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Prelude

Abstract

This report introduces nonlocal interactions modelled with the fractional Laplacian. In particular, focus is on

motivations and applications in physics and biology.

We first discuss the fractional Laplacian and how it differs from the Laplacian. We then build some intu-

ition for its effect in terms of the fundamental solution. Derivation is shown through considering the nonlocal

heat equation and its applications to anomalous transport. This is then broadened to a discussion on the Lévy

flight hypothesis and the hunting patterns of animals, as well as modelling nonlocal populations. We discuss the

similarities between the biological treatments and fractional quantum mechanics, and discuss possible future

directions in relating nonlocality to self-organised criticality.
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1 Introduction

1.1 Why Nonlocal?

The Nobel prize in physics for 2022 was awarded to Aspect, Clauser and Zeilinger for work that included demon-

strating and understanding the phenomena of quantum entanglement. I had the opportunity to replicate the

violation of the Bell inequality, one of the key experiments in this field, in 2022 as part of a laboratory in physics.

This experiment shows that pairs of entangled photons can exhibit what Einstein famously called ‘spooky action

at a distance’: the phenomena in which one photon instantaneously affects its partner, no matter how far apart

they are. Whether this is nonlocal or nonrealistic behaviour is up to your interpretation of quantum mechanics,

but the experiment undeniably shows that we should consider how objects can affect each other even when they

are far apart.

More generally that quantum entanglement, we see a rich world of nonlocality all around us. This report,

I assume, has ended up on your computer despite the fact that I did not physically place it there. If I transmit

this report across the internet then, on the time scale I care about, I find that I can instantaneously affect an-

other computer. A wolf howling at night can let another wolf, many kilometres away, know its location almost

as quickly as it could have let a wolf a few metres away know. An unknowing COVID-positive patient taking a

flight across the world can in a matter of hours transmit something extremely powerful and frightening. On the

time scales we care about, this may as well be instantaneous. In this way, we aren’t so different from the photons.

In understanding the nonlocality of the world, we see that it is useful to model it. However, the mechani-

cal nature of much of our mathematics, including traditional calculus, means we require the formulation of

more powerful tools in the form fractional derivatives, which constitute nonlocal operators. In this report, we

will discuss one such operator, the fractional Laplacian, and discuss some applications in physics and biology.

1.2 Scope

While an infinite family of nonlocal operators exist, this report will focus on the fractional Laplacian. While the

Laplacian is generated by considering the diffusion of particles in Brownian motion, the fractional Laplacian is

generated by considering particles that are allowed to jump anywhere on the domain. In this way, we see the

nonlocality of the operator arise.

This nonlocality is extremely useful in modelling real-world phenomena. Of particular interest in this re-

port is the use of the fractional Laplacian in modelling biological processes in the Lévy flight hypothesis, which

states that optimal search strategies for scarce resources may arise from a Lévy flight. We also touch on in-

teresting nonlocal physics in anomalous diffusion and the fractional Schrödinger equation. In addition to these

applications that will be discussed, there is an ever growing number of fields that have recently acquired a
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nonlocal treatment. Some examples from physics include Fractional Lane-Embden equations for generalised

star modelling (Chen 2018), crystal dislocations (Dipierro, Palatucci, and Valdinoci 2015), statistical mechanics

(Cozzi, Dipierro, and Valdinoci 2017) and projectile motion with wind (Özarslan et al. 2020).

2 The Nonlocal (Fractional) Laplacian

2.1 The Classical Laplacian

Let us recall first the Laplacian of a function (indicated by the operator ∆), which we will refer to as the

‘classical’ Laplacian. This is most commonly defined as the sum of second derivatives:

∆u(x) =

n∑
i=1

∂2u

∂x2
i

(x) (1)

An alternative, somewhat surprising, but very elegant, definition lies in an integral formulation:

−∆u(x) = lim
r↘0

const

rn+2

∫
Br(x)

(u(x)− u(y))dy (2)

In this way we can see that the Laplacian can be thought of as an averaging function, where the Laplacian of

a function at a point x considers the average difference between the function’s value at x and at all the points

in the neighbourhood.

2.2 The Fractional Laplacian

The fractional Laplacian, denoted by the operator (−∆)s with s ∈ (0, 1), is named such due to the property

that

(−∆)s(−∆)s
′
u(x) = (−∆)s+s′u(x) (3)

The fractional Laplacian is defined in its integro-differential form, often called the ‘Riesz’ definition or the

‘integral’ definition in the literature, as follows:

(−∆)s := −C(n, s)

2

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy (4)

or, more conveniently, this can be represented (Abatangelo and Valdinoci 2019)

(−∆)s = C(n, s)P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy (5)

with

C(n, s) :=

(∫
Rn

1− cosω1

|ω|n+2s
dω

)−1

(6)

The integral is defined in the Principal Value sense, as indicate by ‘P.V.’. This is to account for the singularity

when x = y, and is more accurately states

(−∆)su(x) := lim
ϵ↘0

∫
Rn\Bϵ(x)

u(x)− u(y)

|x− y|n+2s
dy (7)
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Other properties of note regarding the fractional nature are that

lim
s→1

(−∆)su(x) = −∆u(x) (8)

lim
s→0

(−∆)su(x) = u(x) (9)

which is essentially to say that s → 1 recovers the classical Laplacian, while s → 0 results in the operator acting

trivially on the function.

2.3 Compare the Pair

Note two key differences between the Laplacian and fractional Laplacians’ definitions.

Laplacian Fractional Laplacian

−∆u(x) (−∆)su(x)

limr↘0
const
rn+2

∫
Br(x)

(u(x)− u(y))dy C(n, s)P.V.
∫
Rn

u(x)−u(y)
|x−y|n+2s dy

First, the integration limits: the Laplacian is computed by integration over a ball that is sent to a radius of 0. In

this way, the averaging property of the Laplacian is taken only over the points in the immediate neighbourhood

of x. In comparison, the fractional Laplacian is integrated over all space. This point is why the fractional

Laplacian is nonlocal, and hence is called the fractional Laplacian or nonlocal Laplacian interchangeably.

The second key difference is in how this averaging occurs. See that in the classical Laplacian, each point

within Br(x) contributes equally and is averaged by dividing the integral by 1
rn+2 . In the case of the fractional

Laplacian, each point’s contribution is weighted by the kernel 1
|x−y|n+2s within the integrand, and so points

close to x contribute more than points far away.

2.4 What about fractional derivatives?

It is tempting to attempt to define the fractional Laplacian in terms of fractional derivatives, where instead of

the sum of second derivatives we have the sum of α derivatives, with α ∈ (0, 2). However, this is an inappropriate

description. As a simple example of why, let us consider some fractional derivative ∂αf
∂xα . The fractional nature

requires that

∂α

∂xα

∂2−αf(x)

∂x2−α
=

∂2f

∂x2
. (10)

Let us assume that we can construct the fractional Laplacian as

(∆)α/2f(x) =

n∑
i=1

∂α

∂xα
i

(x)f(x) (11)

For the purpose of a simple counterexample, suppose we choose α = 1 such that the fractional derivatives turn

to first derivatives, then we see for n > 1 dimensions, due to the chain rule,
n∑

i=1

∂

∂xi
(x)

n∑
j=1

∂

∂xj
f(x) ̸=

n∑
i=1

∂2

∂x2
i

f(x) = ∆f(x) (12)
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and hence (11) was a poor construction of the fractional Laplacian. I highlight this to emphasise the importance

and beauty of the Riesz integral definition of the fractional Laplacian, that although it seems somewhat removed

from the basic definition of the Laplacian in terms of second derivatives, it is arguably the most intuitive

definition, as long as we understand the averaging, ‘democratic’, nature of the Laplacian in integral form.

2.5 Alternative Definitions

As Kwaśnicki (2017) summarises, there are at least ten different equivalent definitions of the fractional Laplacian.

Of particular note is the Fourier definition, also known as the spectral definition, in the space L p, p ∈ [1, 2],

which appears to great utility in the literature:

F ((−∆)sf(ξ)) = −|ξ|2sFf(ξ) (13)

While this definition is equivalent to the integral formulation in Rn, Lischke et al. (2020) discuss that over

bounded domains there arises significant differences between the Fourier and Riesz definitions. As an example,

see Figure 1. This difference is explained in terms of the regularity results for the two definitions, however is

beyond the scope of this report. I will continue my discussions using the Riesz definition.

Figure 1: Left : numerical solutions to (−∆)sf(x) = sinπx using Riesz definition (dashed lines) and Fourier

definition (solid lines) of the fractional Laplacian. Right : Absolute differences between the two numerical

solutions. This is computed in one-dimension over the interval (−1, 1). These plots are from Lischke et al.

(2020).

3 The Fundamental Solution

In this section, we seek to build some intuition about how basic functions change as a result of generalising from

the classical Laplacian to the fractional Laplacian. We do this by considering the fundamental solution of the
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fractional Laplacian f , which is the solution to the equation

∆f = δ0(x) (14)

Where δ0(x) is the Dirac delta function. Essentially, this is prescribing the only nonzero element of the Laplacian

to being exactly on a source at the origin. This is useful, for instance, in n = 3 in order to describe the

electrostatic or gravitational potentials due to a point charge/mass. As has been found by Abatangelo, Dipierro

and Valdinocci in work that is still in progress, in the fractional case

(−∆)sf(x) = δ0 (15)

the fundamental solution is

Rn\{0} ∋ x 7→ f(x) :=


Γ(n−2s

2 )
22sπn/2Γ(s)

(
|x|2s−n − 1

)
if n ̸= 2s

− 1
π ln |x| if n = 1 and s = 1

2

(16)

For example, see Figure 2, in which we compare one dimensional instances of the above equations (i.e. n = 1).

In Fig 2a, we see an overview of how the fundamental solution changes with s. Perhaps more interesting is

Fig 2b, where we see that as s → 0, we find that the fractional Laplacian acts trivially, as we know from

Section 2.2, and so the fundamental solution resembles the Dirac delta distribution. As s → 1, we recover the

classical fundamental solution, which in R is f(x) ∼ |x|−1. In a hand-waving way, we can compare the curves

in Fig 2a and see that varying s is balances the fundamental solution between these two extremes of either the

fractional Laplacian not doing anything, or recovering the classical fundamental solution.

(a) (b)

Figure 2: Fundamental solution of the fractional Laplacian for different values s.

3.1 A Simple Thought on Nonlocal Gravity

From this understanding of the fundamental solution, a fun hypothetical we can ask is how gravitational

attraction varies with the fractional exponent s. To this end, we can suppose the Earth’s mass of 5.972×1024kg

is a point mass at the Earth’s centre, and that we are standing at the surface of the Earth, about 6.378× 106m

from the centre. Using Newton’s laws of gravitational attraction, we can recall that the force due to gravity is
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given

F = −∇V (17)

Where

V (r) =
−GMm

r
(18)

is the gravitational potential at radius r for the Earth’s mass M , our mass m and Newton’s Gravitational

constant G. Now if we (quite naively) create a nonlocal gravitational potential Vs based on the fundamental

solution, we might like to define it as

Vs(x) := GMm|r|2s−3 (19)

which is constructed from the fundamental solution, with constants adjusted, n = 3, and a vertical translation.

Now, we can continue by differentiating and using F = ma to see that the acceleration at the surface of the

Earth in this nonlocal regime would be given

as = GM(2s− 3)|r|2s−4 (20)

Which is displayed in Figure 3.

Figure 3: Acceleration due to nonlocal gravity at the surface of the Earth. a ≈ 9.8ms−2 as s → 1.

Notice that very quickly as the fractional exponent decreases, objects would start getting very light. I will note,

too, that one reason why this is probably a terrible model for nonlocal gravity is that it doesn’t account for

actual nonlocality in the physical system. We treated the Earth as a point mass because we are allowed to in

the classical case, but perhaps if gravity did act nonlocally in this hypothetical, then contributions from the

other side of the Earth would act differently compared to local contributions. Perhaps, then, this model only

really works if you are far away from the object and so can treat it as a point mass. Also, this model uses ms−2

in Figure 3, but the fractional equations actually alter the units themselves, although this would be fixed by

the introduction of Gs, a nonlocal gravitational constant.
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4 Motivating the fractional Laplacian

4.1 The Nonlocal Heat Equation

A convenient and intuitive motivation for the fractional Laplacian arises from considering the heat equation.

This subsection is a rewriting of work outlined in Abatangelo and Valdinoci (2019), Valdinoci (2009) and Bucur,

Valdinoci, et al. (2016).

4.1.1 The Classical Heat Equation

Perhaps the most famous partial differential equation is the heat equation:

∂tu(x, t) = c∆u(x, t) (21)

where u(x, t) prototypically represents temperature, but of course the use of this equation extends far beyond.

A derivation of the heat equation comes from considering discrete random walks, in which at some time step τ ,

we have some small spatial interval h > 0 such that

τ = h2 (22)

The random walk takes place on a lattice hZn. Let us place a particle at some point on the lattice, and al-

low it to travel, at each time step, to a neighbouring coordinate with equal probability. For example, in Z2,

the particle can move left, right, up, or down (see Figure 4a). In Z3, the particle can additionally move back-

wards and forwards, and so on for more dimensions. The derivation of the heat equation is shown in Appendix A

Physically, the link between the particle’s random walk and the heat equation can be thought of as a dif-

fusion process. Imagine, for example, heating one particular part of a block of metal to an extremely high

temperature. On the atomic scale, heat transfer is indeed achieved by the random movements of particles col-

liding with other particles and transferring kinetic energy. Thus, the macroscopic diffusion of heat is explained

by analysing these microscopic random walks.

4.1.2 The Nonlocal Heat Equation

The generalisation to the nonlocal heat equation is essentially through reasoning, why should a particle on be

allowed to walk to its neighbouring spots? Why should it not be allowed to jump far away, with the probability

of it doing so diminishing as the jump length increases? This is illustrated in Figure 4b. On some allowed jump

region described by the domain Ω ∈ Rn, the particle can travel anywhere with probability of doing so inversely

proportional to the length of the jump. Through this treatment, we derive the nonlocal heat equation

∂tu(x, t) = c(−∆)su(x, t) (23)

which is proved in Appendix B. This is one intuitive motivation for the fractional Laplacian, as we can see that

it describes the nonlocal diffusion of particles, whereas the classical Laplacian describes the case when particles

can only travel in their immediate neighbourhood.
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(a) In a discrete random walk, the particle may

move to any neighbouring coordinate with equal

probability.

(b) In the nonlocal regime, the particle may

jump to any coordinate in the prescribed do-

main, with its probability of doing so being in-

versely proportional to the length of the jump.

Figure 4

4.2 Anomalous Transport

If the classical heat equation describes a standard diffusion process, then the nonlocal heat equation describes

what is called ‘anomalous’ diffusion. This kind of diffusion is observed in soft matter (McKinley, Yao, and Forest

2009), plasmas, glassy materials (Klages, Radons, and Sokolov 2008), and in COVID transmission (Akindeinde

et al. 2022). The modelling of anomalous transport in the literature utilises a wide range of fractional operators,

but essentially the benefit of this treatment is that fractional operators are nonlocal, which allow consideration

of long-range effects. In the case fluid dynamics, such as that observed in plasmas, these effects are things like

turbulence and drag. In disease modelling, a time-fractional operator is used to allow equations to take into

account things that have happened in the past. For example, it is a good idea to build into the model some

kind of immunity period after catching COVID, and the fractional operator allows this. We can think of this

as being nonlocal in time.

5 Nonlocal Biology

5.1 The Lévy Flight

Instead of diffusion, another way of viewing the random movement of a particle in the classical case is as a

simple random walk. In the limit as the lattice and the time steps shrink, we recover Brownian motion, as

seen in Figure 5a. However, if we permit the particle to take these long jumps, with jump-length probability
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following a power law distribution, then the particle follows the Lévy flight (Metzler and Klafter 2000), as seen

in Figure 5b. Viswanathan et al. (1996) observed that albatrosses appear to follow a Lévy distribution in the

(a) Brownian motion (b) Lévy flight (s = 0.75)

Figure 5: Random walks

length of their flights, and there appears to be good reason for this. The Lévy flight hypothesis argues that

when food is scarce, it is best to follow a Lévy flight rather than Brownian motion when searching for food

(Klages 2018). This makes sense intuitively, as circling the same area will not yield the albatross many fish,

especially if it dives and scares the fish away. Instead, the albatross should search an area and, if it doesn’t find

many fish there, then fly far away and search that new area.

The authors of the 1996 seminal paper outlining the albatross’ flights revisited the data and found that it

actually disagreed with their original conclusion (Edwards et al. 2007). It is argued that perhaps the sum of

exponential distributions, or a Gamma distribution, suits the data better. This statistical question arises from

the difficulty of dealing with heavy tail distributions, who appear quite similar, especially with low sample

sizes. Nonetheless, in the two and a half decades following the work of Viswanathan et al., many animals have

been observed to follow the Lévy flight (Benhamou 2007). One notable example of the Lévy flight is in crime

modelling (Chaturapruek et al. 2013). It seems that burglaries follow a Lévy distribution, as once one house

is broken into, that same house or houses in the neighbourhood have an increase chance of being burgled in

the coming weeks. The robbers are in the area, and they have learned the neighbourhood, after all. After

some weeks, perhaps once people start locking their windows and installing security systems, the burglars move

on, and hence exhibit the long jump behaviour characteristic of the Lévy flight. It is fascinating, then, that

the nonlocal diffusion that was discussed in Section 4 in the context of physics has applications in biology and

modelling human behaviour.

5.2 Efficient Populations

If we understand that biological populations often follow Lévy flights, it motivates the modelling of populations

in terms of nonlocal migrations. One such model comes from adapting the commonly used logistic equation.
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The discussions in this subsection are adapted from the work of Caffarelli, Dipierro, and Valdinoci (2016) and

Dipierro, Savin, and Valdinoci (2017).

5.2.1 The Classical Case

∂tu = ∆u+ (ρ− u)u (24)

Where u = u(x, t) is the population density term and ρ = ρ(x, t) is some term indicating the maximum sus-

tainable population. ∂tu accounts for births and deaths, while ∆u, in the spirit of the heat equation, describes

the migration of animals within the domain. (ρ− u)u is a term that accounts for resources where, for example,

if there is overpopulation then the term is negative as animals starve, and if u is somewhere between 0 and ρ

then there is population growth as there is more food than they are eating.

One possible case of interest is when the system is time-stationary, i.e. ∂tu = 0 as births and deaths are

in perfect balance, and so

−∆u = (ρ− u)u (25)

And then we may want to ask what an efficient population looks like, where ρ = u, so that the population is

maximising the use of resources everywhere. The equation reduces to Laplace’s equation, as we are asking for

solutions where

ρ = u (26)

∆u = 0 (27)

The trouble here is that harmonic functions (functions satisfying Laplace’s equation) are somewhat rare, so for

arbitrary ρ there is unlikely to be a solution to (27). Hence, in the classical case, we simply cannot find in the

general case a solution for efficient populations.

5.2.2 The Nonlocal Case

Understanding the migration of animals as a nonlocal process, we can replace the Laplacian in (24) with the

nonlocal Laplacian. Then our nonlocal logistic equation becomes

∂tu = (−∆)su+ (ρ− u)u (28)

We ask the same questions, again, about a time-stationary solution where the population maximises the use of

resources, so that

ρ = u (29)

(−∆)su = 0 (30)
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But now we can exploit a beautiful result due to Dipierro, Savin, and Valdinoci (2017) that all functions are

locally s-harmonic up to a small error. More specifically, for any ϵ > 0, any k ∈ N, and any function u ∈ Ck(B̄1),

there exists vϵ such that ||u− vϵ||CkB1
≤ ϵ

(−∆)svϵ = 0 in B1

(31)

For reference, the Ck norm of a function is defined

||f ||Ck(Ω) :=
∑
i=0k

sup
x∈Ω

|f (i)(x)| (32)

The statement in (31) first describes that the proxy-function vϵ can be arbitrarily close to the original function

u, and then that within B1, the function is s-harmonic. The fact that this domain is in B1 centred at the origin

is no issue, as any function through translation and scaling can satisfy this.

The proof of this theorem is very involved, however the general overview is as follows:

1. Represent u as a polynomial, which is by definition the sum of monomial terms. The fractional Laplacian

is linear (as (−∆)s(u + αv) = (−∆)su + (−α∆)sv). Therefore, the proof requires finding s-harmonic

function for any xβ/β! in Ck(B1).

2. Construct an s-harmonic function with the same derivatives as xβ/β! up to order |β| at the origin.

3. Rescale the this constructed s-harmonic function such that higher order terms (between |β| + 1 and k)

vanish. This allows arbitrarily close approximation of xβ/β!.

This theorem means that when seeking solutions to (30), as it turns out, for arbitrary ρ we can always find

a population distribution that is sufficiently close to this resource distribution such that the population is

maximally efficient at using its environment. The key to why this is allowed in the nonlocal case but not

the classical case is in the oscillation of u(x, t) outside of the domain. If ρ is particularly nasty and makes it

seemingly difficult to construct an s-harmonic function, then all that is required is oscillations off to infinity

that counterbalance contributing terms within the domain. What is the physical meaning of this in terms of

animal populations? Maybe hunter-gathering? Agriculture that does not need to be maximally efficient outside

of a big city that does? Perhaps there is nice utilisation of this fact in the future for real population modelling,

but for now we can be satisfied with appreciating the mathematics.

5.3 Fractional Quantum Mechanics

I’ve included fractional quantum mechanics in the nonlocal biology section because I think it is fitting to liken

a quantum object to the albatrosses. More specifically, the standard Schrödinger equation (in this section,

I’ll move away from using the term ‘classical’ when referring to the non-fractional concepts) is derived from
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considering the Feynman path integral over quantum paths in Brownian motion (Dávila et al. 2015). This is

not dissimilar from the heat equation. The result is the Schrödinger equation:

iℏ
∂

∂t
Ψ =

−ℏ2

2m
∆Ψ+ VΨ (33)

With i2 = −1, ℏ is Planck’s constant and Ψ = Ψ(x, t) is the wavefunction.

Now, like an albatross, we will allow the quantum object to move with a Lévy flight instead of with Brownian

motion and take the Feynman path integral. The result is the fractional Schrödinger equation (Jeng et al. 2010):

iℏ
∂

∂t
Ψ = Dαℏ2s(−∆)sΨ+ VΨ (34)

where Dα is the fractional diffusion coefficient.

The study of solutions to the fractional Schrödinger equation is an emerging field, with the equation only

being introduced this century (Laskin 2000). The intricacies of these is unfortunately beyond the scope of this

report, however it is interesting to note this as the final example of the applications of the fractional Laplacian.

The study of nonlocal operators is truly at the nexus of many diverse and fascinating fields.

6 Future Directions

One idea arising from this project that can potentially be explored further is the link between self-organised

criticality (SOC) and nonlocality. SOC describes how the dynamics of a system organises around a critical point.

In particular, it appears that power-law scaling is the signature of both of these phenomena; it is scale-invariant,

just as Lévy flights are. One such recent example of SOC is shown by Korchinski et al. (2021), who suggest

that neurons display criticality through ‘neuronal avalanches’, where the effect of electric activity is observed to

follow a power law distribution in how far it reaches. Is this not just the same as the nonlocal particle who can

jump anywhere, with the probability of jumping to a spot inversely proportional to the length of that jump?

Nonlocal activity in the brain is already an established phenomena (Dipierro and Valdinoci 2018), so it is not

too far a leap to consider that these neuronal avalanches may be a nonlocal activity.

7 Conclusion

The game we played with the fundamental solution, the heat equation, biological modelling and the fractional

Schrödinger equation is to replace local operators with nonlocal ones, in particular replacing the Laplacian with

the fractional Laplacian. This generalisation allows these mathematical models to incorporate nonlocality into

their operation. Nonlocality is motivated by the simple idea that particles need not only follow a Brownian

walk, but can jump anywhere on the domain. Nonlocal mathematics is fairly recent in its formulation, and

current active areas of research include in particular problems like the fractional Schrödinger equation, or in

more broad areas such as nonlocal minimal surfaces. While very new and exciting, the importance of nonlocality
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through fractional calculus was foreshadowed many years ago, when Leibniz wrote to L’Hôpital in September

of 1695 about the half-derivative: ‘It will lead to a paradox, from which one day useful consequences will be

drawn’. It seems this day is here, and the consequences are indeed both useful and beautiful.
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A Derivation of the Heat Equation

A particle originally at some point hk̄ with k̄ ∈ Zn at time t has 2n options to which it can walk in the follow-

ing time step. These 2n options are each of the lattice points hk̄+hei with ei the standard Euclidean basis of Rn.

The probability of the particle being at x ∈ hZn at time t ∈ τN is denoted u(x, t) and we can write that

u(x, t+ τ) =
1

2n

n∑
i=1

(u(x+ hei, t) + u(x− hei, t)) (35)

since the particle ending up at x is dependent on it being at a neighbouring point in the previous time step,

and then jumping to x.

Noting by Taylor approximation that

u(x+ hei, t) + u(x− hei, t)− 2u(x, t)

=

(
u(x, t) + h∇u(x, t) · ei +

h2D2u(x, t)ei · ei
2

)
+

(
u(x, t)− h∇u(x, t) · ei +

h2D2u(x, t)ei · ei
2

)
− 2u(x, t) +O(h3)

= h2∂2
xi
u(x, t) +O(h3) (36)

Also, subtracting u(x, t) from both sides in (35) yields

u(x, t+ τ)− u(x, t) =
1

2n

n∑
i=1

(u(x+ hei, t) + u(x− hei, t)− 2u(x, t)) (37)

So now we can construct the time derivative ∂tu(x, t) by dividing by τ and sending it to 0, and we see

∂tu(x, t) = lim
τ↘0

u(x, t+ τ)− u(x, t)

τ

= lim
h↘0

1

2n

n∑
i=1

u(x+ hei) + u(x− hei)− 2u(x, t)

h2
since τ = h2

= lim
h↘0

1

2n

n∑
i=1

∂2
xi
u(x, t) +O(h) using (36)

=
1

2n
∆u(x, t) (38)

and we have recovered the heat equation.

B Derivation of the Nonlocal Heat Equation

Once again, the particle inhabits points on the lattice hZn, this time with

τ := h2s (39)

Start the particle at the point hk̄ ∈ Ω and describe the probability of it jumping to the point hk ̸= hk̄ as

Ph(k̄, k) :=
χΩ(hk̄)χΩ(hk)

C|k − k̄|n+2s
(40)
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Where

χΩ(x) :=

1 if x ∈ Ω

0 if x /∈ Ω

(41)

and forces the particle to only jump within the region Ω. The normalisation constant C > 0 is defined

C :=
∑

k∈Zn\{0}

1

|k|n+2s
(42)

Also define for convenience the probability of the particle moving off its current position

ch(k̄) =
∑

k∈Zn\{0}

Ph(k̄, k) (43)

and the probability of the particle staying on its current position

ph(k̄) := 1− ch(k̄) (44)

As with the classical heat equation, let u(x, t) describe the probability density that a particle is located at

x ∈ Ω ∩ (hZn) at time t ∈ τN.

Since the labelling of points on the lattice is arbitrary, let’s suppose x = 0 ∈ Ω and thus ch := ch(0) and

ph = ph(0). Then the probability of being back at the origin at time t + τ is a sum over the probability of

it being anywhere else, and then jumping back to the origin, or it being at the origin and then staying at the

origin. This can be written

u(0, t+ τ) =
∑

k∈Zn\{0}

u(hk, t)Ph(k, 0) + u(0, t)(1− ch) (45)

Subtracting u(0, t) from both sides and rearranging, see that

u(0, t+ τ)− u(0, t) =
∑

k∈Zn\{0}

u(hk, t)Ph(k, 0)− u(0, t)ch

=
∑

k∈Zn\{0}

(u(hk, t)− u(0, t))Ph(k, 0) using (43)

=
∑

k∈Zn\{0}

(u(hk, t)− u(0, t))
χΩ(hk)

C|k|n+2s
using (40)

=
hn+2s

C

∑
k∈Zn\{0}

(u(hk, t)− u(0, t))
χΩ(hk)

|hk|n+2s
(46)

Now dividing by τ an recalling that τ = h2s, we see that

C
u(0, t+ τ)− u(0, t)

τ
= hn

∑
k∈Zn\{0}

(u(hk, t)− u(0, t))
χΩ(hk)

|hk|n+2s
(47)

Adding both sides of the equation to themselves, but noticing in the addition to the right hand side that we

can reflect k to −k due to the symmetry in (40), see that

2C
h(0, t+ τ)− u(0, t)

τ
= hn

∑
k∈Zn\{0}

(u(hk, t)− u(0, t))χΩ(hk) + (u(−hk, t)− u(0, t))χΩ(−hk)

|hk|n+2s
(48)
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Let’s now define

φ(y) :=
(u(y, t)− u(0, t))χΩ(y) + (u(−y, t)− u(0, t))χΩ(−y)

|y|n+2s
(49)

and notice that assuming u is smooth, then for y close to 0, utilising Taylor approximation

|(u(y, t)− u(0, t))χΩ(y) + (u(−y, t)− u(0, t))χΩ(−y)|

= |(u(y, t)− u(0, t)) + (u(−y, t)− u(0, t))|

=
∣∣∇u(0, t)y +O(|y|2) + (−∇u(0, t)y +O(|y|2))

∣∣
=O(|y|2) (50)

Hence when y is close to 0,

φ(y) = O(|y|2−n−2s) (51)

Now taking the integral of φ(y) (assuming it is bounded and Riemann integrable) and using the Riemann sum

representation, see that∫
Rn\Bδ

φ(y) = lim
h↘0

hn
∑
k∈Zn

φ(hk)χn
R\Bδ(hk) = lim

h↘0
hn

∑
k∈Zn,k ̸=0

φ(hk)χRn\Bδ
(hk) (52)

for fixed δ > 0.

Also, see that for small δ, using (51)∫
Bδ

φ(y)dy =

∫
Bδ

O(|y|2−n−2s)dy = O(δ2−2s) (53)

So using these two equations integrating φ(y) over the two domains, we can sum the two to achieve integration

over Rn: ∫
Rn

φ(y)dy = O(δ2−2s) + lim
h↘0

hn
∑

k∈Zn,k ̸=0

φ(hk)χRn\Bδ
(hk)

= O(δ2−2s) + lim
h↘0

hn
∑

k∈Zn,k ̸=0

φ(hk) +
∑

k∈Zn,k ̸=0

φ(hk)(χRn\Bδ
(hk)− 1) (54)

Noticing now that when h|k| < δ, and hence the particle is inside Bδ,∣∣∣∣∣∣
∑

k∈Zn,k ̸=0

φ(hk)(χRn\Bδ
(hk)− 1)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
k∈Zn,0<h|k|<δ

φ(hk)

∣∣∣∣∣∣
≤ const hn

∑
k∈Zn,0<h|k|<δ

|hk|2−n−2s

= const h2−2s
∑

k∈Zn,0<h|k|<δ

|k|1−s

|k|n+s−1

≤ const h2−2s

(
δ

h

)1−s ∑
k∈Zn,1≤h|k|<δ

1

|k|n+s−1

≤ const h2−2s

(
δ

h

)1−s (
δ

h

)1−s

= const δ2−2s (55)
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Which can be absorbed into the O(δ2−2s) term in (54) and hence we find∫
Rn

φ(y)dy = O(δ2−2s) + lim
h↘0

hn
∑

k∈Zn,k ̸=0

φ(hk) (56)

And now choosing δ to be small, we see the O(δ2−2s) term vanishes and we are left with∫
Rn

φ(y)dy = lim
h↘0

hn
∑

k∈Zn,k ̸=0

φ(hk) (57)

Finally, using (48) and observing we can take the limit as t ↘ 0 to recover the time derivative, we see

2C∂tu(0, t) = lim
h↘0

2C
u(0, t+ τ)− u(0, t)

τ
(58)

= lim
h↘0

hn
∑

k∈Zn,k ̸=0

φ(hk) (59)

=

∫
Rn

φ(y)dy (60)

=

∫
Rn

(u(y, t)− u(0, t))χΩ(y) + (u(−y, t)− u(0, t))χΩ(−y)

|y|n+2s
dy (61)

= −2(−∆)sΩu(x, 0) (62)

using the fractional Laplacian definition introduced in (4). The subscript Ω on the fractional Laplacian here is

to indicate that this is defined on the domain Ω.
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