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1 Abstract

The development of novel technologies in the construction of railways, motivates the solution of certain math-

ematical models. The particular model considered in this report is the Euler-Bernoulli beam equation on a

visco-elastic foundation. This model is relevant to Recycled Rubber Energy Absorbing Grids (REAG), which

are being developed as a solution to the degredation of rail infrastructure from vibrational energy. The beam

equation is first non-dimensionalised for two external force models - stationary and moving point forces - and

then partially solved using integral transforms, paving the way for numerical solutions in further research.

2 Introduction

In this report, we model train tracks resting on a novel Recycled Rubber Energy Absorbing Grid (REAG),

using the Bernoulli-Euler beam equation with a viscoelastic foundation

EI
∂4y

∂x4
+ ky + C

∂y

∂t
+m

∂2y

∂t2
= F (x, t) (1)

Here E > 0 is Young’s modulus of elasticity (in N/m
2
), I > 0 is the moment of inertia of the beam (in m4),

k > 0 is a constant of elasticity per unit length in (N/m2), C > 0 is a constant of damping per unit length

(in Ns/m2), and F is an external force (in N/m). The equation is considered for two force terms: a stationary

point force F (x, t) = fpδ(x) and a moving point force F (x, t) = fpδ(x − vt), where δ is the Dirac delta, fp is

the strength of the point force and v is the velocity of the moving point force.

After non-dimensionalising the equations, we solve by applying Fourier and Laplace transforms. The Fourier,

Laplace, and inverse Laplace transforms are calculated analytically, leaving the inverse Fourier transform to be

calculated numerically, in further research.

2.1 Background

In recent years, alongside the need for faster and heavier trains, the demand put upon rail systems has gradually

increased. This has, in turn, accelerated the rate of degradation for infrastructure and necessitated preventative

measures, such as strict speed limits [2]. Damage to ballasted rail tracks constitute a significant portion of

maintenance costs, as they are a major infrastructure for both freight and passenger transport [1]. Previous

research has indicated that the use of either rubber mats or geogrids - a type of plastic lattice - can aid in reducing

wear on ballasted rail tracks [3, 5]. However, both have notable drawbacks. Rubber mats are ineffective on

softer foundations and have a tendency to impede drainage [9]. Geogrids, on the other hand, while performing

well on softer foundations and encouraging drainage, are ineffective at reducing wear on a rigid foundation [4].

Recycled rubber energy absorbing grids (REAG), manufactured from recycled rubber - e.g. tyres and conveyor

belts - combine the benefits of rubber mats and geogrids: interlocking with the ballast to increase drainage

whilst also absorbing energy from passing trains [6]. To inform the implementation of REAG to ballast tracks,
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mathematical modelling is required to predict the ground vibrations induced by the moving wheel load and to

capture the enhanced energy absorbing capacity attributed to REAG.

2.2 Statement of Authorship

Unless otherwise referenced, all content of this report is the work of the author - Josiah Murray - done under

the supervision of, and in discussion with, Proffessor Natalie Thamwattana and Professor Mike Meylan.

3 Preliminary Notes

Before beginning, there are some definitions and results that the reader may find useful to have listed. This

includes a brief look at the Dirac delta, a statement of the particular forms of the Fourier and Laplace transforms

used in the report and a substitution result that the author thought to be non-trivial.

3.1 The Dirac Delta

There are several ways of defining the Dirac delta, however, in this report we are mostly concerned with one

property in particular. As such, we will use it as our definition. This is the ’Sifting property’ [8]∫ ∞

−∞
f(x)δ(x− x0)dx = f(x0)

This property is particularly relevant when using integral transforms. To properly non-dimensionalise the

equation, however, we need a second property [7] - which, though we do not prove it here, can be derived from

the sifting property.

δ(f(x)) =
∑
i

1

|f ′(xi)|
δ(x− xi), ∀xi such that f(xi) = 0

In particular, we then have

δ(ax) =
1

|a|
δ(x)

δ(ax− b) =
1

|a|
δ(x− b

a
)

3.2 Integral Transforms

Fourier transforms in this report are of the form

F{f(x)} = f̂(Ω) =

∫ ∞

−∞
f(x)eiΩxdx

and inverse Fourier transforms are of the form

F−1{f̂(Ω)} =
1

2π

∫ ∞

−∞
f̂(Ω)e−iΩxdΩ

Laplace transforms are of the form

L{f(t)} = f̄(s) =

∫ ∞

0

f(t)e−stdt
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and the inverse Laplace transforms are of the form

L−1{f̄(s)} =
1

2πi

∫ λ+i∞

λ−i∞
f̄(s)estds

3.3 Substituting into derivatives

In the process of non-dimensionalising, we make substitutions of the form ũ = au, ṽ = bv into terms of the form

∂nu
∂vn . This gives

∂nu

∂vn
=

a

bn
∂nũ

∂ṽn

What follows is a demonstration of how we can derive this result

∂ku

∂vk
=

∂k(aũ)

∂(bṽ)k

= a
∂kũ

∂(bṽ)k

= a
∂

∂(bṽ)

(
∂k−1ũ

∂(bṽ)k−1

)
= a

∂g

∂(bṽ)
, where g =

∂k−1ũ

∂(bṽ)k−1

= a

(
∂g

∂ṽ
· ∂ṽ

∂(bṽ)

)
= a

(
∂g

∂ṽ
·
∂(bṽ 1

xS
)

∂(bṽ)

)

=
a

b

(
∂g

∂ṽ
· ∂(xsṽ)

∂(bṽ)

)
=

a

b

(
∂g

∂ṽ

)
=

a

b

∂

∂ṽ

(
∂k−1ũ

∂(bṽ)k−1

)
...

=
a

bk
∂kũ

∂ṽk
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4 Non-dimensionalisation

To simplify the calculations in this report, we non-dimensionalise our equations. Making appropriate substitu-

tions and relabelling parameters allows us to find a form of the PDE in which all of the variables and terms

are unitless and which has minimal parameters. Below are the standard and non-dimensionalised forms of the

equations considered in this report, as derived in sections 4.1 and 4.2:

EI
∂4y

∂x4
+ ky + C

∂y

∂t
+m

∂2y

∂t2
= fpδ(x) =⇒ ∂4γ

∂χ4
+ γ +A

∂γ

∂τ
+

∂2γ

∂τ2
= Bδ(χ) (2)

EI
∂4y

∂x4
+ ky + C

∂y

∂t
+m

∂2y

∂t2
= fpδ(x− vt) =⇒ ∂4γ

∂χ4
+ γ +A

∂γ

∂τ
+

∂2γ

∂τ2
= Bδ(χ− V τ) (3)

4.1 Non-dimensionalising with a stationary point force

To begin our non-dimensionalisation, we express the dimensional variables as a non-dimensional variable mul-

tiplied by a scaling factor - the particular value of these factors will be defined later. Specifically, we take

y = ysγ x = xSχ t = tsτ

where y, x, t have units - say metres, metres, and seconds respectively - γ, χ, τ are dimensionless, and ys, xs, ts

have the same units as their associated variables.

Substituting into our PDE we get

EI
∂4y

∂x4
+ ky + C

∂y

∂t
+m

∂2y

∂t2
= fpδ(x) =⇒ EI

∂4(ysγ)

∂(xsχ)4
+ k(ysγ) + C

∂(ysγ)

∂(tsτ)
+m

∂2(ysγ)

∂(tsτ)2
= fpδ(xsχ)

=⇒ ys
x4
s

EI
∂4γ

∂χ4
+ yskγ +

ys
ts
C
∂γ

∂τ
+

ys
t2s
m
∂2γ

∂τ2
= fpδ(xsχ)

=⇒ ∂4γ

∂χ4
+

x4
s

EI
kγ +

x4
sC

EIts

∂γ

∂τ
+

x4
sm

EIt2s

∂2γ

∂τ2
=

x4
sfp
EI

δ(xsχ)

=⇒ ∂4γ

∂χ4
+

x4
s

EI
kγ +

x4
sC

EIts

∂γ

∂τ
+

x4
sm

EIt2s

∂2γ

∂τ2
=

x4
sfp

EI|xs|
δ(χ)

We can continue to simplify, if we now specify xs = 4

√
EI
k and ts =

√
mx4

s

EI , then let A :=
x4
sC

EIts
and

B :=
x4
sfp

EI|xs| =
x3
sfp
EI - noting that EI > 0 k > 0 =⇒ xs ≥ 0.

∂4γ

∂χ4
+

x4
s

EI
kγ +

x4
sC

EIts

∂γ

∂τ
+

x4
sm

EIt2s

∂2γ

∂τ2
=

x4
sfp
EI

δ(xsχ) =⇒ ∂4γ

∂χ4
+ γ +A

∂γ

∂τ
+

∂2γ

∂τ2
= Bδ(χ) (4)

4.2 Non-dimensionalising with a moving point force

For a moving point force, we repeat the same process as in the preceding section 4.1 with the addition of letting

V := vts
xs

. This gives

EI
∂4y

∂x4
+ ky + C

∂y

∂t
+m

∂2y

∂t2
= fpδ(x− vt) =⇒ ∂4γ

∂χ4
+ γ +A

∂γ

∂τ
+

∂2γ

∂τ2
= Bδ(χ− V τ) (5)
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5 Solution with Stationary Point Force

We begin with the non-dimensional form of the Euler-Bernoulli beam equation on a viscoelastic foundation with

a stationary point force at x = 0, as in (4)

∂4γ

∂χ4
+ γ +A

∂γ

∂τ
+

∂2γ

∂τ2
= Bδ(χ)

For initial conditions, we assume that the beam is undisturbed, so γ(x, 0) = 0 ∀x ∈ R. We now aim to solve

this equation using applications of both the Fourier and Laplace transforms.

5.1 Fourier Transform

Applying the Fourier transform to both sides of our equation, we get

∫ ∞

−∞

(
∂4γ

∂χ4
dt+ γ +A

∂γ

∂τ
+

∂2γ

∂τ2

)
eiΩχdt =

∫ ∞

−∞
Bδ(xsχ)e

iΩχdt

Ω4γ̂ + γ̂ +A
∂γ̂

∂τ
+

∂2γ̂

∂τ2
= B

5.2 Laplace Transform

Now applying the Laplace transform, we get∫ ∞

0

(
Ω4γ̂ + γ̂ +A

∂γ̂

∂τ
+

∂2γ̂

∂τ2

)
e−stdt =

∫ ∞

0

Be−stdt

Ω4 ¯̂γ + ¯̂γ + sA¯̂γ + s2 ¯̂γ = B
1

s

¯̂γ = B
1

s

(
1

s2 +As+Ω4 + 1

)
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5.3 Inverse Laplace Transform

Denoting convolution with ∗, we apply the inverse Laplace transform and use the convolution theorem to achieve

L−1
{
¯̂γ
}
= γ̂ =

∫ λ+i∞

λ−i∞
B
1

s

(
1

s2 +As+Ω4 + 1

)
estds

= BL−1

{
1

s

}
∗ L−1

{
1

s2 +As+Ω4 + 1

}
= BL−1

{
1

s2 +As+Ω4 + 1

}
∗ L−1

{
1

s

}

=
B√

Ω4 + 1− A2

4

L−1


√
Ω4 + 1− A2

4

(s+ A
2 )

2 +Ω4 + 1− A2

4

 ∗ L−1

{
1

s

}

=
B√

Ω4 + 1− A2

4

(
e−Aτ/2 sin

(
(Ω4 + 1− A2

4
)τ

))
∗ 1

=
B√

Ω4 + 1− A2

4

∫ τ

0

e−Aξ/2 sin

(√
Ω4 + 1− A2

4
ξ

)
dξ

=
B√

Ω4 + 1− A2

4

[e−Aτ/2 sin

(√
Ω4 + 1− A2

4 τ

)
−A
2

(
1 +

4(Ω4+1−A2

4 )

A2

)

−

√
Ω4 + 1− A2

4 e−Aτ/2 cos

(√
Ω4 + 1− A2

4 τ

)
−
√
Ω4 + 1− A2

4

A2

4

(
1 +

4(Ω4+1−A2

4 )

A2

) ]

=
B√

Ω4 + 1− A2

4

[e−Aτ/2 sin

(√
Ω4 + 1− A2

4 τ

)
−A
2 − 2(Ω4+1−A2

4 )

A

−

√
Ω4 + 1− A2

4 e−Aτ/2 cos

(√
Ω4 + 1− A2

4 τ

)
−
√
Ω4 + 1− A2

4

A2

4 + (Ω4 + 1− A2

4 )

]

=
B√

Ω4 + 1− A2

4

[e−Aτ/2 sin

(√
Ω4 + 1− A2

4 τ

)
2
A (Ω4 + 1)

−

√
Ω4 + 1− A2

4 e−Aτ/2 cos

(√
Ω4 + 1− A2

4 τ

)
Ω4 + 1

]
+

B

Ω4 + 1
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5.4 Inverse Fourier Transform

We can now recover γ by applying the inverse Fourier transform

F−1{γ̂} = γ =
1

2π

∫ ∞

−∞

(
B√

Ω4 + 1− A2

4

[e−Aτ/2 sin

(√
Ω4 + 1− A2

4 τ

)
2
A (Ω4 + 1)

−

√
Ω4 + 1− A2

4 e−Aτ/2 cos

(√
Ω4 + 1− A2

4 τ

)
Ω4 + 1

]
+

B

Ω4 + 1

)
e−iΩxdΩ

=
B

2π

∫ ∞

−∞

(
1√

Ω4 + 1− A2

4

[e−Aτ/2 sin

(√
Ω4 + 1− A2

4 τ

)
2
A (Ω4 + 1)

−

√
Ω4 + 1− A2

4 e−Aτ/2 cos

(√
Ω4 + 1− A2

4 τ

)
Ω4 + 1

]
+

1

Ω4 + 1

)
e−iΩxdΩ
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6 Solution with Moving Point Force

In this section, we consider the second external force model, a moving point force. We begin with equation (5)

∂4γ

∂χ4
+ γ +A

∂γ

∂τ
+

∂2γ

∂τ2
= Bδ(χ− V τ)

We, again, aim to solve this equation using applications of both the Fourier and Laplace transforms.

6.1 Fourier Transform

Applying the Fourier transform to both sides of our equation, we get

∫ ∞

−∞

(
∂4γ

∂χ4
dt+ γ +A

∂γ

∂τ
+

∂2γ

∂τ2

)
eiΩχdt =

∫ ∞

−∞
Bδ(χ− V τ)eiΩχdt

Ω4γ̂ + γ̂ +A
∂γ̂

∂τ
+

∂2γ̂

∂τ2
= BeiΩV τ

6.2 Laplace Transform

Now applying the Laplace transform, we get∫ ∞

0

(
Ω4γ̂ + γ̂ +A

∂γ̂

∂τ
+

∂2γ̂

∂τ2

)
e−stdt =

∫ ∞

0

BeiΩV τe−stdt

Ω4 ¯̂γ + ¯̂γ + sA¯̂γ + s2 ¯̂γ =
B

s− iΩV

¯̂γ =
B

s− iΩV

(
1

s2 +As+Ω4 + 1

)
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6.3 Inverse Laplace Transform

Applying the inverse Laplace transform and again leveraging the convolution theorem, we get

γ̂ =

∫ λ+i∞

λ−i∞

1

s− iΩvts

(
1

s2 +As+Ω4 + 1

)
estds

= L−1

{
B

s− iΩV

}
∗ L−1

{
1

s2 +As+Ω4 + 1

}
= BL−1

{
1

s2 +As+Ω4 + 1

}
∗ L−1

{
1

s− iΩV

}

=
B√

Ω4 + 1− A2

4

L−1


√
Ω4 + 1− A2

4

(s+ A
2 )

2 +Ω4 + 1− A2

4

 ∗ L−1

{
1

s− iΩV

}

=
B√

Ω4 + 1− A2

4

(
e−Aτ/2 sin

(√
Ω4 + 1− A2

4
τ

))
∗ eiΩV τ

=
B√

Ω4 + 1− A2

4

∫ τ

0

e−Aξ/2+iΩV (τ−ξ) sin

(√
Ω4 + 1− A2

4
ξ

)
dξ

=
B√

Ω4 + 1− A2

4

[ e−Aτ/2 sin

(√
Ω4 + 1− A2

4 τ

)
(−A

2 − iΩV )

(
1 +

(Ω4+1−A2

4 )

(−A
2 −iΩV )2

)

−

√
Ω4 + 1− A2

4 e−Aτ/2 cos

(√
Ω4 + 1− A2

4 τ

)
−
√
Ω4 + 1− A2

4 eiΩV τ

(−A
2 − iΩV )2

(
1 +

(Ω4+1−A2

4 )

(−A
2 −iΩV )2

) ]

=
B√

Ω4 + 1− A2

4

[ (−A
2 − iΩV )e−Aτ/2 sin

(√
Ω4 + 1− A2

4 τ

)
(−A

2 − iΩV )2 +
(
Ω4 + 1− A2

4

)

−

√
Ω4 + 1− A2

4 e−Aτ/2 cos

(√
Ω4 + 1− A2

4 τ

)
−
√
Ω4 + 1− A2

4 eiΩV τ

(−A
2 − iΩV )2 +

(
Ω4 + 1− A2

4

) ]
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6.4 Inverse Fourier Transform

We can now recover γ by applying the inverse Fourier transform

F−1{γ̂} = γ =
1

2π

∫ ∞

−∞

(
B√

Ω4 + 1− A2

4

[ (−A
2 − iΩV )e−Aτ/2 sin

(√
Ω4 + 1− A2

4 τ

)
(−A

2 − iΩV )2 +
(
Ω4 + 1− A2

4

)

−

√
Ω4 + 1− A2

4 e−Aτ/2 cos

(√
Ω4 + 1− A2

4 τ

)
−
√
Ω4 + 1− A2

4 eiΩV τ

(−A
2 − iΩV )2 +

(
Ω4 + 1− A2

4

) ])
e−iΩxdΩ

=
B

2π

∫ ∞

−∞

(
1√

Ω4 + 1− A2

4

[ (−A
2 − iΩV )e−Aτ/2 sin

(√
Ω4 + 1− A2

4 τ

)
(−A

2 − iΩV )2 +
(
Ω4 + 1− A2

4

)

−

√
Ω4 + 1− A2

4 e−Aτ/2 cos

(√
Ω4 + 1− A2

4 τ

)
−
√
Ω4 + 1− A2

4 eiΩV τ

(−A
2 − iΩV )2 +

(
Ω4 + 1− A2

4

) ])
e−iΩxdΩ

7 Conclusion

Motivated by a relevance to the development of novel railway technologies, this report developed partial solutions

for the Bernoulli-Euler beam equation, on a visco-elastic foundation, with stationary and moving point forces.

Fourier, Laplace and inverse Laplace transforms were completed analytically, with the inverse Fourier transform

being applied but left in integral form, paving the way for numerical techniques to be applied in further research.
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