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Prelude

Abstract

This project investigated the closeness centrality of the star graphs using both mathematical and computational

methods. In this report, the closeness centrality of the equal path length star graph has been found and

verified using Wolfram Mathematica. Additionally, the formula has been used to generalise further the closeness

centrality of the multi-length path star graph.
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1 Introduction

Closeness centrality is one of the many centrality measures used in social network analysis, including identifying

the most influential person in a social network, key infrastructure nodes in the urban networks and super-

spreaders of disease [1].

Closeness centrality was defined in 1950 by Alex Bavelas [2]. Since then, however, only few properties of this

centrality measure have been established. In this AMSI project, we investigated the star graph and generalised

the closenesss centrality formula for it.

Let G = (V,E) be a connected graph on |V | = n vertices. The closeness centrality measure C̄C(G) of G is

defined as the average of the closeness centralities C̄C(v) of each vertex v in G [2]:

C̄C(G) :=
1

n

∑
v∈V

C̄C(v) where C̄C(v) :=
n− 1∑

w∈V

d(v, w)

and where d(v, w) is the distance between v and w; that is, the shortest length of a path between v and w in G.

Example 1. Let Sn be a star graph with central vertex v0 and five outer vertices.

v0

v1

star graph Sn

C̄C(v0) =
n− 1∑

w∈V

d(v0, w)
=

6− 1

1 + 1 + 1 + 1 + 1
= 1

C̄C(v1) =
n− 1∑

w∈V

d(v1, w)
=

6− 1

1 + 2 + 2 + 2 + 2
=

5

9

C̄C(Sn) =
1

n

∑
v∈V

C̄C(v) =
1

6

(
1 +

5

9
× 4
)
=

29

54
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2 Known results on closeness centralities for graph families

There seem to be very few papers on closeness centralities in the mathematical research literature. One of

these few papers, by Hu, Islam and Britz [4], provides the closeness centralities for twelve families of graphs, as

described in the following two propositions.

Proposition 1. The vertex closeness centralities C̄C(v) for all v ∈ V are given below for the families of graphs

G = (V,E) shown in Figure 1.

Complete graph Kn: C̄C(v) = 1

Cycle graph Cn: C̄C(v) =
n−1

⌊n2/4⌋

Wheel graph Wn: C̄C(v) = 1 if v is the central vertex, and C̄C(v) =
n−1
2n−5 otherwise

Star graph Sn: C̄C(v) = 1 if v is the central vertex, and C̄C(v) =
n

2n−1 otherwise

Near-complete graph Kn − e: C̄C(v) =
n−1
n if v is adjacent to e, and C̄C(v) = 1 otherwise

Cocktail party graph CP (n): C̄C(v) =
2n−1
2n

Complete bipartite graph Km,k: C̄C(v) =


m+k−1
m+2k−2 if v ∈ {u1, . . . , uk}

m+k−1
k+2m−2 if v ∈ {v1, . . . , vm}

Crown graph S0
n: C̄C(v) =

2n−1
3n

Path graph Pn: C̄C(vk) =
4(n−1)

(2k−n+1)2+n2−1 for k = 0, . . . , n− 1

Ladder graph Ln: C̄C(vk) = C̄C(uk) =
4n−2

(2k−n+1)2+n2+2n−1 for k = 0, . . . , n− 1

Circular ladder graph CLn: C̄C(v) =
n−1

2⌊n2/4⌋+n

Hypercube graph Qk: C̄C(v) =
2k−1
k2k−1 .

Kn Cn Wn Sn

u1 · · · uk

v1 v2 · · · vm

Kn − e CP (n) Km,k S0
n

v0 v1 vn−2 vn−1

u0

v0

u1

v1

un−2

vn−2

un−1

vn−1

Pn Ln (≃ K2 × Pn) CLn (≃ K2 × Cn) Qk

Figure 1: Twelve families of graphs
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The expressions for C̄C(v) in Proposition 1 were used by Hu, Islam and Britz [4] to find simple expressions

for the closeness centrality C̄C(G) of ten of the twelve families of graphs G.

Corollary 2. [4]

C̄C(Kn) = 1 C̄C(CPn) = 2n−1
2n

C̄C(Cn) = n−1
⌊n2/4⌋ C̄C(Km,k) =

m+k−1
m+k

(
m

k+2m−2 + k
m+2k−2

)
C̄C(Wn) = n2−4

n(2n−5) C̄C(S
0
n) = 2n−1

3n

C̄C(Sn) = n2+2n−1
2n2+n−1 C̄C(CLn) = n−1

2⌊n2/4⌋+n

C̄C(Kn − e) = n2−2
n2 C̄C(Qk) = 2k−1

k2k−1 .

Less simple expressions were also obtained for the graphs Pn and Ln.

Corollary 3. [4] For the graphs G ∈ {Pn, Ln},

C̄C(G) = −
∑

a,b=±1

abc

nn̂
ψ
(1 + an+ bn̂

2

)
where ϕ(x) is the digamma function and where n̂ =

√
1− n2 and c = 1

n if G = Pn, and n̂ =
√
1− 2n− n2 and

c = 2n−1
4n if G = Ln.

3 The closeness centrality of generalised star graphs

The main results of this report are new expressions for the closeness centrality of a general family of graphs not

previously determined in the literature.

a

x11

x1k1

x21

x2k2

xn1

xnkn

Figure 2: Multi-length path star graph G

Proposition 4. Let G be a multi-length path star graph with vertices xij, where 1 ≤ i ≤ n and 1 ≤ j ≤ ki for

some positive integers n, k1, . . . , kn; see Figure 2. The vertex closeness centrality for each vertex xij is:

C̄C(xij) =

n∑
r=1

kr

n∑
r=1

kr(kr + 1 + 2j)

2
+ j(j − 2ki)

.
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Proof. Note that

C̄c(xij) =
n− 1∑

w∈V

d(v, w)
=

n∑
i=1

ki

∑
r ̸=i

kr∑
s=1

(j + s) +

ki∑
r=0

|r − j|

=

n∑
i=1

kr

∑
r ̸=i

kr∑
s=1

j +
∑
r ̸=i

kr∑
s=1

s+

j∑
r=0

(j − r) +

ki∑
r=j+1

(r − j)

Now,

∑
r ̸=i

kr∑
s=1

j +
∑
r ̸=i

kr∑
s=1

s+

j∑
r=0

(j − r) +

ki∑
r=j+1

(r − j)

=
∑
r ̸=i

kij +
∑
r ̸=i

kr(kr + 1)

2
+

1

2
j(j + 1) +

1

2
(ki − j)(ki − j + 1)

= j(

n∑
r=1

ki)− jki +

n∑
r=1

kr(kr + 1)

2
− ki(ki + 1)

2
+ j2 +

ki
2

− jki +
ki

2

2

= j(

n∑
r=1

kr) +

n∑
r=1

kr(kr + 1)

2
+ j2 − 2jki

=

n∑
r=1

kr(kr + 1 + 2j)

2
+ j(j − 2ki) .

Therefore,

C̄c(xij) =

n∑
r=1

kr

n∑
r=1

kr(kr + 1 + 2j)

2
+ j(j − 2ki)

.

By Proposition 4, the vertex closeness centrality for the central vertex a can be found.

C̄c(a) =
n− 1
n∑

i=1

ki∑
j=1

j

=

2

n∑
r=1

kr

n∑
i=1

ki(ki + 1)

.

Corollary 5. Let G be a multi-length path star graph with vertices xij, where 1 ≤ i ≤ n and 1 ≤ j ≤ ki for

some positive integers n, k1, . . . , kn; see Figure 2. The graph closeness centrality for G is

C̄C(G) =

n∑
r=1

kr

1 +

n∑
r=1

kr

(
n∑

i=1

ki∑
j=1

1

j(j − 2ki)) +
1
2

n∑
r=1

kr(kr + 1 + 2j)

+
2

n∑
i=1

ki(ki + 1)

)
.
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3.1 Checking the correctness of the propositions

The proposition regarding the vertex closeness centrality established above is complicated and may be reused

in future projects. To prevent errors, Wolfram Mathematica was used as a computaional tool to ensure the

correctness of the propositions.

Let G1 be a rooted tree with four branches with 7, 3, 4, 6 edges respectively. Additionally, G1 is a tree formed

by the union of paths

P1 = ax11, x11x12, . . . , x16x17;

P2 = ax21, x21x22, x22x23;

P3 = ax31, x31x32, . . . , x33x34;

P4 = ax41, x41x42, . . . , x45x46 .

The graph G1 is represented and drawn in Mathematica as follows.

In[1]:= Clear["Global‘*"];

a1 = 7,3,4,6;

a2 = Flatten[Table[Table[{i, j} [UndirectedEdge] {i, j + 1},

{j, a1[i] - 1}], {i, Length[a1]}]];

a3 = Table[a [UndirectedEdge] {i, 1}, {i, Length[a1]}];

a4 = Join[a2, a3];

a5 = Graph[a4, VertexLabels -> "Name",

GraphLayout -> {"BalloonEmbedding", "EvenAngle" -> True, "OptimalOrder" -> True}]
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Out[1]=
{1, 1}

{1, 2}

{1, 3}

{1, 4}

{1, 5}
{1, 6}{1, 7}

{2, 1}{2, 2}{2, 3}

{3, 1}

{3, 2}
{3, 3}{3, 4}

{4, 1}

{4, 2}

{4, 3}
{4, 4}{4, 5}{4, 6}

a

In the graph above, the distance between xi1j1 and xi2j2 is j1 + j2. The distance between a and xij is j.

To test the correctness of the program, two simple example were given. The below command used the

built-in function ’GraphDistance’ in Mathematica to calculate the distance between the node {1, 3} and {2, 2}.

In[2]:= GraphDistance[a5,{1,3},{2,2}]

Out[2]= 5

Similarly, the following command was used to calculate the distance between the central vertex a and {1, 3}.

In[3]:= GraphDistance[a5,a,1,3,]

Out[3]= 3

The vertex closeness centrality C̄C(x1,3) can be found using the ’GraphDistance’ function.

In[4]:= a6[v_]:=GraphDistance[a5,v];

a7[v_] := (Length[a6[v]] - 1) / Apply[Plus, a6[v]]; a7[{1, 3}]

8



Out[4]=
5

23

On the other hand, the vertex closeness centrality C̄C(x1,3) can also be found by constructing the formula found

in Proposition 4 in Mathematica,

C̄C(xij) =

n∑
r=1

kr

n∑
r=1

kr(kr + 1 + 2j)

2
+ j(j − 2ki)

where i = 1 and j = 3, as shown in the code below:

In[5]:= ii, jj = {1, 3};

Apply[Plus, a1] / (Apply[Plus, Map[# (# + 1 + 2 jj) / 2 &, a1]] + jj (jj - 2 a1[ii]))

Out[5]=
5

23

Both methods provide the same result, C̄C(x1,3) =
5
23 , so the formula in Proposition 4 is proven to be correct.
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3.2 The closeness centrality for equal-length path star graphs

This subsection presents the closeness centrality for equal-length path star graphs.

a

x11

x1k

x21

x2k

xn1

xnk

Figure 3: equal-length path star graph G2

Corollary 6. Let G2 be an equal-length path star graph with n paths each of length k, for some positive integers

k and n. The vertex closeness centrality for each vertex xij is

C̄C(xij) =

n∑
r=1

k

1

2

n∑
r=1

k(k + 1 + 2j) + j(j − 2k)

.

Proof. From Proposition 4, we have

C̄C(xij) =

n∑
r=1

kr

1

2

n∑
r=1

kr(kr + 1 + 2j) + j(j − 2ki)

=

n∑
r=1

k

1

2

n∑
r=1

k(k + 1 + 2j) + j(j − 2k)

.

Corollary 7. Let G2 be an equal-length path star graph with n paths each of length k, for some positive integers

k and n. The graph closeness centrality for G2 is

C̄C(G2) =
2n2k

1 + nk

k∑
j=1

1

2j(j − 2k) + nk(k + 1 + 2j)
+

2

(1 + nk)(k + 1)
.

Proof. From Corollary 5, the graph closeness centrality for multi-length path star graph is
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C̄C(G2) =

n∑
r=1

kr

1 +

n∑
r=1

kr

(

n∑
i=1

ki∑
j=1

1

j(j − 2ki)) +
1
2

n∑
r=1

kr(kr + 1 + 2j)

+
2

n∑
i=1

ki(ki + 1)

)

=
nk

1 + nk
(n

k∑
j=1

1

j(j − 2k) + n
2 k(k + 1 + 2j)

+
2

nk(k + 1)
)

=
2n2k

1 + nk
(

k∑
j=1

1

2j(j − 2k) + nk(k + 1 + 2j)
) +

2

(1 + nk)(k + 1)

3.3 Checking the correctness of the graph closeness centrality

The corollary regarding the vertex closeness centrality established in Section 5.2 can be further verified via

applied mathematical tools. To prevent errors, Wolfram Mathematica was used to ensure the correctness of

Corollary 4.

Let G2 be a rooted tree with five branches each with equal length of three edges. The graph G2 is defined

and drawn in Mathematics as follows.

In[6]:= Clear["Global‘*"];

a1 = ConstantArray[3, 5];

a2 = Flatten[Table[Table[{i, j} [UndirectedEdge] {i, j + 1},

{j, a1[[i]] - 1}], {i, Length[a1]}]];

a3 = Table[a [UndirectedEdge] {i, 1}, {i, Length[a1]}];

a4 = Join[a2, a3];

a5 = Graph[a4, VertexLabels -> "Name",

GraphLayout ->{"BalloonEmbedding", "EvenAngle" -> True, "OptimalOrder" -> True}]

Out[6]=

{1, 1}

{1, 2}
{1, 3}

{2, 1}

{2, 2}

{2, 3}

{3, 1} {3, 2}{3, 3}

{4, 1}

{4, 2}

{4, 3}

{5, 1}

{5, 2}
{5, 3}

a
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Similarly, we could use the built-in function ’GraphDistance’ and ’VertexList’ in Mathematica to calculate

C̄C(G2) graphically.

In[7]:= a6[v_] := GraphDistance[a5, v];

a7[v_] := (Length[a6[v]] - 1)/Apply[Plus, a6[v]];

Mean[Map[a7, VertexList[a5]]]

Out[7]=
5667

18304

On the other hand, we could also calculate C̄C(G2) by substituting n = 5 and k = 3 into the formula in

Corollary 7.

In[8]:= f[n_, k_] :=
2n^2k

1+nk

k∑
j=1

1

2j(j-2k)+nk(k+1+2j)
+

2

(1+nk)(k+1)

f[5, 3]

Out[8]=
5667

18304

Both methods provided the same output C̄C(G2) =
5667
18304 which validates Corollary 7.
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4 Discussion and conclusion

This report has provided the explicit expressions for the vertex and graph closeness centrality for multi-length

path star graphs, as well as the expressions for equal-length path star graphs.

Additionally, computational methods have been used to further verify the correctness of the expression.

There are many interesting graphs’ closeness centrality properties that still remain undiscovered and further

investigation is worth looking into in the future.
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