the expected time X3 takes to reach some

other state, it will not affect the probability that X3 will reach that state sooner or later. Since particle in a

one-dimensional random walk reaches zero with probability one, X3 is also guaranteed to reach zero. Therefore,

the co-ordinate plane X3 = 0 is a recurrent set.

It can be proved by a similar argument to the one employed in Section 4 that the point 0 will be reached

from any other point on a 2D lattice with probability one. We can, by combining these insights, prove that the

co-ordinate axis x2 = x3 = 0 is recurrent. We can obtain the following test of recurrence of the set B consisting

of the points {bn, 0, 0}, where 0 < b1 < b2 < b3 < . . . (and the bn are integers):

If the series
∑

1
bn

converges, the set B is recurrent. If the series
∑

1
bn

diverges and for large n,

bn+1 − bn ≥ c log2(bn), (37)

where c is a positive constant, then B is recurrent.

The relationship between the recurrence of B and the divergence of
∑

1
bn

is fairly intuitive; the divergence

of this series tells us that the points {bn, 0, 0} are close together, whereas the divergence tells us that they are
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far apart. The condition (37) is related to the method we use to estimate capacities. It requires the series to

diverge very slowly. For example, if bn = ⌊n log2 n⌋, then for large n

bn+1 − bn ≥ (n+ 1) log2(n+ 1)− 1− n log2 n ≥ log2 n− 1

= log
n

2
≥ log2

√
n log2 n ≥ 1

2
log2 bn.

So, the inequality (37) is satisfied, and therefore B is recurrent. However, if bn = ⌊n logα2 n⌋, where α > 1, then∑
1
bn

converges, and B is nonrecurrent.

We now prove that this criterion holds. Let the series
∑

1
bn

converge. Note that the capacity of a finite set

is bounded above by the number of elements in that set. This follows from the definition of capacity,

C(B) =
∑
x∈B

φB(x),

where φB ≤ 1. Let us estimate the number of elements in the set Bk involved in the recurrence criterion. Call

this number |Bk|. If bn ∈ Bk, then 2k+1 < bn ≤ 2k, from which it follows that 1
2k

≤ 1
bn
. If we sum both sides

of this inequality over B, then

|Bk|
2k

≤
∑

bn∈Bk

1

bn

so
C(Bk)

2k
≤

∑
bn∈Bk

1

bn
.

Consequently, ∑
k

C(Bk)

2k
≤
∑
k

∑
bn∈Bk

1

bn
=
∑
n

1

bn
.

So,
∑ C(Bk)

2k
converges, and according to the recurrence criterion given in the previous section B is nonrecurrent.

Now, suppose that the series
∑

1
bn

diverges and the inequalities (37) are fulfilled. We show that, for any

x ∈ H3, there is M such that ∑
y∈Bk

g(x,y) ≤ M. (38)

We may assume that k ≥ 2 (the cases k = 0, 1 are covered by the work in Section 4). It follows from the

estimate (31) that g(x,y) and |x − y|g(x,y) are bounded by some constant Q. Let bn and bn+1 be the two

points in Bk closest to x, and let bn−1, bn−2, . . . , bn−i and bn+2, bn+3, . . . , bn+j be all the remaining points in

the set B:

We have that ∑
y∈Bk

g(x,y) ≤
∑
y∈Bk

Q

|x− y|

≤ 2Q+Q

i∑
r=1

(
1

|x− bn−r|

)
+Q

j∑
r=2

(
1

|x− bn+r|

)
It follows from the condition (37) that within Bk,

bl+1 − bl ≥ c log2 bl ≥ c log2 2
k−1 = c(k − 1).
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So, for any bn−l ∈ Bk (that is, a point in B to the left of x),

|x− bn−l| ≥ |bn − bn−l| =
l∑

r=1

|bn−r+1 − bn−r| =
l∑

r=1

bn−r+1 − bn−r ≥
l∑

r=1

c(k − 1) = lc(k − 1).

An almost identical argument shows that |x− bn+l| ≥ (j− 1)c(k− 1), the only difference being that we replace

x with bn+1 instead of bn. Applying these estimates to our earlier upper bound on
∑

g(x,y), we see that

∑
y∈Bk

g(x,y) ≤ 2Q+Q

i∑
r=1

(
1

rc(k − 1)

)
+Q

j∑
r=2

(
1

(r − 1)c(k − 1)

)

= 2Q+
Q

c(k − 1)

(
i∑

r=1

1

r
+

j∑
r=2

1

j − 1

)
Since there are only 2k−1 integer-valued points on the x-axis in Bk, i and j cannot exceed 2k−1. Therefore,

∑
y∈Bk

g(x,y) ≤ 2Q+
2Q

c(k − 1)

2k−1∑
r=1

1

r

≤ 4Q+
2Q

c(k − 1)

2k−1∑
r=2

1

r

Using the fact that ∫ l

1

1

x
dx ≥

l∑
r=2

1

r

We have that∑
y∈Bk

g(x,y) ≤ 4Q+
2Q

c(k − 1)

∫ 2k−1

1

1

x
dx = 4Q+

2Q

c(k − 1)
ln 2k−1 = 2Q

(
2 +

ln 2

c

)
,

thus completing the proof of (38). We can use the inequality that we have just proven to find a lower estimate

for C(Bk). Consider the function φ(y) = 1
M for y ∈ Bk, and zero at all other points. The potential of this

function is

f(x) =
∑
y

g(x,y)φ(y) =
1

M

∑
y∈Bk

g(x,y).

Due to (38), f cannot exceed one. Recalling from Section 8 that the capacity is the maximum total charge

whose potential does not exceed one,

C(Bk) ≥
∑
y

φ(y) =
∑
y∈Bk

1

M
=

|Bk|
M

.
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If bn ∈ Bk, then 2k+1 < bn ≤ 2k, so 1
bn

< 1
2k−1 . If we sum this inequality over all the bn ∈ Bk, then

∑
bn∈Bk

1

bn
<

∑
bn∈Bk

=
|Bk|
2k−1

≤ 2M
C(Bk)

2k
.

We see that the series
∑

1
bn

is dominated by the series (29). The divergence of
∑

1
bn

implies the divergence of

the series (29), which by our recurrence criterion implies the recurrence of the set B.

11 Discussion and Conclusion

This brings us up to the end of the first chapter of Dynkin and Yushkevich. We have introduced the subject

of random walks, and proved in reasonable depth some important properties. The book contains another three

chapters, all at least as challenging as the first. It would be a enormous task to summarise the rest of the book

in the same fashion as I have done here, but I expect that doing so would create a fantastic resource for future

students.
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