
The Category of Dessins d’Enfant
The Existence of a Topos

Lachlan Schilling
Supervised by Prof. Finnur Larusson

and Dr. Daniel Stevenson
University of Adelaide



Contents

1 Prelude 1

1.1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Statement of Authorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Introduction 1

2.1 What is a Dessin? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 History of Dessin D’enfant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 What is a Topos? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Dessins d’Enfants and Their Categorical Construction 2

3.1 The Combinatorial Construction of Dessins d’Enfant . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Morphisms of Dessin d’Enfant 4

4.1 Examples of Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 The Category of Dessin d’Enfant and Concreteness . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 Surjections and Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Existence of a Topos 9

5.1 Elementary Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.2 Finite Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.2.1 Terminal Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.2.2 Binary Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.3 Generalised Dessin d’Enfant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.4 Inclusions and Monomorphisms of Generalised Dessin . . . . . . . . . . . . . . . . . . . . . . . . 11

5.5 Binary Products of Generalised Dessin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.6 Exponential Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.7 Subobject Classifier of Generalised Dessin d’Enfants . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Conclusion 15

7 Bibliography 16



1 Prelude
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1.2 Abstract

Dessin d’enfants are connected graphs that are bipartite and have a cyclic order of edges on each node. These

graphs can be used to study topics in complex analysis, number theory, topology, and the absolute Galois group

of rational numbers. Hence studying dessin d’enfants provides a unique vantage point to study these topics

from – making certain results more apparent. This report looked at the existence of a topos in the category

of dessin d’enfants by studying dessin d’enfants through the lens of combinatorics. While we found that the

category of dessin d’enfants is not a topos, if we relax the definition of a dessin to include disconnected graphs,

we can show that a topos does indeed exist.

1.3 Statement of Authorship

Lachlan Schilling researched the mathematics within this report as well as writing this paper. Professor Finnur

Larusson, Dr Daniel Stevenson, Thomas Dee, and Paawan Jethva assisted in research as well as providing report

feedback. Professor Finnur Larusson also formulated the project plan.

2 Introduction

2.1 What is a Dessin?

Dessin d’enfants (singular. dessin) are connected undirected graphs consisting of nodes connected via edges.

However, unlike regular undirected graphs, dessins are bipartite and have a cyclic ordering of edges on

each node. This means that the nodes are classified into two groups – black and white – and an edge can only

be between a black and a white node. Because of the bipartite condition, the graph on the left of fig. 1 the

following example is possible, while the graph on the right is not.

Furthermore, by the cyclic ordering of edges property, the following dessin in fig. 2 are distinct despite having

the same number of edges and nodes.
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(a) A valid dessin (b) A invalid

dessin

Figure 1: An example of a valid and invalid dessin by the bipartite condition.

Figure 2: Two distinct dessins despite both having the same number of edges and nodes.

2.2 History of Dessin D’enfant

While the history of dessin d’enfants can be traced back to the 19th century, the study of dessin d’enfants

flourished in the late 20th century by Alexander Grothendieck. Grothendieck became fascinated by dessin

d’enfant as a means to study other fields including complex analysis, topology, number theory and combinatorics.

The most notable of these was the study of the absolute Galois group of rational numbers which is connected

to an unsolved problem in mathematics to this day.

Despite the widespread reach of dessin d’enfants, we will be limiting this paper to a combinatorial study of

finite dessin d’enfants. More specifically, this report will be discussing the existence of an elementary topos in

the category of dessin d’enfants.

2.3 What is a Topos?

The notion of a topos (plural. topoi) was first introduced by Alexander Grothendieck to describe features

of topological spaces. Grothendieck’s original definition of a topos (known as the Grothendieck topos) was

later extended to what are known as elementary topoi. These are categories with additional structure that

encapsulate some of the key properties of the category of sets – allowing us to do mathematics within these

categories.

3 Dessins d’Enfants and Their Categorical Construction

Naturally, we first start by defining a dessin as;
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Definition 1 (Dessin d’Enfants). A dessin is a non-empty undirected graph consisting of edges and nodes

that satisfy the following axioms:

D1. The graph is bipartite;

D2. There is a cyclic ordering on the edges connected to each node;

D3. The graph is connected.

Furthermore, we will say a dessin is finite if and only if the dessin’s corresponding edge set is finite. With this,

we will be focusing our study to the category of finite dessin d’enfants. But before we can begin studying the

category of finite dessin d’enfants, we need to establish the category itself. To do this, let us first notice that

due to axioms D1 and D3, there is a canonical partitioning of a dessin’s edge set.

Corollary 3.0.1. For any dessin, all nodes of the same colour partition the set of edges.

Proof. Let F be a dessin and fix a colour c. We will show that there exists an equivalence relation given by

e1 ∼ e2 if and only if e1 and e2 are connected to the same node of colour c.

Reflexivity. From D1, an edge can only be connected to one node of colouring c. As such, it is clear that

e ∼ e for any edge e.

Symmetry. For any two edges e1 and e2, if e1 ∼ e2, then they must share the same node n of colouring c.

However from D1, e1 and e2 can only connect to node n of colouring c, and so e2 ∼ e1.

Transitivity. Suppose e1 ∼ e2 and e2 ∼ e3 for edges e1, e2, e3. Then let e1 and e2 connect to the node n1 of

colour c, and e2 and e3 both connect to the node n2 of colour c. However from D1, e2 can only connect

to one node of colour c, and so n1 = n2. Thus e1 and e3 connect to the same node and e1 ∼ e3.

Thus there exists an equivalence relation on the set of edges. As such, the equivalence classes partition the set

of edges.

3.1 The Combinatorial Construction of Dessins d’Enfant

From corollary 3.0.1, it is sufficient to define a dessin by its edges and the cyclic ordering of edges for each

node – with information about the nodes implicitly given through the disjoint cycles of edges. In the following

example, the black and white cycles encapsulate the structure of the dessin;

1

2

has black cycles of (1), (2)

has white cycles of (1 2).

However, because these cycles are disjoint for each colour (corollary 3.0.1), we can take the product of cycles
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for all the same coloured nodes without losing information. In the case of the example above1;

black permutation = (1)(2)

white permutation = (1 2).

So we now have a description of a dessin F ; an edge set E equipped with two functions, bF , wF : E → E,

that describe the black and white permutation of edges at each node. This is precisely a G-Set for a specific

group G! More specifically, if we have the group F2 – which is the free group on two generators b, w which

correspond to the black and white permutations – the dessin F is a F2-Set that maps b and w to the black and

white permutations bF and wF respectively. This can be represented by the following diagram, where F is the

corresponding dessin;

F2 Set

w

b

F

However up until this point we have neglected the connectedness property of dessin d’enfant. However, this

can easily be rectified by restricting our construction to a transitive F2-Set. With this, we arrive at our final

construction of a dessin, and we can begin to discuss morphisms of dessin.

4 Morphisms of Dessin d’Enfant

Given that a dessin corresponds to a functor from the category F2 with generators b and w, to the category of

sets, it follows naturally that a morphism between dessins corresponds to a natural transformation. Formally,

in the following diagram, α is a morphism from dessin F to dessin G.

F2 Set

F

G

α

Being a natural transformation, morphisms between dessin must satisfy the following commutative square:
1Displaying single cycles removes the need to explicitly specify the edge set.
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F (A) F (A′)

G(B) G(B′)

F (c)

α̂A α̂A′

G(c)

where c is either b or w. However as the F2 category has just one object, this commutative diagram becomes:

E1 E1

E2 E2

cF

α̂ α̂

cG

where cF and cG are the c-coloured permutation on edges for F and G respectively2 and E1 and E2 is the edge

set of F and G respectively. These conditions can be nicely summarised by the equation

α̂cF = cGα̂. (1)

It is important to note here that a morphism between dessins and a function between their edge sets are not

the same thing. However, a function between their edge sets satisfying eq. (1) is a condition for a morphism

between dessins to exist. As such, it might feel natural to think of these are the same thing. This is an idea we

will formalise shortly.

4.1 Examples of Morphisms

The following are examples to illustrate some morphisms of dessins, along with the names of some common

types of dessin.
2We will be using this notation hereafter.
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−→

2-chain 1-shell

−→

square 2-chain

−→

4-shell 2-shell

4.2 The Category of Dessin d’Enfant and Concreteness

With morphisms defined, we can define the category of dessin d’enfant as the following:

Theorem 4.1 (Category of Dessin d’Enfants). The category of dessin d’enfants, denoted by Des, is defined

by;

• ob(Des) = {finite dessin d’enfants},

• for each F,G ∈ ob(Des), Des(F,G) = {morphisms from F to G as defined above},

• for each F,G,H ∈ ob(Des), ◦(f, g) = g ◦ f where the corresponding function between edge sets for g ◦ f

is simply composition of the individual functions between edge sets.

Proof. To show that Des is indeed a category, we need to show that Des has identity morphisms for each dessin

and that the composition map is associative.

Associativity. Let F,G,H,D be dessins. Then we need to show that for f ∈ Des(F,G), g ∈ Des(G,H)

and h ∈ Des(H, I), we have

(h ◦ g) ◦ f = h ◦ (g ◦ f).

However because composition is defined by composition of the corresponding functions between edge

sets for f, g and h, their composition is associative, and thus so is the composition of morphisms.

Identities Let F,G be dessins. Then for f ∈ Des(F,G), we clearly have morphisms 1F : F → F and

1G : G → G such that

f ◦ 1F = f = 1G ◦ f
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namely the morphisms with corresponding identity function between edge sets.

Thus as identity morphisms exist and as composition is associative, Des is a category.

Up until now we have been discussing morphisms of dessins as functions in the underlying edge sets – despite

not being the same thing. However, as we saw when defining the notion of a morphism, the only condition of

a morphism to exist between two dessins is for the existence of a function between their edge sets such that

eq. (1) is satisfied. As such, it seems that a morphism between dessins is really a morphism between their edge

set. We can make this idea precise by showing that there exists a functor U : Des → Set such that a morphism

from dessins F to G give a unique morphism from U(F ) to U(G). This is the idea of a concrete category, and

it is shown that Des is concretisable;

Theorem 4.2 (Concreteness). The category of dessin d’enfants equipped with the functor that returns a

dessin’s edge set is concrete.

Proof. Let U : Des → Set be a functor that returns the edge set of dessins.

To prove that Des is concrete, we need to show that U is faithful. This amounts to showing the function

fF,G : Des(F,G) → Set(U(F ), U(G)).

is injective (the existence of such a function is trivial as we naturally need a function between edge sets to

describe a morphism between dessin).

Injectivity. Let F,G ∈ Des and suppose α1, α2 : F → G. Then If fF,G(α1) = fF,G(α2), then we have

α̂1 = α̂2, and hence α1 = α2 as eq. (1) is the only defining feature for a morphism between F and G.

Thus fF,G is injective.

Hence U is faithful, and thus Des equipped with U is a concrete category.

With theorem 4.2, we can not only say that Des behaves like Set, only with some additional structure,

but we can naturally talk about morphisms of two dessin as a morphism in their underlying edge set. As

such, if α : F → G is a morphism, we will often refer to the induced function between their edge sets as

α̂ : U(F ) → U(G). Furthermore, we will refer to Des as the category equipped with the forgetful functor U .

Additionally, while concreteness does not necessarily restrict the nature of objects in Des (such as limits,

exponential, and subobject classifiers), it often provides a reasonable initial guess as to the structure of these

objects. Finally, the concreteness of Des allows us to conclude that the functor U : Des → Set that sends a

dessin to its underlying edge set is indeed a forgetful functor.

4.3 Surjections and Isomorphisms

Having now spoken about morphisms of dessins, it is natural to now investigate different kinds of morphisms.

We will first start by looking at surjections.
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Lemma 4.3 (Surjections). A morphism from F to G induces a surjective function from U(F ) to U(G).

Proof. Let F,G ∈ Des and suppose there exists a morphism α : F → G such that the induced morphism

α̂ : U(F ) → U(G) is not surjective: i.e. there exists e ∈ U(G) such that α−1(e) = ∅. However because α is a

morphism, we require

α̂cF = cGα̂.

This is a contradiction because G is connected and cG is a bijection, and thus there exists e′ ∈ U(F ) such that

cGα = e, however this cannot be reached αcF . Thus by contradiction, α̂ is surjective.

As a direct result of lemma 4.3, we can conclude the following:

Corollary 4.3.1. For dessin F,G ∈ Des, a morphism from F to G implies that |U(F )| ≥ |U(G)|.

Proof. This result directly follows from lemma 4.3 and the fact that for surjections A → B, |A| ≥ |B|.

It is obvious that morphism-induced functions do not have to be injective (consider the examples in section 4.1).

However, when they are injective, we get an isomorphism;

Lemma 4.4 (Isomorphisms). A morphism α : F → G as an isomorphism if and only if the induced morphism

α̂ : U(F ) → U(G) is an isomorphism.

Proof. This result follows directly from the fact that isomorphisms α : F → G of concrete categories must

correspond to an isomorphism from U(F ) to U(G).

With lemma 4.4, we can see that the isomorphism class of a dessin is just the same dessin with all possible edge

sets.

Another interesting type of morphism to consider are inclusion maps. We will define an inclusion map as:

Definition 2 (Inclusions). An inclusion map from dessins F to G, denoted by α : F ↪→ G, has a corresponding

inclusion map from U(F ) to U(G).

With this, we can show that inclusion maps in Des are simply isomorphisms;

Lemma 4.5. An inclusion map in Des is an isomorphism.

Proof. Let F,G ∈ Des with α : F ↪→ G, and α̂ : U(F ) → U(G) be the α induced function.

From definition 2, α̂ must be an inclusion map, and thus injective. Furthermore, α̂ is surjective from lemma 4.3.

Thus as α̂ is bijective, α is an isomorphism from lemma 4.4.

Notice that not all isomorphisms are inclusion maps as isomorphisms can be between different edge sets, while

inclusion maps are between the same edge set – to this end, inclusion maps in Des are automorphisms.
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5 Existence of a Topos

5.1 Elementary Topoi

With the category of dessin d’enfants now defined, we can begin to investigate the existence of a topos. Formally,

a topos is defined as:

Definition 3 (Elementary Topoi). An elementary topos is a category equipped with the following objects:

• Finite limits

• Exponentials

• A subobject classifier

As such, this section will be dedicated to proving the existence of these objects in the category of dessin d’enfants.

5.2 Finite Limits

A category has finite limits if it has terminal objects, binary products and equalisers. However, in this section,

we will only show that Des has a terminal object and binary products as the other conditions for a topos prove

the existence of equalisers.

5.2.1 Terminal Object

As was shown in corollary 4.3.1, if there exists a morphism from any dessin F to the terminal dessin 1, then

1 must have the least number of edges. This means that 1 must have a single edge, which leaves a single

isomorphism class for the terminal object;

Theorem 5.1 (Terminal object). The terminal object of Des is:

1 =

Proof. Suppose the single edge of 1 is e, and let F be any dessin. We need to show that there exists a unique

morphism from F to 1:

Existence. The morphism α : F → 1 that maps all edges in F to e is a valid morphism.

Uniqueness. Suppose that α1, α2 : F → 1 are both morphisms. Thus as the codomain of α1 and α2 is just

e, α1(i) = α2(i) = e for all edges i in F . Thus α1 = α2: there is a unique morphism from F to 1.

Hence as there is a unique morphism from F to 1, 1 is indeed the terminal object.

5.2.2 Binary Products

Intuitively, the binary product of two dessins F and G is simply another dessin, F ×G, such that there exists

morphisms from F × G to F and G. Despite this, defining F × G can be tricky. However, from theorem 4.2,
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Des is concrete, and thus we will take inspiration from Set to define binary products in Des. Namely;

U(F ×G) = U(F )× U(G)

pi((e1, e2)) = ei.

With this choice, the most natural guess for the black and white permutations are

cF×G((e1, e2)) = (bF (e1), bG(e2)).

With this definition of binary products, let us consider two examples of products:

× =

This is clearly correct as there is a morphism from the square to the square (identity) and a morphism from

the square to the terminal (theorem 5.1).

× =

While this seems mostly correct – there is a morphism3 from the double square to the single square, and

likewise for the 2-chain, the product dessin is not connected. This is very problematic as axiom D3 requires

dessins to be connected. As such, we will adapt our notion of a dessin to accommodate for this.

5.3 Generalised Dessin d’Enfant

As we saw in our examples of products, our definition of binary products seems correct except for the issue

of connectedness. As such, we will introduce the notion of a generalised dessin to be a dessin without the

connectedness condition:

Definition 4 (Generalised Dessin d’Enfants). A generalised dessin is an undirected graph consisting of

edges and nodes that satisfy the following axioms:

GD1. The graph is bipartite;

GD2. There is a cyclic ordering on the edges connected to each node;
3We will come to define what a morphism of disconnected dessin means shortly, but for now, we will proceed with intuition
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As our combinatorial construction did not rely on the connectedness of dessin, the construction of generalised

dessin remains the same, and thus our notion (and conditions) for morphisms between generalised dessin are

identical to that of connected dessin. With objects and morphisms defined, we can define the category of

generalised dessin like above – the proof of theorem 4.1 applies to the category of generalised dessin d’enfants

– we will denote the category of generalised dessin d’enfants as GDes.

Furthermore, as the proof of corollary 3.0.1, theorem 4.2, lemma 4.4, and theorem 5.1 did not rely on the

connectedness of Des, these results all apply in GDes. The most notable of these is that GDes is concrete

and that GDes has a terminal object – namely the same as that in Des. However, because lemma 4.3 and

lemma 4.5 did rely on the connected nature of dessin, it is not true that morphisms between generalised dessin

are surjective, and inclusion maps are no longer isomorphisms.

Finally, in addition to removing the connectedness condition, we will permit the existence of an initial dessin

in GDes; denoted by ∅. This dessin has no edges and no nodes – thus there is a unique morphism from ∅ to

F for all dessins F. However, from the fact that U(∅) = ∅, there exists no morphisms to ∅ (theorem 4.2).

5.4 Inclusions and Monomorphisms of Generalised Dessin

It is often useful to think of a generalised dessin consisting of many connected dessin. As such, we will denote

the generalised dessin made up of connected dessins D1, ..., Dn as 〈D1, ..., Dn〉4. Furthermore, if there exists an

inclusion map α from F to G, we will say that F ⊆ G. If F is connected and F ⊆ G, we say that F ∈ G. With

this, we can show that D ∈ 〈D1, ..., Dn〉 if and only if D ∈ {∅, D1, ..., Dn}.

With this new notation, a natural question to ask is whether we can think of a morphism between two generalised

dessin as a set of morphisms between their connected dessin. This leads us to the following theorem;

Theorem 5.2. A morphism α from generalised dessin F to G can be expressed as a set of morphisms αi from

Fi to Gi where Fi ∈ F and Gi ∈ G.

Proof. Let F and G be dessins, and let α : F → G with induced function α̂ : U(F ) → U(G). Then for each

Fi ∈ F , let Gi be the image of Fi under α, along with the map αi : Fi → Gi such that the induced function

α̂i : U(Fi) → U(Gi) sends e 7→ α̂(e). Gi ∈ G as there is obviously an inclusion from Gi to G (by definition of

Gi), and Gi is also connected as if it was not, then there could not be a morphism from F to G.

Thus we now have a collection of morphisms αi : Fi → Gi for each Fi ∈ F . With this, we can construct a

new morphism α′ : F → G such that the induced function α̂′ : U(F ) → U(G) such that for all Fi ∈ F , and

e ∈ U(Fi);

α̂′(ιFi(e)) = (ιGi α̂i)(e)

4This notation is making the assumption that all of the edge sets of D1, ..., Dn are disjoint.
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where ιFi
is the inclusion map from U(Fi) → U(F ). However, by the construction of α′, it is clear that α̂ = α̂′.

Thus we have shown that each morphism from F → G can be expressed as morphisms from Fi → Gi for Fi ∈ F

and Gi ∈ G.

With theorem 5.2, we can talk about morphisms of dessin as being a set of morphisms from connected dessins

to connected dessins.

We will now briefly turn our attention to monomorphisms in GDes.

Lemma 5.3. A morphism in GDes is a monomorphism if and only if the induced function is injective.

Proof. This result follows directly from the concreteness of GDes.

From lemma 5.3 and definition 2, we can think of a monomorphism as an inclusion map composed with an

isomorphism. This is formalised as so;

Corollary 5.3.1. A morphism in GDes is a monomorphism if and only if it is isomorphic to an inclusion

map.

Proof. Let F,G ∈ GDes with α : F → G and the induced function α̂ : U(F ) → U(G).

( =⇒ ). Suppose α is a monomorphism. Then from lemma 5.3, α̂ is injective. Thus α̂ is isomorphic to an

inclusion map, and thus from definition 2, α is an inclusion map.

( ⇐= ). Suppose α is an inclusion map. Then from definition 2, α̂ is injective. Thus from lemma 5.3, α is a

monic.

Hence a morphism is a monomorphism if and only if it is an inclusion map.

From corollary 5.3.1, we can conclude that a morphism α : F → G is a monomorphism if and only if F is

isomorphic to F ′ such that F ′ ⊆ G. As a result, the only possible monics to a connected dessin F are those

from ∅ and isomorphisms of F .

5.5 Binary Products of Generalised Dessin

With generalised dessin now defined, we can finally define binary products of dessin.

Theorem 5.4 (Binary Products). The binary product of F,G ∈ GDes is defined by:

U(F ×G) = U(F )× U(G)

cF×G((e1, e2)) = (cF (e1), cG(e2))

pi((e1, e2)) = ei.

12



Proof. Consider a dessin F with morphisms α1 : F → X and α2 : F → Y . Then we can construct X × Y as

per above. We need to show that there exists a unique morphism from F to X ×Y along with morphisms from

X × Y to X and Y called projections.

Existence. Consider the morphism α : F → X × Y with induced function α̂ : U(F ) → U(X × Y ) in which

e 7→ (α1(e), α2(e)). This map is a morphism from F to X × Y as it satisfies eq. (1):

αcF = (α̂1cF , α̂2cF )

= (cX α̂1, cY α̂2)

= (cX , cY )α̂

= cX×Y α̂.

Uniqueness. Suppose there exists another morphism α′ : F → X × Y . Let α̂′(e) = (x, y) for all edges e in

F . Then because products must commute, we have:

α̂1(e) = p1(α̂′(e)) = p1(x, y) = x

likewise with α̂2(e) = y. Thus we have α̂ = (α̂1, α̂2) = α̂′, and hence α = α′.

With theorem 5.1 and theorem 5.4, we have shown that GDes has a terminal object and binary products.

5.6 Exponential Objects

Much like with binary products, we can use the concreteness of GDes to make a reasonable guess towards the

edge set of the exponential. Namely, for two dessins F and G, we have:

U
(
FG

)
= U(F )U(G).

This leaves us to determine the black and white permutations of the exponential objects. Which, from aligning

the domains and codomains of the permutations in F and G, one of the most natural guess for the black and

white permutations are

bFG(α) = bFαb
−1
G

wFG(α) = wFαw
−1
G .

These guesses lead us to the following.

Theorem 5.5 (Exponential Objects). The exponential object of dessins F,G ∈ GDes is defined by:

U
(
FG

)
= U(F )U(G)

cFG(α) = cFαc
−1
G .
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Proof. Let F,G, and H be dessins. We need to show that

Des(F ×G,H) ∼= Des(F,HG)

naturally in F and G. Thus let us consider the map f : Des(F ×G,H) → Des(F,HG) with

f : [(e1, e2) 7→ e3] 7→
[
e1 7→

[
c−1
G (e2) 7→ e3

]]
.

Let α ∈ Des(F ×G,H) and suppose α((e1, e2)) = e3. Then we will show that fα is actually a morphism from

F to HG:

αcF×G((e1, e2)) = cHα((e1, e2)) = α(cF (e1), cG(e2))

Thus sending α((e1, e2)) to fα(e1, e2) = α′(e1)(c
−1
G (e2)) as per the proposed isomorphism above gets us

α′(cF (e1))(c
−1
G (cG(e2))) = (cHα′(e1))(c

−1
G e2)

α′(cF (e1))(e2) = CHG(α′(e1))(e2).

Thus α′ satisfies eq. (1), and thus α′ is indeed a morphism from F to HG – i.e. fα ∈ Des(F,HG). Furthermore,

as cG is a bijection, it is obvious that f is injective. For brevity, we will not rigorously show that f is surjective,

but it is clear to see that the proof above can be simply reversed to show that f−1α ∈ Des(F × G,H)

for all α ∈ Des(F,HG). Thus f is surjective, and thus f is an isomorphism between Des(F × G,H) and

Des(F,HG).

The following is an example of the 2-chain exponentiated with the square:

5.7 Subobject Classifier of Generalised Dessin d’Enfants

The final condition for a topos to exist is the existence of a subobject classifier. However, before investigating

the existence of a subobject classifier, we ought to understand the subobjects of dessins.

Theorem 5.6 (Subobjects). The subobjects of the dessin D = 〈D1, ..., Dn〉 are the isomorphism classes of

dessin generated by the powerset of {D1, ..., Dn}.

Proof. Let F = 〈D1, ..., Dn〉, and suppose there exist monics u : S � F and v : T � F . Then from

corollary 5.3.1, u and v must be isomorphic to inclusion maps. Hence S ∼= S′ and T ∼= T ′ with S′ ⊆ F and

T ′ ⊆ F . Hence the subobjects classes are the isomorphism classes of all combinations of D1, ..., Dn – i.e. the

powerset of {D1, ..., Dn}.

14



With all of the above work, we can finally investigate the existence of a subobject classifier.

Theorem 5.7 (Subobject Classifier). The subobject classifier of GDes is;

Ω =
t

f

Proof. Let F ∈ GDes. We need to show that

GDes(F,Ω) ∼= sub(F)

naturally in F . Thus let us consider the map f : sub(F) → GDes(F,Ω) where G 7→ fG : F → Ω where the

morphism fG has the induced map f̂G : U(F ) → U(Ω) where

f̂G(e) =

t e ∈ U(G)

f otherwise.

First we note that f(G) is certainly a morphism from F to Ω as f̂(G) is simply mapping the connected dessins

of F to either one of the two terminal dessins in Ω, and thus f(G) is a morphism by theorem 5.2. With this,

we will now show that this map is a bijection:

Injective. Let G1, G2 ∈ sub(F) and suppose f(G1) = f(G2). Then f̂G1
= f̂G2

. Hence U(G1) = U(G2), and

thus G1 = G2 and f is injective

Surjective. Let α ∈ GDes(F,Ω). Then the dessin G generated by the connected dessins that map to t (the

preimage of t) is a subobject of F as G consists of the connected dessin in F , which is a subobject of

F by theorem 5.2 and definition 2. Thus f is surjective.

As f is bijective, GDes(F,Ω) ∼= sub(F), and thus the proposed subobject classifier satisfied the universal

property for a subobject classifier.

Thus from from definition 3, theorem 5.1, theorem 5.4, theorem 5.5, and theorem 5.7, the category of generalised

dessin d’enfants is a topos.

6 Conclusion

In this research, it was shown that while the category of dessin d’enfants is not a topos, the category of

generalised dessin is indeed a topos. Interestingly, because the F2 nature of dessins was never explicitly used,

this result can be generalised to the category of G-Sets. Given additional time, I would research the implications

of the topos – e.g. can we use the fact that GDes is a topos to redefine connectedness? How can we use the

topos to do other mathematics? I also think it could be interesting to look closer into the nature of different

structures in GDes; such as exponentials, as these seemed to encapsulate some interesting symmetries.
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