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1 Abstract

Solving inverse problems is a crucial process in a wide range of applications, from understanding scientific

phenomena to building effective models for prediction. This class of problem involves inferring parameters of

a deterministic model from observed data. Bayesian inference is a powerful tool for solving inverse problems

using stochastic processes where the parameters are random variables from a probabilistic distribution, called

the posterior distribution. The Markov chain Monte Carlo (MCMC) method provides a way to find the posterior

distribution numerically. However, MCMC algorithms can become impractical if the model is computationally

expensive due to its requiring many evaluations of the aforementioned model. To address this challenge, a deep

neural network (DNN) is proposed as a surrogate model to help reduce the computational cost of Bayesian

inference. In this research, we inferred the parameters of a model of nitrogen mineralisation in soil from the

Algricultural Production Systems Simulator (APSIM), using simulated data with artificial errors. The initial

samples used for training the DNN were generated from a fast but approximate called component-wise iterative

ensemble Kalman inversion method. We find that by using a well-trained surrogate model, the MCMC algorithm

was able to achieve similar predictive performance to an exact Bayesian method, namely sequential Monte Carlo

(SMC), a popular inference method, at significantly reduced computational cost.

2 Introduction

By definition, “simulation is the use of a model to develop a conclusion that provides insight on the behaviour

of any real-world elements” (McHaney, 1991). With the rapid growth of computing power, the world has seen

the development and application of increasingly complex simulations in multiple aspects of life, for example:

1. Weather forecasting: Meteorologists use computer simulations to predict the weather by considering fac-

tors such as temperature, humidity, wind speed, and pressure (Hollis and Kariko, 2006). Such simulations

help provide more accurate weather forecasts, allowing better preparation for severe weather conditions.

2. Traffic management: Transportation engineers use computer simulations to model the flow of traffic

(Ramamohanarao et al., 2016). This allows them to optimise traffic lights and road layouts.

3. Medical imaging: Doctors use medical imaging simulations to model the behaviour of certain biomedical

products in the body (Viceconti et al., 2016). This helps to better understand the effects of these products,

allowing faster development and regulation.

In each case, it is clear that computer simulations facilitate accurate predictions and improve our under-

standing of complex systems.

To create a simulation that resembles the real world as closely as possible, it is important to find a suitable

set of parameters that allows the model to fit experimental data. This class of problem is called an inverse

problem. An inverse problem involves finding the underlying parameters of the model, based on the observed

data.
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A major challenge introduced with inverse problems is the fact that no model can perfectly represent reality

as there is always a degree of error and uncertainty associated with them. This error can stem from multiple

sources including, but not limited, to measurement errors, limitations in the data used to build the model, and

inherent complexities of the target system.

One powerful method for solving inverse problems, taking into account the uncertainty, is Bayesian inference.

This is a statistical approach that treats the model parameters and the error as random variables, and it uses

prior knowledge about the model along with observed data to make predictions and update the beliefs about

the system being modelled. While the analytical form of the posterior is not always known, it is possible to

sample from this distribution using a numerical method, such as one of the Markov chain Monte Carlo (MCMC,

Robert and Casella, 2004) algorithms. However, these methods generally involve numerous evaluations of the

model, hence inferring computationally expensive models becomes impractical.

In this research, we propose the use of a deep neural network (DNN) as a surrogate model for Bayesian

inference, as inspired by Angione et al., 2022 and Chen, 2022, allowing significantly reduced computational

cost. DNNs have been found to be a universal approximator, meaning they are capable of approximating any

function to a certain degree of accuracy (Hornik et al., 1989). By using a DNN as a surrogate, it is possible to

solve the inverse problem more efficiently, while still getting accurate results compared to traditional models.

In this work, a surrogate was created for the Agricultural Production Systems Simulator (APSIM, Holzworth

et al., 2014), a model capable of predicting nitrogen mineralisation in soil. While this model has numerous

parameters with most fixed at measured constants (Probert et al., 1998), only five chosen parameters were used

as inputs for the surrogates, and later inferred using the Metropolis-Hasting (Hastings, 1970) algorithm, one

of the simplest implementations of MCMC. The data used for inference is simulated from APSIM with added

artificial error to mimic experimental data.

To evaluate the effectiveness of this method, we visually compare the posterior distributions from the

Metropolis-Hasting algorithm on the surrogate against those from the sequential Monte Carlo (SMC, Del et al.,

2006) method on the original model. Additionally, the predictive performance of this method is also evaluated

against that of SMC. Here, SMC solves the inverse problem exactly, in that it does not rely on the surrogate,

and is more computationally expensive.

3 Statement of Ownership

The contributors to this project includes:

• Dan Tran designed the deep neural network architecture and implemented it using the Tensorflow (Python)

library; collected training data from CW-EIKI and performed data cleaning; implemented Metropolis-

Hasting using the surrogate and produced all outputs using Python; produced all results and the discussion

presented in this report.

• Dr Christopher Drovandi supervised the project; suggested the use of a Deep Learning Surrogate for
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Bayesian Inference; provided parts of the code to interact with the original APSIM model in MATLAB,

as well as to perform SMC, which hosts a Metropolis-Hasting algorithm.

• Dr Simon Denman supervised the project; provided reviews and clarification in building the Deep Learning

Surrogate.

• Imke Botha provided the posteriors from the component-wise iterative ensemble Kalman inversion (CW-

IEKI) and SMC.

4 Case Study: Predicting Nitrogen Mineralisation

4.1 Problem Definition

The method developed in this work is applied to APSIM’s prediction on nitrogen mineralisation in soil, with

an error defined by Vilas et al., 2021 as:

yrtj ∼ N (xtj , (ζ
r
tj )

2 + σ2), xtj = G(θ, tj), (1)

for j = 1, ..., T and r = 1, ..., R, where T is the number of time points, and R is the number of replicates per

time point. The function G(θ, tj) represents the deterministic prediction of APSIM, version 7.10 (Holzworth

et al., 2014) at time point tj for a set of parameters θ. Note that while G(·) has numerous parameters with

most fixed at measured values (Probert et al., 1998), θ represents a considered subset of these parameters. We

consider five parameters: θ = (fbiom, finert, ef biom = ef hum, rd biom and rd hum).

For each measurement, the error is assumed to be Gaussian, characterised by the variance (ζrtj )
2 + σ2. This

error structure is composed of a known term ζrtj - the standard deviation characterising the measurement error,

which is set to 4% of the observation yrtj ; and an unknown term σ - the standard deviation for error of unknown

origin. Under this assumption, σ is treated as an additional parameter to be estimated along with θ.

The model is fitted to a synthetic dataset, simulated using θ = (fbiom, finert, ef biom = ef hum, rd biom and

rd hum) = (0.1, 0.6, 0.3, 0.0025, 0.0005) and σ = 8, with T = 301 and R = 4. To allow stochastic simulation,

the known portion of the error ζrtj was set to 4% of the deterministic prediction at time point tj (Botha et al.,

2022), resulting in:

y∗,rtj ∼ N (xtj , (0.04 · xtj )
2 + σ2). (2)

We denote the truncated univariate normal distribution as N (x|µ, σ2, a, b) where (µ, σ) are the means and

standard deviation, and (a, b) are the lower and upper bounds. The assumed prior distributions for each of the

parameters are N (fbiom|0.093, 0.0252, 0.05, 0.15), N (fbiom|0.58, 0.12, 0.4, 0.8), Uniform(ef biom = ef hum|0, 1),

Uniform(rd biom|0.001, 0.01) and Uniform(rd hum|0, 0.0001) and Uniform(σ|0, 20) (Botha et al., 2022).
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4.2 Deep Neural Network Surrogate

The major challenge faced by numerical Bayesian inference methods is the requirement for many evaluations of

the model G(·), making such methods impractical when G(·) is computationally expensive to evaluate. This is

especially problematic when researching and experimenting with different numerical Bayesian inference methods

and different versions of the model. We seek to take advantage of the data produced by these methods to train

a deep learning approximator, allowing more efficient future optimisation.

4.2.1 Dataset and Transformations

For the DNN to sufficiently approximate the model, it is essential to have an appropriate dataset to train on.

We obtain the data from the component-wise iterative ensemble Kalman inversion (CW-IEKI, Botha et al.,

2022). An ensemble Kalman inversion algorithm simulates an initial ensemble from the prior, and iteratively

updates this to approximate the posterior (Iglesias et al., 2012). By extracting data by evaluating the ensemble

for each iteration, we possess sufficient training data. In this case study, the CW-IEKI was evaluated with 1,000

particles per iteration for a total of 11 iterations to produce a total of 11,000 samples of model parameters.

Note that since APSIM is a time-series simulation, we collected 7 model predictions at 7 time points for each

set of parameters.

To ensure the neural network can generalise well to unseen data, the 11,000 data points were randomly split

into a training set (80%), a validation set (10%), and a test set (10%). Before training the neural network, the

data was also standardised to ensure that all inputs were on the same scale.

4.2.2 Model Architecture

The neural network is designed to take in 6 input parameters, including 5 model parameters with an added

time dimension, to produce a single cumulative nitrogen mineralisation output. The network consist of 3 hidden

fully-connected (also called ‘dense’) layers, each containing 256 neurons and using the hyperbolic tangent (tanh)

activation function. While this architecture was not optimised via a neural architecture search or similar, it was

found to be sufficient for the task at hand. Figure 1 illustrates the architecture of this deep neural network.

To achieve the regression task, the neural network was trained with a Root Mean Squared Error (RMSE)

loss function, defined as the standard deviation of prediction errors:

RMSE =

√∑N
i=1(G(θ, tj)− Ĝ(θ, tj))2

N
, (3)

where G(θ, tj) is the original model’s prediction for parameters θ and time tj and Ĝ(θ, tj) is the neural

network’s prediction for the same parameters and time. For training, the model that best minimised the RMSE

of the validation data set was chosen, and the model was set trained until the validation loss did not improve

for 25 epochs.
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Figure 1: Deep Neural Network Architecture for the surrogate model. Each hidden layer consists of 256 neurons

and uses the hyperbolic tangent (tanh) activation function.

4.3 Metropolis-Hasting MCMC

We use the Metropolis-Hasting MCMC algorithm (shown in Algorithm 1, Hastings, 1970) to perform Bayesian

inference using the surrogate model. The initial samples used by this algorithm are the 1,000 samples generated

from the final iteration of CW-IEKI (Botha et al., 2022) instead of from the prior, as we seek to reduce the

number of iterations required until convergence.

4.4 Results

4.4.1 Surrogate Accuracy

Figure 2 shows the surrogate model performance by comparing the surrogate model predictions with the original

model predictions. We observe that the surrogate model was able to replicate APSIM’s behavour almost

perfectly, except for two data points at the higher end, and achieved an overall RMSE of 0.53. These exceptions

are considered insignificant due to there being very few parameter samples in that region, meaning these

parameter samples were discarded by CW-EIKI in an early iteration.

4.4.2 Inference of Model Parameters

Figure 3 shows the marginal posterior density plots of the six parameters after 5000 iterations of Metropolis-

Hasting MCMC replacing true model predictions with the DNN surrogate (simply referred to as MCMC here-

after). The parameters (fbiom, finert and rd hum) see little to no significant deviation from CW-IEKI since this

method already produced similar posteriors to SMC. On the other hand, (ef biom = ef hum, rd biom, σ) show

clear signs of convergence to SMC, thus producing a more accurate approximation than CW-IEKI. However,

we also observe that MCMC could not replicate the bimodality of ef biom = ef hum.
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Algorithm 1 Metropolis-Hastings Algorithm

Require: data y, initial ensembles θ1:N0 , number of iterations M

Ensure: N samples from approximate posterior distribution p̂(θ|y)

Calculate the covariance matrix Σ from θ1:N0

for m← 1 to M do

for n← 1 to N do

Sample θn,∗m from q(·|θnm) = N (θnm,Σ)

Calculate the acceptance probability α = min
(
1,

p(y|θn,∗
m )

p(y|θn
m)

p(θn,∗)
p(θn

m)

)
Draw a random number u ∼ Uniform(0, 1)

if α < u then

Set θnm = θn,∗m

end if

end for

end for

return θ1:NM

(a) Comparison of surrogate predictions against origi-

nal model predictions plot. The more the data points

line along the diagonal line, the better the surrogate

model performs.

(b) Surrogate predictions and original predictions plot

for data points by index. The better the two predic-

tions lines line up, the better the surrogate model is

performing.

Figure 2: Surrogate model performance in approximating the original APSIM model.
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Figure 3: Marginal posterior density plots of the six parameters.

The posterior predictive distribution shown in Figure 4 also illustrates similar predictive power between

MCMC and SMC, except that the MCMC posterior results in negative nitrogen mineralisation early in the

simulation, which is invalid. The cause of this error is considered out of scope for this research, but is speculated

to originate from the parameters not being strictly bounded in the regions defined by the priors.

The computing time for the MCMC method involves the time required to make 11,000 evaluations of the

original, expensive model in CW-EIKI; the time to train the deep neural network; and the time to make

5,000,000 predictions using the surrogate in MCMC. We find that on average, the surrogate model is around

1077 times faster than the original model, taking 373 milliseconds to evaluate 1,000 samples, compared to 400

seconds.

5 Discussion and Conclusion

In this paper, we have explored the use of a DNN surrogate model to accelerate the Bayesian inference process

on a model to predict time-series nitrogen mineralisation in soil, a module of APSIM. The goal of Bayesian

inference was to fit the model to a set of simulated data by optimising five parameters from the model, and a

noise parameter. The 11,000 data points used for training were obtained from 11 iterations of the CW-IEKI
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Figure 4: Comparison of the simulated data to the mean and 95% credible intervals for the posterior predictive

distribution of cumulative nitrogen mineralisation obtained from the surrogate model fitted to this data. Models

were fitted using MCMC (blue - yellow) and SMC (orange - green).

with an ensemble size of 1,000.

We used the dataset to train a fully connected deep neural network with six inputs, including five param-

eters from the model which we sought to infer, and a time parameter, to output a single cumulative nitrogen

mineralisation prediction. The network consisted of three hidden, fully connected layers of 256 neurons each,

all using the hyperbolic tangent activation function. Before training, the data set was standardised and split

into training (80%), validation (10%) and testing sets (10%). Considering this as a regression model, we used

the Root Mean Squared error loss function for training.

We found that the surrogate was able to mimic the original model almost perfectly, except in some rare cases

where there was limited training data. The Metropolis-Hasting algorithm (Hastings, 1970) of the Markov chain

Monte Carlo (MCMC) class was then applied to perform Bayesian inference on the surrogate model to infer

the original model’s parameters. We compared the performance of this method against that of the likelihood

tempering sequential Monte Carlo (SMC), an exact inference algorithm (Del et al., 2006), on the original model.

Most importantly, we found that by using the surrogate, the computational expense was reduced by a factor of

over 1000 with a similar final estimation of model parameters achieved.

Since this method involves two parts, being the surrogate and the Bayesian inference algorithm, future

work could target either area. Since the neural network used in this paper was not optimised, future work

could explore different hyperparameters for this network, i.e. the number of hidden layers, number of neuron

per layer; or adapt a different network architecture such as the recurrent neural networks that are capable of

producing sequential outputs, exploiting the time-series nature of the original model.
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Another area of improvement involves the use of more efficient inference methods instead of a fixed-number

of Metropolis-Hasting Monte Carlo iterations. Such methods include the Hamiltonian Monte Carlo algorithm

(Duane et al., 1987) and its extension, the No-U-Turn Sampler (Hoffman and Gelman, 2011), assuming it is

possible to extract gradient information from the surrogate, and that the surrogate’s gradient accurately reflects

that of the original model.

Finally, it is of interest to explore the universality and any limitations of this method, by applying it to other,

potentially more complex models. As observed in Figure 4, the predictions by APSIM follow a considerably

simple curve, making it easy for the surrogate to emulate its behaviours and produce effective parameter

estimations. With a more complex model, it is expected that more training data, or a more clever surrogate

architecture will be needed to yield similar performance.
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