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Abstract

We introduce the notion of self-similar groups through the language of automata. We see how

these self-similar actions can be generalised to actions on the path space of directed graphs, and

further to actions of higher dimensional graphs called k-graphs. For each, we introduce a generalised

notion of an automata. In particular we introduce the notion of a colour-permuting automata for

k-graphs, and give an example of an automata that seems to suggest colour-splitting automata are

well defined.
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1 Introduction

The notion of self-similarity is a familiar geometric property––the idea that an object, like a fractal, can

repeat itself at different length scales. Here we see how we can extend this notion to other mathematical

objects, groups and groupoids, and their actions, in a way that does not immediately match our intuitive

understanding of self-similarity. Historically, self-similar groups have made for rather interesting exam-

ples of groups. Grigorchuk’s self-entitled, Grigorchuk group, for example, was the first known finitely

generated group that had intermediate growth––growth which is faster than polynomial growth but is

sub-exponential; for a precise definition of growth see [Eld12]. From the outset, it is not so obvious

intuitively as to why self-similar groups have such desire-able properties.

Here, we are motivated by an entirely different field of Mathematics known as C∗-algebras. C∗-

algebras are a set of operator algebras between Hilbert spaces; one easy example are the n×n matrices.

It is natural to associate to objects, such as groups and groupoids, a particular C∗-algebra. Self-similar

actions provide interesting material to construct C∗-algebras, where this self-similarity somehow seems

to translate into the self-similarity of the C∗-algebra.

We first describe self-similar actions on trees, and their generalisations for directed graphs and the

category theoretic, higher dimensional, k-graphs. The language of automata allow us to encode these

otherwise cumbersome self-similar actions, and we introduce various definitions of them as we generalise

our actions. We begin with a discursive introduction to self-similar groups.

1.1 Statement of Authorship

The work here is based on a number of sources. The historical background, details and definitions in

§2 and §3 are largely based on standard texts [Eld12; Lac+18; Nek05]. The theory and extension of

automata to k-graphs is based on work by [Afs+19] and [Rae05]. I was led naturally by my supervisor

Nathan Brownlowe to ask whether it is possible to extend the definition of the automata in [Afs+19] to

one that is colour-permuting, or indeed colour-splitting. The example of the colour-splitting automata

is our own.
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2 Classical Self-Similar Actions

2.1 Self Similar Actions on Rooted Trees

Let X be a finite set and let X∗ be the set of all finite words in the alphabet X. That is, X∗ is the free

monoid containing all words x1x2 . . . xn for xi ∈ X including the empty word ∅. We say the action of a

group G on X∗ is self-similar if for any g ∈ G, and all x ∈ X and words w ∈ X∗, there exist y ∈ X and

h ∈ G such that
g · (xw) = y(h · w). (1)

At first it seems odd to generalise what is quite a geometric picture we have of self-similarity to a

property of elements in a group, but this idea of self-similarity becomes natural when we view our action

and condition (1) in a geometric light. In fact, X∗ is the vertex set of an infinite regular rooted tree

T in disguise. Any group G, thus, acts on X∗ via automorphisms of this tree. These trees and their

generalisations, objects which themselves have a familiar sense of self-similarity, are the backdrop for all

of our self-similar actions. Before we move on, then, let us introduce this geometric picture.

Definition 1 (Regular Rooted Tree). A regular rooted tree T consists of vertices T 0 = X∗ generated by

X, joined by edges T 1 in the natural way: (w1, w2) ∈ T 1 if and only if w2 = w1x for some x ∈ X. The

empty word ∅ is the root of the tree. The k th level of the tree Xk is the set of words in X∗ of length k.

Definition 2 (Automorphism of a Tree). An automorphism ϕ of T is a series of bijections Xk → Xk

that preserves adjacencies of vertices. That is, (w1, w2) ∈ T 1 if and only if (ϕ(w1), ϕ(w2)) ∈ T 1. Let

Aut(T ) be the set of all such automorphisms.

The action of G on T and therefore X∗ is a homomorphism φ : G → Aut(T ) which associates to each

g ∈ G an automorphism of the tree φg. As we have already done, we write the action of any g on w ∈ X∗

as g ·w. For simplicity we assume the action is faithful ; that is φ is an injective map. With this in mind,

it is easier to think of g and φg as interchangeable, and we can assume G ≤ Aut(T ).

Example 1. A helpful picture to have in mind is a binary tree –– all words in {0, 1}, as in Figure 1.

root

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Figure 1: The infinite rooted binary tree.
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It is useful to describe an automorphism by its action on the subtrees of T . We write wX∗ for the

subtree rooted at w, that is, all words beginning with w, wX∗ := {w1 ∈ X∗ | w1 = ww2, for w2 ∈ X∗}.

Example 2 (Portraits). The most simple automorphism of the binary tree is the automorphism that

swaps the subtrees 0X∗ and 1X∗ by sending words 0w to 1w and conversely, shown by its portrait in

Figure 2. Let this automorphism be s.

Intuitively, the portrait of an automorphism of a binary tree is a decoration of the vertices by trans-

poses ∗. A ∗ at w means swap trees at w0 and w1, by replacing words w0w1 with w1w1, and conversely.

For us they serve as a picture. We will not define portraits precisely as we will see soon there is a more

convenient way to represent automorphisms.

Example 3 (Odometer). Let a be the automorphism described by the portrait in Figure 3, with dec-

orations that continue infinitely down the right hand side of the tree. This automorphism, made of a

infinite sequence of mechanical swappings, is known as the odometer—why? We will see soon.

*

0 1

00 01 10 11

000 001010 011 100 101110 111

Figure 2: The portrait of automorphism s.

*

*

*

*

*root

Figure 3: The portrait of the odometer a.

2.1.1 Self-similarity from the Perspective of Trees

In general, the adjacency property of Definition 2 ensures that any automorphism must map subtrees

to other subtrees on the rooted on the same level of the tree. If g ∈ Aut(T ), then, we have a map

g : wX∗ → g(w)X∗ for any w ∈ X∗. Both subtrees are isomorphic to the original tree so it makes sense

to consider the action on wX∗ as if it were an automorphism on X∗ itself. With this in mind, we define

g|w : X∗ → X∗ as the automorphism on the tree rooted at w translated to an action on the larger tree,

so that it satisfies

g(ww1) = g(w)g|w(w1) (2)

for all w1 ∈ X∗. We call this map the restriction of g to w. Recalling s from Example 2, both g|0 and

g|1 are the identity map id, and Figure 4 shows this restriction map, for example on 1X∗. With a bit of

thought it is easy to see that g|w satisfies:

g|w1w2 = g|w1 |w2 (3)

(g1 · g2)|w = g1|g2(w) · g2|w (4)
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*

0 1∅

00 01 10 11

000 001 010 011 100 101 110 111

*

0∅ 1

00 01 10 11

000 001 010 011 100 101 110 111

id

Figure 4: The restriction of s to the tree 1X∗ is the identity.

In this light, G is self-similar only if for all g ∈ G we can restrict the action of g to any subtree wX∗

and there is another element g|w ∈ G which exactly describes this restricted action. Any self-similar

action must therefore agree with the self-similarity of the tree itself. In principle this gives our condition

on individual words of the tree in (1).

Example 4 (Odometer Revisited). Restricted to the tree 0X∗ the automorphism a acts as the identity.

Restricted to 1X∗, however, the restriction is again a. To make a self-similar group, then, we require at

least the identity id and a, and therefore that the group contains at least the cyclic group ⟨a⟩. Property

4 gives that (a2)|w = a|a(w) · a|w and thus (a2)|w ∈ ⟨a⟩ for any w ∈ X∗. Continuing this, it is not hard

to see that indeed ⟨a⟩ is a self-similar group.

Example 5 (Grigorchuk’s Group). For completeness let us also introduce Grigorchuk’s group from §1.

It is generated by five elements: a and id of the odometer, and automorphisms b, c and d whose portraits

are shown in Figure 5.

root

*

*

*

root

*

*
*

root

*

*

Figure 5: The portraits of b, c and d.

2.1.2 From Actions to Automata, and Back

For any w ∈ X∗, the restriction maps allow us to transit through T and make changes to w letter by

letter, depending only on our current restriction map, some g|v, before moving on to the next restriction

at letter x, g|vx. We can consider the set of these restrictions as the ‘internal states’ of a computer,

reminiscent of a Turing machine reading a section of tape, known as an automaton.
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Definition 3 (Automata on Trees, Laca et al. [Lac+18]). An automaton over X is a finite set of states

A and a function τ : A×X → X ×A, that sends (a, x) to (a · x, a|x), such that for all a ∈ A, x 7→ a · x

is a bijection. If τ(a, x) = (a · x, a|x), we write a · x = (a · x) · a|x.

An automaton over X∗ is defined recursively by

a|xw = a|x|w a · (xw) = a · x a|x(w). (5)

It is no suprise the notation for automata mimics that we have used for trees. Let w = x1 . . . xk for

xi ∈ X and define fa,k : Xk → Xk using (5) by

fa,k(w) = (a · x1)(a|x1
·x2) . . . (a|x1...xk−1

· xk). (6)

For each a ∈ A, {fa,k} =: fa defines an automorphism of T . To prove this it is enough to show by

induction on (6) that fa,k+1(wx) ∈ fa,k(w)X, which is a property equivalent to Definition 2 [Lac+18].

Theorem 1 (Laca et al. [Lac+18]). Let GA be the group generated by {fa | a ∈ A}. There is a faithful

self-similar action of GA on T such that fa · w := fa(w) for a ∈ A and w ∈ X∗.

Rather than repeat the proof of this fact we direct the reader to [Lac+18, §2, Prop. 2.2]; in short:

clearly fa satisfies (1) and it remains to prove that f−1
a as well the compositon of any two automorphisms

satisfying (1) also satisfy (1), as we very meekly began to do in Example 4. Conversely, every self-similar

group can be described by an automata with states being the set of all group elements. Automata here,

and more generally, provide a systematic way of representing and creating self-similar groups.

Example 6 (Odometer Re-Revisisted). For the odometer A = {a, id}, τ is defined by:

a · 0 = 1 · id a · 1 = 0 · a .

Any word in the form 11 . . . 1︸ ︷︷ ︸
k×1’s

0w is sent to 00 . . . 0︸ ︷︷ ︸
k×0’s

1w.

Read as a binary string in reverse, all we are doing is adding 1! Hence the infinite cyclic group ⟨a⟩

isomorphic to Z+: it is an adding machine––an odometer.
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3 An Extension to Directed Graphs

With this picture of self-similar group actions it is relatively straightforward to generalise the notion

of self-similarity to trees that are not necessarily regular. To so, however, we must first generalise the

alphabet we use. We swap X with E1 –– the set of edges in a finite directed graph E –– and T with a

new graph TE , which we will define shortly.

Definition 4. A finite directed graph E is a 4-tuple (E0, E1, rE , sE) containing a vertex set E0, edges

E1, and range and source maps rE , sE : E1 → E0.

The path space of E generalises the notion of words over X.

Definition 5. Let Ek = {µ = e1 . . . ek | ei ∈ E1 and s(ei) = r(ei+1)} be the set of paths of length

k ≥ 1. The path space of a directed graph is the set E∗ =
⊔

k≥0 E
k, i.e. paths of any length.

Definition 6. To a directed graph E we associate the graph TE containing vertex set T 0 = E∗ and edge

set
T 1 = {(µ, µe) | µ ∈ E∗, e ∈ E1 and sE(µ) = rE(e)}.

Example 7. In fact, the binary tree is the graph ∅E∗ := {µ ∈ E∗ | r(µ) = ∅} corresponding to the

directed graph in Figure 6.

01∅

Figure 6: The directed graph which produces the binary tree.

In general, however, E has multiple vertices; instead of a single rooted tree, TE is rather a forest of

trees. Each subgraph vE∗ = {µ ∈ E∗ | r(µ) = v} is a rooted tree at v ∈ E0, and the forest TE is the

disjoint union of these trees TE =
⊔

v∈E0 vE∗. As we are acting on multiple trees and wish to consider

maps not only from a tree to itself but also between trees, we now must work with partial isomorphisms

of TE .

Definition 7. A partial isomorphism of TE is a bijection g : vE∗ → wE∗ between trees at v, w ∈ E0

such that:

(P1.1) g|vEk is a bijection onto wEk for any k ∈ N, and

(P1.2) g(µe) ∈ g(µ)E1 for all µe ∈ vE∗ and edges e ∈ sE(µ)E
1.

Let PIso(E∗) be the set of all partial isomorphisms. For each g ∈ PIso(E∗) set d, c : PIso(E∗) → E0 as

the domain and codomain maps of g, such that g : d(g)E∗ 7→ c(g)E∗, that is d(g) := v and c(g) := w.
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We also associate with each v ∈ E0 an identity v : vE∗ → vE∗.

These partial isomorphisms act partially on TE in the sense that we act only on one tree at a time,

however it still mirrors our definition of automorphisms of trees. Condition (P1.1) ensures that each

kth level of tree vEk is mapped bijectively to that of wE. Together with (P1.2), which ensures edge

connections between successive levels are unchanged by g, this allows the structure of the tree to be

preserved.

Example 8. Take TE as the forest associated with the directed graph E in Figure 7. An easy example

of a partial isomorphism between vE∗ and wE∗ occurs under the renaming of edges E1 : 1 ↔ 3, 2 ↔ 4.

v w
2

1

3

4

v

0 1

00 01 10 11

1 2

13 14 23 24

w

0 1

00 01 10 11

3 4

31 32 41 42

Figure 7: A directed graph E and its forest of trees TE .

Now not all isomorphisms can be composed –– only those that agree on their domain and codomain

maps. Instead of a group, then, PIso(E∗) forms a groupoid. Intuitively:

Definition 8 (Groupoid). A groupoid is a small category with inverses. That is, a groupoid is a set G0

and a set of morphisms G containing inverses for each g ∈ G. The morphisms have a partially defined

multiplication (g, h) 7→ gh defined by the set of composable arrows G2 = {(g, h) | d(g) = c(h)}.

Lemma 2 (Laca et al. [Lac+18]). Let E = (E0, E1, rE , sE) be a directed graph with forest TE .

Then, (PIso(E∗), E0, c, d) is a groupoid with multiplication via concatenation of paths, identity arrows

v : vE∗ → vE∗ and set-wise inverses of each g : d(g)E∗ → c(g)E∗.

Let G be a groupoid with unit space E0 of a direct graph E. A groupoid action of G on E∗ is a

functor φ : G → PIso(E∗) preserving E0. We again assume φ is a faithful action so we can assume G is

a subgroupoid of PIso(E∗). This action leads to an equivalent notion of self-similarity:

Definition 9 (Self-Similarity of Directed Graphs). Let E be a directed graph and let G be a groupoid

with unit space E0. Suppose that G acts faithfully on the forest TE . This action is self-similar if, for

all g ∈ G and e ∈ d(g)E1, there exists h ∈ G such that

g · (eµ) = (g · e)(h · µ) (7)

for all µ ∈ s(e)E∗. We write g|e := h.
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Example 9. Let E be the more complicated graph in Figure 8, with forest TE . This example makes it

clear how this definition of self-similarity matches our previous intuitive picture. A map g : uE∗ → vE∗

for example, must be able be restricted to an action on subtrees of uE∗ and vE∗ which is described

completely by another element in the groupoid. For the subtrees s(2)E∗ and s(4)E∗ this is the action

g|2 on wE∗ as in Figure 9.

u v

w

3

2 6

1

5 4

7

u

0 1

00 01 10 10 10

1 2

13 14 25 26 27

v

0 1

00 01 10 10 10

3 4

31 32 45 46 27

w

0 1 2

00 01 10 11 20 20 20

5 6 7

51 52 63 64 75 76 77

Figure 8: The graph E and corresponding rooted trees at u, v and w.

u

0 1

00 01 10 10 10

1 2

13 14 25 26 27

v

0 1

00 01 10 10 10

3 4

31 32 45 46 27

g

g|2

Figure 9: The restricted action of g to the subtree g|2.

This self-similarity leads naturally to automata. Its definition is similar to Definition 3, however, we

now have extra conditions that ensure our automaton respects the structure of the trees.

Definition 10 (Automaton, [Lac+18]). An automaton over a directed graph, E = (E0, E1, rE , sE) is a

set of states A containing E0, range and source functions for these states: rA, sA : A → E0 such that

rA(v) = v = sA(v), and a function τ :

AsA×rE E1 ∋ (a, e) 7→ (a · e, a|e) ∈ E1
sE×rA A,

such that

(A2.1) e 7→ a · e is a bijection of trees sA(a)E
1 → rA(a)E

1, for all e ∈ E1 and a ∈ A;

(A2.2) For all a ∈ A and e ∈ E1, sA(a|e) = sE(a).

(A2.3) rE(e) · e = e, rE(e)|e = sE(e).
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The range and source maps rA and sA mimic the domain and range of maps of the partial isomorphism

maps in Theorem 2. By AsA×rE E1 we mean those states and edges that agree on their source and range

maps respectively. This allows τ to mimic the action of a groupoid of the 1st level of trees rooted

at vertices in E0. Likewise, the codomain of τ , E1
sE×rA A, as well as condition (A2.2), ensures the

restriction of a matches our intuitive picture. Condition (A2.3) ensures each v ∈ E0 acts as the identity

on vE∗.

A proof by [Lac+18], very similar to Theorem 1, shows that indeed we can construct partial isomor-

phisms for each a ∈ A that generate a groupoid G ∈ PIso(E∗) acting faithfully on TE .

Example 10. The automorphism in Example 8 is part of a self-similar action described by the states

{a, b, v, w}, where v and w are identities. Using the notation of Definition 3, τ is defined by the rules:

a · 1 = 3 · b, b · 3 = 1 · a,

a · 2 = 4 · b, b · 4 = 2 · a.

4 k-Graphs and Higher-Dimensional Self-Similar Actions

We are now ready to further generalise self-similar actions to higher dimensional graphs: k-graphs. First,

we will introduce k-graphs through the language of category theory, and provide some intuition that will

be useful to understanding these actions. For further reading on categories see [Rae05, §10] or [Mac71].

4.1 k-Graphs and Intuition

Definition 11 (Graphs of Rank k, [Rae05]). A graph of rank k, or k-graph, is a countable category

Λ = (Λ0,Λ∗) of objects Λ0 and morphisms Λ∗, equipped with a functor d : Λ → Nk called the degree

functor which satisfies the factorisation property (8):

For all morphisms λ ∈ Λ and any decomposition of d(λ) by m,n ∈ Nk, d(λ) = m+ n, there

are unique elements µ ∈ d−1(m) and ν ∈ d−1(n) such that λ = µν.
(8)

For n ∈ Nk, we denote by Λn all morphisms d−1(n) of degree n. Let {ei, 0 ≤ i ≤ k} be the standard

basis of Nk. If d(λ) = ei, we call λ an edge. Analogous to the case of a directed graph, we can consider

a k-graph as the union of path spaces. Suppose v ∈ Λ0, then vΛ := {λ ∈ Λ | r(λ) = v} and we write

TΛ :=
⊔

v∈Λ0 vΛ.

In a 1-graph Λ, any morphism λ ∈ Λ such that d(λ) = p ∈ N can be split uniquely into p morphisms

λi of degree 1, as in Figure 10. The degree functor thus computes the ‘length’ of any morphism. A
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1-graph, therefore, is simply the path space of the directed graph (Λ0, d−1(1), r, s), where r and s are

the range and source maps of morphisms in Λ.

λ, d(λ) = p

d(λi) = 1

Figure 10: The decomposition of a morphism of degree p ∈ N.

In two dimensions morphisms no longer have length but instead a rectangular structure.

Example 11. Set Ω2 := {(m,n) ∈ N2×N2 | m ≤ n}. As morphisms, let r(m,n) = (m,m) and s(m,n) =

(n, n) (that is, the points m,n ∈ N2 = Ω0
2). Define the composition of maps by (m,n)(n, p) = (m, p) and

set d(m,n) = n−m as a component-wise difference. This makes Ω2 a 2-graph.

In fact, Ω2 is the 2-dimensional lattice of morphisms on N2 leading to (0, 0), as in Figure 11. Here, the

red and blue morphisms have degree (1, 0) and (0, 1) respectively and are therefore edges. The 2-graph

contains all compositions of these edges, and we consider a morphism as equivalent to the rectangle of

paths which it decomposes into.

(0, 0)

(0, 1)

(1, 0) (2, 0) . . .

...

Figure 11: The 2-graph Ω2.

This can be generalised to Ωk := {(m,n) ∈ Nk × Nk | m ≤ n}. These ‘lattice’-like categories make

it clear why we like to think of a k-graph as a ‘higher dimensional’ graph. If Λ is k-graph, each λ ∈ Λ

must have some associated k-dimensional lattice of ‘basis’ edges in Ωk (like (1, 0) and (0, 1)) that defines

its unique factorisation. It is the association between these ‘basis’ paths to make up these ‘lattices’ that

completely defines a k-graph. Let us introduce this more formally. Figure 11 is an example of k-coloured

graph. A k-coloured graph is to a k-graph what a directed graph is to its path space. They allow us to

‘flatten’ our k-graph.

Definition 12 (k-coloured graph). A k-coloured graph of a k-graph Λ is a k-coloured directed graph

E = (Λ0,
⊔k

i=1 Λ
ei , r, s) with each edge Λei assigned a unique colour ci.
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The paths of degree ei can be thought of the ‘basis’ paths of our k-graph, and the directed graph

gives the range and source maps of our morphisms. Here we deal mainly with 2-coloured graphs as they

are the easiest non-trivial k-graphs. We use red for edges in Λe1 and blue for edges in Λe2 . Of course

a k-coloured graph is not enough to uniquely describe a k-graph; we also require associations between

edges, through squares.

Definition 13 (A Collection of Squares). A complete and associative collection of squares C is a set

of pairings of bi-coloured tuples of edges in which every tuple occurs exactly once. If e1, e2 ∈ Λei and

f1, f2 ∈ Λej and e1f1 and f2e2 is a pairings of tuples we write e1f1 ∼ f2e2. For k ≥ 3 these squares are

associative in that sense that morphisms from one side of a tri-coloured cube to the other, formed by

the appropriate squares, are all equivalent, as in Figure 12.

e1

e2

f1

f2

g1

g2

Figure 12: A cube of associative squares of red edges ei, blue edges fi and black edges gi.

A theorem by [Haz+13] states that a k-graph is completely determined by a k-coloured graph and a

compatible complete and associative collection of squares, and conversely.

Example 12 (An easy 2-coloured graph). Figure 13 shows the simplest 2-coloured graph. There is only

one square in C and that is ef ∼ fe.

v ef f

e

e

f

Figure 13: A 2-coloured graph and the square ef ∼ fe.

4.2 Self-Similar Actions on k-Graphs

Most current constructions of self-similar actions on k-graphs, such as that of [Afs+19], consider only

isomorphisms on TΛ and automata on k-coloured graphs which are colour preserving. Work by [Bro+18]

introduces the notion of colour-permuting partial isomorphisms, but there is little published work con-

necting these to C∗-algebras. Here we explore the idea of colour-permuting partial isomorphisms and
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automata. We argue that it also makes sense to define a colour-blind automata and introduce the notion

of colour-splitting.

We begin with the definitions for the colour-permuting case. There is still a notion of partial isomor-

phism that generalises Definition 7, by permuting coloured edges around and between vertices.

Definition 14. Let n = n1e1 + · · · + nkek ∈ Nk and let s ∈ Sk be a permutation on k elements. A

coordinate-permuting permutation of Nk is a function σ(n) := n1es(1) + · · ·+nkes(k). Let Σ be the set of

all such coordinate permuting permutations.

Definition 15. Let Λ be a k-graph. A partial isomorphism of TΛ is a bijection g : vΛ → wΛ between

path spaces at v and w ∈ Λ0 and a coordinate-permuting permutation σ ∈ Σ such that

(P2.1) g |vΛp is a bijection onto wΛσ(p) for all p ∈ Nk, and

(P2.2) g(µe) ∈ g(µ)Λ for all µ ∈ vΛ and e ∈ s(µ)Λei for some ei.

We set PIso(Λ) as the set of all such partial isomorphisms. It is no surprise that again PIso(Λ)

forms a groupoid, with domain and codomain maps defined analogously to those of PIso(E∗). Likewise

a groupoid acts faithfully on Λ if there is injective groupoid homomorphism ϕ : G → PIso(Λ). We arrive

at a now familiar notion of self-similarity:

Definition 16 (Colour-permuting Self-Similarity of Directed Graphs). Let Λ be a k-graph and let G be

a groupoid with unit space Λ0. Suppose that G acts faithfully on TΛ. The action is self-similar is for all

g ∈ G and edges e ∈ Λ such that d(g) = r(e), there exists h ∈ G such that

g · (eµ) = (g · e)(h · µ) (9)

for all µ ∈ s(e)Λ. We again write g|e := h.

Again, analogous to partial isomorphisms that act on the path spaces of directed graphs, we can define

automata to represent partial isomorphisms on k-graphs by considering an automata our generalised

directed graph––the corresponding k-coloured graph.

Definition 17 (Colour Permuting Automata for k-graphs). A colour permuting automata over a k-

coloured graph E and a complete and associative collection of squares C is a finite set A containing E0,

range and source functions rA, sA : A → E0 such that rA(v) = v = sA(v) for v ∈ E0, together with a

function τ :

AsA×rE E1 ∋ (a, e) 7→ (a · e, a|e) ∈ E1
sE×rA A,

such that

(A3.1) e 7→ a · e is a bijection of sA(a)E
1 → rA(a)E

1, for all e ∈ E1 and a ∈ A;

(A3.2) sA(a|e) = sE(a) for all e ∈ sA(a)E
1;
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(A3.3) rE(e) · e = e, rE(e)|e = sE(e);

(A3.4) c(a · e) = σ(c(e)) for all e ∈ sA(a)E
1, where σ is a permutation that acts by a permuting

{c1, . . . , ck};

(A3.5) For every λ ∈ C such that λ := e1f1 ∼ f2e1, we have (a · e)(a|e · f) ∼ (a · f ′)(a|f ′ · e′;

(A3.6) For every λ ∈ C such that λ := e1f1 ∼ f2e1, we have (a|e)|f = (a|f ′)|e′ .

Importantly, we now have a colour permuting condition (A3.4), as well as conditions (A3.5) and

(A3.6) that ensure the automata respects the square association. In particular this ensures that each

partial isomorphism generated by the states in A is a colour-permuting partial isomorphism that maps

equivalent morphisms the same (i.e. squares to squares), and ensures that these morphisms restrict to

the same partial isomorphism in the condition for self-similarity.

All this leads to our final example––an interesting automata that raises more questions than it

answers.

Example 13. Let E be the 2-coloured graph in Figure 14 and let C be the collection of squares:

e1f2 ∼ f1e2, e2f2 ∼ f2e2, e3f4 ∼ f3e4, e4f4 ∼ f4e4.

We let A = {a, b, v, u, w} where v, u and w are identities, and a : uE∗ → uE∗ and b : vE∗ → vE∗ are

defined by the rules:

a · e1 = e1 · w, a · f1 = f1 · w, b · e4 = f4 · b,

a · e3 = f3 · b, a · f3 = e3 · b, b · f4 = e4 · b.

v u w

f4

e4

f3

e3

f2

e2

f1

e1

Figure 14: A 2-coloured graph with vertices v, u and w.

We claim that A = (E, C) satisfies all conditions in Definition 17 but condition (A3.4). This makes

A a colour-splitting automata.

5 Summaries and Further Questions

We have introduced the notion of self-similar actions and their recent generalisations to higher dimen-

sional k-graphs and a provided new example of an automata that appears to allow for colour-splitting.

From the C∗-algebraist’s perspective, we end the report on a cliff-hanger.
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A C∗-algebra can be associated with a series of self-similar colour preserving isomorphisms of k-graphs

in the following way, by considering the action on paths of a single degree. For a given k-graph Λ, each

Λp for p ∈ Nk can be a considered a directed graph. If G is a colour preserving action then (G,Λp) is a

self-similar groupoid action on the directed graph Λp in the sense of Definition 9. Let M0 = C∗(G) be the

C∗-algebra associated with the groupoid G and let Mp = M(G,Λp) be the right Hilbert G∗(G)-bimodule

associated with the directed graph (G,Λp). We do not define these precisely, however, importantly

[Afs+19, Prop. 5.1] shows that M :=
⊔

p∈Nk Mp is a product system. To this product system we can

associate a universal C∗-algebra.

On the other hand, it is not clear how to construct an equivalent C∗-algebra-generating formalism

for colour-swapping or colour-splitting self-similar actions. Indeed, the formalism of a colour-splitting

partial isomorphism in a k-graph also is not clear, which makes is difficult to obtain a groupoid from the

automata. This seems the most pressing lead to follow.
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