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1 Prelude

1.1 Abstract

This project concerns the curves defined by one-dimensional subgroups of three-dimensional

unimodular Lie groups, equipped with a left Invariant metric. It is well known when these

curves are geodesics. This project studies the case where the curves are circles; i.e., they have

nonzero (constant) curvature and zero torsion. We find that such circles exist precisely when

the Ricci curvature has a particular signature.

1.2 Acknowledgment

I would like to express my special thanks of gratitude to my supervisors Dr Yuri Nikolayevsky

and Dr Grant Cairns for spending their valuable time to guide and direct me throughout this

research project. I am lucky enough to have them as supervisors.

My thanks and appreciations also go to AMSI Vacation Research teams in creating this mean-

ingful program that allowed me to experience a life of a researcher.

I am also thankful to my family that always encourage and support me to fulfill this project.

1.3 Statement of Authorship

The main idea of this project was created by Dr Yuri Nikolayevsky regarding the theorems

and the findings from Dr John Milnor (1976). Calculations and interpretation of the findings

were done and checked by Dr Yuri Nikolayevsky, Dr Grant Cairns and Mr Soprom Meng. We

have sourced the theorems and the formulas from various sources, namely textbook and online.

AMSI funded the whole research project.

2



2 Introduction

Basically, the classical differential geometry of a curve is the study of local property of the

curve to determine the characteristic related to their neighbourhood. The Frenet formulas is

one of the most essential equations that use the curvature (κ) and the torsion (τ) to show the

relationship between the vector fields {T,N,B} and their derivatives.

Particularly, when the curvature (κ) is non-zero constant and the torsion (τ) is zero, the

curve is a (portion of a) circle (Nikolayevsky 2018). In this project, we will use the covariant

derivative ∇X by the Koszul formula and the Frenet formulas for a left-invariant curve in a

3-dimensional metric Lie group to classify left-invariant circles which are not geodesics and

prove the following result.

Theorem 1. A three dimensional, unimodular, metric Lie group admits left-invariant circles

which are not geodesics if and only if the signature of its Ricci form is either (+,−,−) or

(0, 0,−).

3 Preliminaries

3.1 Lie Group and Lie Algebra

A Lie group is a set g with two structures: g is a group and g is a smooth and real manifold.

These structures agree in the following sense: multiplication and inversion are smooth map

(Kirillov 2008).

A Lie algebra over a field of the real numbers P is a vector space g with a bi-linear operation

[., .] : g× g → g

The operation [., .] is called the Lie bracket for g and satisfies the following properties:

• [., .] is bi-linear.

[aX + bY, Z] = a[X,Z] + b[Y, Z]

[Z, aX + bY ] = a[Z,X] + b[Z, Y ], for all elements X, Y, Z ∈ g and for all a, b ∈ P .

• Skew-symmetry

[X, Y ] = −[Y,X] for all X, Y ∈ g.
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• Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for all X, Y, Z ∈ g (Bordag 2015).

A Lie algebra g is called Abelian if [X, Y ] = 0,for all X, Y ∈ g (Bordag 2015).

Let (G, ⟨, ⟩) be a Lie group with a left-invariant metric. Then the diffeomorphisms Lg : G →

G are isometries (Tumarkin n.d.).

The covariant derivative ∇X is defined by the Koszul formula:

⟨∇XY, Z⟩ =
1

2
(⟨[X, Y ], Z⟩ − ⟨[Y, Z], X⟩+ ⟨[Z,X], Y ⟩). (1)

for all X, Y, Z ∈ g (Milnor 1976).

3.2 Three-dimensional Unimodular Lie groups

For every element X of a Lie algebra g, we define the operator adX on g by adXY = [X, Y ]. A

Lie algebra g is called unimodular if tr(adX) = 0, for all X ∈ g (Milnor 1976).

Let g be a 3-dimensional, metric, unimodular Lie algebra. Then there is an orthonormal

basis {e1, e2, e3} for g such that

[e1, e2] = λ3e3, [e3, e1] = λ2e2, [e2, e3] = λ1e1,

where λ1, λ2, λ3 ∈ R (Milnor 1976, Lemma 4.1).

It is convenient to define numbers µ1, µ2, µ3 by the formula (Milnor 1976) :

µi =
1

2
(λ1 + λ2 + λ3)− λ1.

By a theorem of Milnor, the orthonormal basis e1, e2, e3 diagonalized the Ricci quadratic

form, the principle Ricci curvatures being given by:

r(e1) = 2µ2µ3, r(e2) = 2µ1µ3, r(e3) = 2µ1µ2.

A three dimensional, unimodular, metric Lie group admits left-invariant circles which are

not geodesics if and only if the signature of its Ricci form is either (+,−,−) or (0, 0,−) (Milnor

1976).
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Figure 1: The signs of λi’s and Associated Lie group, (Milnor 1976)

3.3 Frenet formulas for Left-invariant curves in 3-dim Lie groups

For each point on a curve of 3 dimensional space, the Frenet frame is formed by three orthogo-

nal unit vectors {T,N,B}. For a regular curve γ(t) in R3. Then for a smooth parametrisation,

we get

T =
γ′

||γ′||
, N =

(γ′ × γ”)× γ′

||γ′ × γ′′||||γ′||
, B =

γ′ × γ′′

||γ′ × γ′′||

κ =
||γ′ × γ′′||
||γ′||3

, τ =
det(γ′, γ′′, γ′′′

||γ′ × γ′′||2

where

• T is the unit tangent vector.

• N is the unit normal vector.

• B is the principle unit binormal vector.

• κ is the curvature.

• τ is the torsion.

Moreover, the Frenet frame satisfies the following Frenet formulas:

T ′ = kN.

N ′ = −kT + τB.

B′ = −τN.

5



Figure 2: Frenet frame of a helix, (Nikolayevsky 2018)

• If κ = 0, the curve is a (portion of a) straight line (a geodesic).

• If κ ̸= 0, but τ = 0, the curve is a (portion of a) circle.

Frenet formulas for a left-invariant curve in a 3-dimensional metric Lie group can be translated

to the level of Lie algebra as follows:

∇XX = kN. (2)

∇XN = −kT + τB.

∇XB = −τN.

where X ̸= 0, X ∈ g is the tangent vector to the curve, κ is the curvature and τ is the torsion

(defined when κ ̸= 0).
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From (2), we get:

∇X∇XX = ∇XkN

= k∇XN

= k(−kX + τB)

= −k2X + kτB.

We need to calculate the cross product between ∇X∇XX and X to find τ ,

We have

(∇X∇XX)×X = (−k2X + kτB)×X

= kτ(B ×X)

= τkN

= τ∇XX.

4 The Proof of the Theorem

Let g be a 3-dimensional, metric, unimodular Lie algebra. Then there is an orthonormal basis

{e1, e2, e3} for g such that

[e1, e2] = λ3e3, [e3, e1] = λ2e2, [e2, e3] = λ1e1,

where λ1, λ2, λ3 ∈ R (Milnor 1976, Lemma 4.1).

To prove the theorem, we have to calculate the Torsion τ by finding (∇X∇XX)×X and ∇XX.

First, we need to find ∇XX.

From Koszul formular (1), we get for all X,Z ∈ g

⟨∇XX,Z⟩ = 1

2
(⟨[X,X], Z⟩ − ⟨[X,Z], X⟩] + ⟨[Z,X], X⟩)

= −⟨[X,Z], X⟩.

We have

[X,Z] = (x1z2 − x2z1)[e1, e2] + (x1z3 − x3z1)[e1, e3] + (x2z3 − x3z2)[e2, e3]

= (x1z2 − x2z1)λ3e3 − (x1z3 − x3z1)λ2e2 + (x2z3 − x3z2)λ1e1,
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where X = x1e1 + x2e2 + x3e3 and Z = z1e1 + z2e2 + z3e3.

We obtain

⟨∇XX,Z⟩ = −x1λ1(x2z3 − x3z2) + x2λ2(x1z3 − x3z1)− x3λ3(x1z2 − x2z1)

= −x1x2λ1z3 + x1x3λ1z2 + x1x2λ2z3 − x2x3λ2z1 − x1x3λ3z2 + x2x3λ1z1

= x2x3(λ3 − λ2)z1 + x1x3(λ1 − λ3)z2 + x1x2(λ2 − λ1)z3.

Therefore

∇XX = x2x3(λ3 − λ2)e1 + x1x3(λ1 − λ3)e2 + x1x2(λ2 − λ1)e3 = κN. (3)

where κ is the curvature and N is the unit principle normal vector.

Denote Ñ = κN .

From equation (1), we have

⟨∇XÑ , Z⟩ = 1

2
(⟨[X, Ñ ], Z⟩ − ⟨[Ñ , Z], X⟩] + ⟨[Z,X], Ñ⟩).

Since

[X, Ñ ] = [x2
1x3(λ1 − λ3)− x2

2x3(λ3 − λ2)][e1, e2] + [x2
1x2(λ2 − λ1)− x2

3x2(λ3 − λ2)][e1, e3]

+ [x2
2x1(λ2 − λ1)− x2

3x1(λ1 − λ3)][e2, e3]

= [x2
1x3(λ1 − λ3)− x2

2x3(λ3 − λ2)]λ3e3 + [x2
1x2(λ2 − λ1)− x2

3x2(λ3 − λ2)]λ2e2

+ [x2
2x1(λ2 − λ1)− x2

3x1(λ1 − λ3)]λ1e1.

This implies that

⟨[X, Ñ ], Z⟩ = [x2
1x3(λ1 − λ3)− x2

2x3(λ3 − λ2)]λ3z3 + [x2
1x2(λ2 − λ1)− x2

3x2(λ3 − λ2)]λ2z2

+ [x2
2x1(λ2 − λ1)− x2

3x1(λ1 − λ3)]λ1z1.

Moreover

[Ñ , Z] = [z2x2x3(λ3 − λ2)− z1x1x3(λ1 − λ3)]λ3e3 − [z3x2x3(λ3 − λ2)− z1x1x2(λ2 − λ1)]λ2e2

+ [z3x1x3(λ1 − λ3)− z2x1x2(λ2 − λ1)]λ1e1.

So

⟨[Ñ , Z], X⟩ = [z2x2x
2
3(λ3 − λ2)− z1x1x

2
3(λ1 − λ3)]λ3 − [z3x

2
2x3(λ3 − λ2)− z1x1x

2
2(λ2 − λ1)]λ2

+ [z3x
2
1x3(λ1 − λ3)− z2x

2
1x2(λ2 − λ1)]λ1.
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And

⟨[Z,X], Ñ⟩ = (z1x2 − z2x1)λ3x1x2(λ2 − λ1)− (z1x3 − z3x1)λ2x1x3(λ1 − λ3)

+ (z2x3 − z3x2)λ1x2x3(λ3 − λ2).

= z2x
2
2x1(λ2 − λ1)λ3 − z2x

2
1x2(λ2 − λ1)λ3 − z1x1x

2
3(λ1 − λ3)λ2 + z3x

2
1x3(λ1 − λ3)λ2

+ z2x2x
2
3(λ3 − λ2)λ1 − z3x

2
2x3(λ3 − λ2)λ1.

Therefore

⟨∇XÑ , Z⟩ = 1

2
[z1(x1x

2
2(λ2 − λ1)λ1 − x1x

2
3(λ1 − λ3)λ1 + x1x

2
3(λ1 − λ3)λ3

− x1x
2
2(λ2 − λ1)λ2 + x2

2x1(λ2 − λ1)λ3− x1x
2
3(λ1 − λ3)λ2)

+ z2(−x2
1x2(λ2 − λ1)λ2 + x2x

2
3(λ3 − λ2)λ2 − x2x

2
3(λ3 − λ2)λ3

+ x2
1x2(λ2 − λ1)λ1 − x2

1x2(λ2 − λ1)λ3 + x2x
2
3(λ3 − λ2)λ1)

+ z3(x
2
1x3(λ1 − λ3)λ3 − x2

2x3(λ3 − λ2)λ3 + x2
2x3(λ3 − λ2)λ2

− x2
1x3(λ1 − λ3)λ1 + x2

1x3(λ1 − λ3)λ2− x2
2x3(λ3 − λ2)λ1)].

This result implies

∇XÑ =
1

2
[(x1x

2
2((λ2 − λ1)λ1 − (λ2 − λ1)λ2 + (λ2 − λ1)λ3)

+ (x1x
2
3(−(λ1 − λ3)λ1 + (λ1 − λ3)λ3 − (λ1 − λ3)λ2)))e1

+ (x2
1x2(−(λ2 − λ1)λ2 + (λ2 − λ1)λ1 − (λ2 − λ1)λ3)

+ (x2x
2
3((λ3 − λ2)λ2 − (λ3 − λ2)λ3 + (λ3 − λ2)λ1)))e2

+ (x2
1x3((λ1 − λ3)λ3 − (λ1 − λ3)λ1(λ1 − λ3)λ2)

+ (x2
2x3(−(λ3 − λ2)λ3 + (λ3 − λ2)λ2 − (λ3 − λ2)λ1)))e3].

Therefore, the i-th component of ∇X(κN) equals

1

2
x2
i (x

2
j(λj − λi)(λi − λj + λk) + x2

k(λk − λi)(λi − λk + λj)),
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where {i, j, k} = {1, 2, 3}.

The first component of (∇X∇XX ×X) equals

x2x3

2
[x2

1(λ2 − λ1)(λ1 − λ2 − λ3) + x2
3(λ3 − λ2)(λ1 + λ2 − λ3)]

− x2x3

2
[x2

1(λ1 − λ3)(−λ1 + λ2 + λ3) + x2
2(λ3 − λ2)(−λ1 + λ2 − λ3)]

=
x2x3

2
[x2

1(λ1 − λ2 − λ3)(λ2 − λ1 + λ1 − λ3) + x2
3(λ3 − λ2)(λ1 + λ2 − λ3)

− x2
2(λ3 − λ2)(−λ1 + λ2 − λ3)]

=
x2x3(λ2 − λ3)

2
[x2

1(λ1 − λ2 − λ3) + x2
3(−λ1 − λ2 + λ3) + x2

2(−λ1 + λ2 − λ3)].

The second component of (∇X∇XX ×X) equals

x1x3

2
[x2

1(λ1 − λ3)(−λ1 + λ2 + λ3) + x2
2(λ3 − λ2)(−λ1 + λ2 − λ3)]

− x1x3

2
[x2

2(λ2 − λ1)(λ1 − λ2 + λ3) + x2
3(λ1 − λ3)(−λ1 − λ2 + λ3)]

=
x1x3

2
[x2

2(λ1 − λ2 + λ3)(−λ3 + λ2 − λ2 + λ1) + x2
1(λ1 − λ3)(−λ1 + λ2 + λ3)

− x2
3(λ1 − λ3)(−λ1 − λ2 + λ3)]

=
x2x3(λ1 − λ3)

2
[x2

2(λ1 − λ2 + λ3) + x2
1(−λ1 + λ2 + λ3) + x2

3(λ1 + λ2 − λ3)].

The third component of (∇x∇XX ×X) equals

x1x2

2
[x2

2(λ2 − λ1)(λ1 − λ2 + λ3) + x2
3(λ1 − λ3)(−λ1 − λ2 = λ3)]

− x1x2

2
[x2

1(λ2 − λ1)(λ1 − λ2 − λ3) + x2
3(λ3 − λ2)(λ1 + λ2 − λ3)]

=
x1x2

2
[x2

3(λ1 + λ2 − λ3)(λ3 − λ1 − λ3 + λ2) + x2
2(λ2 − λ1)(λ1 − λ2 + λ3)

− x2
1(λ2 − λ1)(λ1 − λ2 − λ3)]

=
x1x2(λ2 − λ1)

2
[x2

3(λ1 + λ2 − λ3) + x2
2(λ1 − λ2 + λ3) + x2

1(−λ1 + λ2 + λ3)].

It follows that (∇X∇XX)×X = τ∇XX, where

τ = f(X) =
1

2
[x2

1(−λ1 + λ2 + λ3) + x2
2(λ1 − λ2 + λ3) + x2

3(λ1 + λ2 − λ3)] (4)

To complete the proof, we need to find those X ∈ g for which f(X) = 0 and κN ̸= 0. This is

because if κN = 0, it leads to κ = 0 which is a straight line. Here f(X) is given in (4) and κN ,

in (3). We consider several possible cases.
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• Case 1: λ1 = λ2 = λ3 = α

This implies that κN = 0

Thus, there is no solution. We note that in this case, µ1 = µ2 = µ3 = 1
2
α, and so all

three principle Ricci curvatures are equal to 1
4
α2. Hence, the Ricci sign signature is either

(0, 0, 0) or (+,+,+).

• Case 2: Suppose of the λi are equal, and the third one is different.

Without loss of generality, let λ1 = λ2 = α and λ3 = β where α ̸= β.

Therefore, by (3)

κN = x2x3(β − α)e1 + x1x3(α− β)e2, f(X) = βx2
1 + βx2

2 + (2α− β)x2
3 = 0.

If β(2α− β) > 0, then the cone f(X) is trivial (a single point X = 0), and so κN = 0.

Suppose β(2α−β) = 0. If β = 0, then 2β−α ̸= 0, and so the cone f(X) = 0 is the plane

x3 = 0. If 2α− β = 0, then β ̸= 0, and so the cone f(X) = 0 is the line x1 = x2 = 0. In

both cases we have κN = 0.

Finally, if β(2α− β) < 0, then the cone f(X) = 0 is a (non-trivial) circular cone in g. As

κN = 0 if and only if either x3 = 0 or x1 = x2 = 0, all the points on the cone f(X) = 0

except for the origin X = 0 correspond to vectors generating non-geodesic circles in the

group G.

Note that in this case µ1 = µ2 =
1
2
β, µ3 = α − 1

2
β, and so the principal Ricci curvatures

are r1 = r2 = 1
4
β(2α − β), r3 = 1

4
β2. The Ricci signature cannot be (0, 0,−), and it is

(−,−,+) exactly when β(2α− β) < 0.

• Case 3: λ1, λ2, λ3 are pairwise different.

This implies that κN = 0 if and only if at least two of the xi’s are zeros.

Therefore,

f(X) = µ1x
2
1 + µ2x

2
2 + µ3x

2
3 = 0.

First suppose that all three µi are not zero. If they have the same sign, then the cone

f(X) = 0 is trivial. If two of the µi are positive, and the third one is negative (or vice

versa), then the cone f(X) = 0 is non-trivial excluding the vertex X = 0 and κN ̸= 0.

This is because λ1, λ2, λ3 are pairwise different and X ̸= 0.
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Note that in this case, two of ri’s are negative and the third one is positive, which shows

that the Ricci signature is (−,−,+).

Now suppose that at least one of the µi is zero. Since λ′
is are different, so we have at

most 1 of µi = 0. The reason is that if there are 2 of µi = 0, 2 of µi are equal.

Without loss of generality, we can assume that µ3 = 0, so that λ3 = λ2 + λ1. Note that

λ1 ̸= 0 and λ2 ̸= 0.

Thus,

µ1 =
1

2
(−λ1 + λ2 + λ1 + λ2) = λ2 and µ2 =

1

2
(λ1 − λ2 + λ1 + λ2) = λ1. (5)

Therefore, µ1, µ2 ̸= 0 and f(X) = λ2x
2
1 + λ1x

2
2.

We have

λ2x
2
1 + λ1x

2
2 = 0

λ2x
2
1 = −λ1x

2
2

x2
1 = −λ1

λ2

x2
2

x1 = ±(

√
−λ1

λ2

)x2.

If λ1 and λ2 have the same sign, then the cone f(X) = 0 is the line x1 = x2 = 0, and so

κN = 0 by (3).

Suppose λ1λ2 < 0. Then, the equations x1 = ±(
√
−λ1

λ2
)x2 are the solution, which is the

union of 2 planes in R3 excluding the line x1 = x2 = 0.

Note that in this case, two of ri’s are zero and the third one is negative, which shows that

the Ricci signature is (0, 0,−).

This completes the proof of the Theorem.

5 Conclusion

It has been shown that the Frenet formulas and the covariant derivative ∇X by the Koszul

formula plays a vital role for the proof of the Theorem. Different properties between λi’s result

in different Ricci sign signatures; however, when the signature of Ricci form is either (+,−,−)
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or (0, 0,−), the curve is left-invariant circle which is not geodesic for a three dimensional,

unimodular, metric lie group.
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