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1 Prelude

1.1 Abstract

The interest in developing efficient numerical methods for large-scale optimization problems
has recently grown remarkably due to their applications in diverse practical problems, including
machine learning, statistics, and data science. Recent works have shown that the introduction
of randomization techniques, such as random shuffling in optimization algorithms, would result
in more efficient and accurate results. However, the mathematical justification of this is still
lacking, which serves as an obstruction to understanding the randomization techniques and
developing new and efficient numerical methods. The purpose of this report is to summarize
the current state-of-the-art of randomization techniques used for large-scale optimization and

to perform some insight through methods with numerical experiments.

1.2 Acknowledgements

I would like to thank Prof. Guoyin Li for introducing me to the fascinating world of optimization
and providing consistent guidance to me. I would also like to thank the Australian Mathematical
Sciences Institute and the School of Mathematics and Statistics at the University of New South
Wales for this invaluable opportunity.

1.3 Statement of Authorship

This project aims to summarize the current development of randomization techniques for large-
scale optimization and conduct some numerical experiments to validate their performance.
While the report provides a review of the state-of-the-art of this this fast developing area
and do not contain new original results due to the time limitation, these study will provide a

stepping stone for my up coming honours projects, and will be further exploited.

2 Introduction

The interest in large-scale optimization methods has recently grown remarkably due to their

applications in diverse practical problems, including machine learning, statistics, and data



science. The typical numerical optimization algorithm to deal with large-scale optimization
problems is Stochastic Gradient Descent (SGD), proposed by Robbins and Monro (1951).
It is a simple but very efficient iterative method often used to solve finite-sum optimization

problems of the form

min
zERI

f@:%ZM4- 0

Here, for each i = 1,...,n, each f; : R? — R is differentiable and smooth, and the number of
functions n is usually large. There are many problems in machine learning where this model

fits, such as using a neural network for classification, where we have the following loss function:
1 .
min = 3 6,(h(w; 1)), (2)

where {(z;,y;) }I, is the given training data, h(-,7),i = 1,...,n and and ¢, are the correspond-
ing classifier and loss function for each data (x;,y;), and w is the trainable parameter of the
classifier. Note that, in many typical applications, the number of training data n is usually a
larger number with several millions.

The reason why SGD is a popular algorithm to solve such large-scale problems is due to
its inherent advantages, such as scalability, low computational complexity, and mild memory
requirements (Bottou et al., 2018). Many recent works have studied the sampling-without-
replacement variant of SGD, known as Random Reshuffling (RR), and have shown that
it often outperforms SGD (Giirbiizbalaban et al., 2021; Mishchenko et al., 2020; Safran and
Shamir, 2020; Haochen and Sra, 2019). Compared to SGD, RR uses sampling without re-
placement to leverage the finite-sum structure of (1), so it usually converges faster than SGD
emperically. However, it also introduces conditionally unbiased gradients in iterations within
each epoch. De Sa (2020) provides an example of a learning task and algorithm for which SGD
performs better than RR and counterexamples to the Operator Inequality of Noncommutative
Arithmetic and Geometric Means, a longstanding conjecture proposed by (Recht and Ré, 2012)
that has a close relationship with the performance of RR.

This report will introduce the basic concepts of optimization and gradient descent algo-
rithms, investigate recent advancements in RR and other randomization techniques, and present

numerical experiments demonstrating the performance of RR compared to SGD and its other



variants.

3 Preliminaries

3.1 Gradient Descent

Gradient Descent (GD) is a common numerical method to solve unconstrained minimization
problems that have a differentiable objective function. The idea of GD is to choose an initial
starting point zo € R? and then iteratively move to the next point in the direction opposite to

the gradient by the stepsize 7, which is the direction that locally decreases f the fastest.

Algorithm 1: Gradient Descent

Data: Stepsize n > 0, starting point z, € R?

x = xo; while some stopping criteria not satisfied do
| x=z-nVf(z)

end

The advantages of GD are simplicity, computational efficiency, and low memory storage.
However, when we deal with large-scale problems where f takes the form as in (1) with the
number of component functions N is very large in our problem setting, computing the gradient

of the objective function can be very expansive.

3.2 Stochastic Gradient Descent

To address the drawback of GD, instead of computing the gradient of the objective function,
Stochastic Gradient Descent (SGD) approximates it by computing the gradient for a

randomly selected component function. A typical SGD can be formulated as follows.

Algorithm 2: Stochastic Gradient Descent

Data: Stepsize n > 0, starting point z, € R?, number of epochs k& > 0
r=xp fort=12, ..., kdo
for j=1,2,...,ndo
| Sample i € 1,2,...,n uniformly; z .=z — nV f;(x);
end
Ty =T
end




Since SGD only computes the gradient of one component function, it is computationally
more efficient than GD, especially for machine learning problems with large datasets. We also
note that SGD has other advantages, such as better generalization performance (Amir et al.,
2021; Zhou et al., 2020), faster convergence (Vaswani et al., 2019), and handling non-convex
problems (Jin et al., 2021). However, one potential drawback of SGD is that it does not use

the finite-sum structure of the objective function in (1).

4 Randomization Techniques

4.1 SGD Variants

The standard SGD is often called SGD with replacement sampling, which means that at each
time, we randomly select a component function from all samples and then replace each sample
after it has been selected, so that it is possible for the same sample to be selected multiple times.
However, in practice, SGD without replacement sampling is more widely used for training a
machine learning model. We will see that these heuristics are simple but powerful and can
improve the performance of SGD.

We first introduce the Incremental Gradient method (IGM), which is actually not a
random but a deterministic algorithm. It performs incremental gradient steps through each

component function in a fixed order.

Algorithm 3: Incremental Gradient Method

Data: Stepsize n > 0, starting point zq € R¢, number of epochs k > 0
T = Xy,
fort=1,2,....k do

for j=1,2,...,ndo

| = -0V ()

end

Ty =
end

Another variant of SGD is called Shuffling Once (SO), which shuffles the order of com-

ponent functions before performing iterations, and then uses the same permutation for all k



epochs. We define

[' = {0 : 0 is a permutation of {1,2,...,n}}.

Algorithm 4: Shuffling Once

Data: Stepsize 1 > 0, starting point zq € R%, number of epochs k > 0
T = Xy,
Sample a permutation ¢ from I' uniformly;
fort=1,2,....k do

for j=1,2,...,ndo

| a VY f(@):

end

Ty =
end

Finally, we introduce Random Reshuffling (RR). Instead of sampling a permutation
before performing iterations, it shuffles the component functions for each epoch, which means

we have different order of gradient steps in each epoch.

Algorithm 5: Random Reshuffling

Data: Stepsize 1 > 0, starting point zq € R%, number of epochs k > 0
T = Xy,
fort=1,2,... .k do

Sample a permutation ¢ from I' uniformly;

for j=1,2,...,ndo

|2V ()

end

Ty =1
end

4.2 Theoritical Lower and Upper Bounds

Before jumping into the main topic, we first briefly describe the roles played by the upper
and lower bounds of the optimization algorithm. An upper bound of an algorithm often refers
to the theoretical guarantees on the convergence rate of the algorithm to a minimum, which
typically depends on the characteristics of the objective function and the hyperparameters used
in the algorithm. On the other hand, a lower bound describes the theoretical limitations of the

algorithm in terms of the convergence rate and performance guarantees. It usually provides a



lower bound on the distance from the current iterated point to the optimizer or the number of
iterations required to reach a certain accuracy, which can help determine the best performance
of the algorithm. In this section, we introduce some state-of-the-art results from recent papers.
Most recent works restrict the objective function to a quadratic finite-sum function on R, which
facilitates the analysis of randomization techniques. The main reference is How good is sgd with
random shuffling? (Safran and Shamir, 2020).

The lower bounds constructed by Safran and Shamir (2020) are built on the following

assumptions:

Assumption 4.1 f is a A-strongly convexr quadratic finite sum function on R. FEach f; is
quadratic and convex and of the form f;(x) = a;x* + bz, A\-smooth, and is G-Lipschitz for any
x such that ||z —z*|| < 1 around x* is the unique minimizer of f. The algorithms are initialized

at a start point xo such that ||xg — z*|| < 1. The chosen stepsize 1 is constant.

For this assumption, here are a few comments: we note that A is not only the gradient
Lipschitz constant but also the strong convexity parameter, which leads to a constant condition
number. The distance from the starting point to the optimizer is assumed to be at most 1,
since the current upper bounds for SGD on strongly convex functions often do not explicitly
rely on the the initial distance, for both SGD and RR.

Now we begin to discuss lower bounds for these randomization techniques. To begin with,
we will first consider the Incremental Gradient Method (IGM), which involves cycling

through component functions in a fixed deterministic order.

Theorem 4.2 (Safran and Shamir, 2020) For any k£ > 1,n > 1, and positive numbers G, A
such that G > 6, there exists a function f on R and an initialization point zy, € R? satisfying

Assumption 4.1, such that if we run IGM for k epochs with any step size n > 0, then
k G?
] > . 1 - X
f(x ) 1Iw1f f(x) c mm{/\, )\kQ} (3)

It is known that the existing optimal bound (both upper and lower bound) of SGD (Shamir,

2011) is
GQ
0 (n) .



Hence IGM can beat SGD only when £ > n. However, when dealing with large-scale problems,
n is often too large to allow for a larger value of k.
Next, we turn to the case of SO, where the components functions are shuffied before cycling

through those functions, and we use that same order for all epochs.

Theorem 4.3 (Safran and Shamir, 2020) For any £ > 1,n > 1, and positive G, A such that
G > 6], there exists a function f on R and an initialization point xq € R satisfying Assumption
1, such that if we run SO for k epochs with any step size n > 0, then

E | f(z*) — 1rxlff(x)] > c-min{)\,%}. (4)

We note that the lower bound of SO implies an interesting result in comparing SGD and
IGM, SO can achieve a lower distance from the value of the function at the iterated point to
the optimal value after performing the same number of epochs.

Finally, we will see that the lower bound of RR can be much less than all other methods

metioned above.

Theorem 4.4 (Safran and Shamir, 2020) For any £ > 1,n > 1, and positive G, A such that
G > 6], there exists a function f on R and an initialization point xg satisfying Assumption 1,

such that if we run RR for k& epochs with any step size n > 0, then

E [f@:k) . igff(x)} > ¢ min {/\, GTQ (@ + %) } . (5)

We observed that although there are two terms here, but both of them are higher order
term of the lower bounds other methods. This suggests that RR can be better than SGD, IGM,
and SO in terms of the lower bounds analysis, which is consistent with empirical evidence.

There are also some results give tight upper bounds for SO and RR but also with stronge

assumptions.

Assumption 4.5 The objective function f(zx) = %Z?Zl fi(zx) is A-strongly convex on R. In ad-
dition, each component function f(x) = %x* —bx is convex, L-smooth, and satisfies | f] (z*)| <

G where x* is the global minimizer of f over RY.



For SO, the following theorem provides some upper bound analysis for the function value

convergence rate.

Theorem 4.6 (Safran and Shamir, 2020) Suppose that f(z) =", fi(z) satisfies Assump-

log(nO'Sk)

o satisfies

tion 4.5, and assume that % < %. Then SO with a fixed stepsize of n =

/A G?L*

where the expectation is taken over randomly sampling a permutation o € I’ uniformly, and O

hides a constant and factors poly-logarithmic in n and k.
For RR, the following theorem gives its upper bound:

Theorem 4.7 (Safran and Shamir, 2020) Suppose that f(z) == 1 3" | f;(x) satisfies Assump-

T n

tion 4.5, and assume that % < m. Then RR with a fixed step size of n = % satisfies

-/ A G*L? 1 1

where the expectation is taken over randomly sampling a permutation ¢ € I' uniformly, and O

hides a constant and factors poly-logarithmic in n and k.

Verifying that these upper bounds of SO and RR are consistent with our lower bounds of
SO and RR in Theorems 4.3 and 4.4 in terms of their dependence on the variables n and k is
straightforward. Although the assumption of univariate quadratics is limiting, Theorems 4.6
and 4.7 here demonstrate the possible accuracy of lower bounds and to clarify how RR can

lead to a quicker convergence in a simple scenario.

Algorithm Lower bound Upper bound
RR 1/(nk)*+ 1/nk® (Thm 4.4) | 1/(nk)? 4+ 1/nk? (1d quadratic case, Thm 4.7)
SO 1/nk? (Thm 4.3) 1/nk? (1d quadratic, Thm 4.6)
IGM 1/k* (Thm 4.2) 1/k* (Gurbuzbalaban et al., 2019)
SGD 1/nk 1/nk

Table 1: Summary of lower and upper bounds



4.3 Comparing RR with SGD

In the previous section, we compare the expected optimization error E[f(x)) —inf f(z)] between
SGD and RR. In this section, we introduce an concept called shuffling variance propsed by
Mishchenko et al. (2020), which can be used to compare the error E[||z; — x*||], where 2* =

arg min f(z), between SGD and RR.

Here, the following analysis is built on assumption:

Assumption 4.8 The objective function f = Y7 | fi is convex, and f and each component
function f; are L-smooth. Further, there exists f* € R such that f > f*. We also assume the

existence of a minimizer z* € R%.
Now we definte the Bregman divergence and shuffling variance.

Definition 4.9 (Bregman Divergence) (Mishchenko et al., 2020) For any i, the quantity

Dy (z,y) = fi(z) — fily) = (Vfi(y),z — y)
is said to be the Bregman Divergence between = and y associated with f;.

Definition 4.10 (Shuffling Variance) (Mishchenko et al., 2020) Given a stepsize n > 0, and

a random permutation o of {1,2,..., N}. The shuffling variance is given by
OShuffie "= Z:n;laXN 5 [ fo) (@i, @ )} (6)

where z} = z* — UZ;;B Vfi(@®).

The shuffling variance 03, 4. depends on component functions f1, fa, . .., fa, and also on the
stepsize 1, in a more complicated way than in SGD. In fact, the shuffling variance is analogous to
the conventional definition of variance employed in the analysis of SGD. The following theorem

shows the relation between them.

Theorem 4.11 (Mishchenko et al., 2020) Suppose that each f; is A-strongly convex and L-
smooth. Then

204 S Ogme < <0 (7)

10



where o = & 320, [V £i(a) |12,
Now we are going to give the main result proved by Mishchenko et al. (2020)

Theorem 4.12 (Mishchenko et al., 2020) Suppose that each f; is A-strongly convex and that

Assumption 4.8 holds. Then for RR or SO run with a constant stepsize n < %, the iterates
generated by either algorithms satisfy
* n * 2 0_2 uirie
E [llo —a*[2) < (1= nA)™*[lzg — 22 4 Z5kutte, (8)

A

Several previous works have shown (Needell et al., 2014; Stich, 2019) that for any n < ﬁ the
iterates of SGD satisty

\ n \ 2no?
E [lzx — 2*|]] < (1= nA\)™ ||z — @ ||2+T- (9)

By inequalities 8 and 9, the question reduces to comparing the value of o2 and 03, ..
According to Theorem 4.11, it depends on both the number of component functions n and the
stepsize 7. Once the stepsize is sufficiently small, 03, 5. becomes smaller than o2, but this
might not be true in general. If we partition n component functions into n/7 groups, i.e., use
minibatches of size 7, then o2 decreases as O(1/7) and 62, . as O(1/7%), so RR can become

faster even without decreasing the stepsize.

5 Numerical Experiments

Finally, we conduct some numerical experiments to validate the performance of these random-
ization techniques. We implement these algorithms based on the literature and test them via

the least square optimization problem with the form

- 2 T 12
min [|Az — b|]* ;(azw bi) (10)

where A € R™*™ and a; is the i-th row of the matrix A, to solve the linear system on the

following two types of dataset for our test:

11
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Figure 1: Experiment results on the synthetic data

Synthetic data. The synthetic data used in this experiment are generated using the
MATLAB function randn. We used the MATLAB function randn(m,n) to generate the matrix
A, and then modified its singular values using singular value decomposition to get an ill-
conditioned matrix. The exact solution z* was generated as follows:

ATw
- 2w 1
TATwl, (1D

x*

where w was generated using the MATLAB function randn(m, 1), and ||-||2 is the usual Euclidean
distance. The right-side vector b € R™ was set to b = Az*.

Real data. The real-world data used are accessible through the SuiteSparse Matrix Col-
lection (Kolodziej et al., 2019). Each dataset in the SuiteSparse Matrix Collection comprises a

matrix A € R™*" and a vector b € R™ | but we only used the matrices A in our experiments

12
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Figure 2: Experiment results on the real data

and disregarded the vector b. As in the synthetic data experiments, we created the solution
using Equation 11 to guarantee the consistence of the linear system, and then set b = Az*.

We run each algorithm ten times and record the average, regardless of whether it is synthetic
data or real data, we can see that adding randomization techiniques can significantly improve
the effect of SGD, making the algorithm can approach the optimizer with fewer steps, where
random shuffling has the best effect, consistent with the theoretical results.

We also record the averaged runtime of each algorithms. In terms of runtime, IGM has no
randomness, it performs gradient steps in a fixed order each time, so it takes less time, also SO
only component shuffle the functions once and takes less time. However, SGD randomly picks
the component function once at each perform gradient step, while RR shuffles once before each

epoch, so they both take longer, but in general, this is comparable.

13



Algorithm | Runtime(sec) Algorithm | Runtime(sec)
SGD 0.3078 SGD 0.5776
IG 0.2158 IG 0.4429
SO 0.2092 SO 0.4450
RR 0.3133 RR 0.6835
(a) synthetic data (b) real data

Figure 3: Runtime of algorithms
6 Conclusion and Future Study

Random Reshuffling is a simple but powerful technique. Simplicity means it is easily imple-
mented in practice, and its power leads significantly improved performance when optimizing
large-scale problems. By randomly shuffling the data component functions in SGD, we can
reduce the correlations among successive gradients, which in turn leads to faster convergence
and improved accuracy. However, despite its apparent benefits, the theoretical properties of
this approach are not well-understood. There are several open questions that require further
investigation to achieve a deeper understanding of the efficacy and limitations of Random
Reshuffling.

One important area of inquiry is the development of tighter upper bounds for Random
Reshuffling without relying on overly strong assumptions. While existing theoretical analyses
have demonstrated the effectiveness of this approach, the assumptions made in these studies
are quite stringent. Finding ways to improve the performance of Random Reshuffling while
reducing the number and severity of assumptions would be a significant advancement in the
field.

Another promising avenue for future research is the exploration of alternative data per-
mutations that may be more effective than random reshuffling in achieving faster convergence
rates or other performance metrics. For example, Chen et al. (2021) proposes a new algorithm
called GraB that aims to find better provable data permutations than RR to enhance the
performance of SGD. A thorough analysis of various data permutation techniques, and their
theoretical properties, would provide valuable insights into the underlying mechanisms that
contribute to faster convergence and better accuracy in SGD.

In summary, while Random Reshuffling is a simple but powerful technique for improving the

14



performance of SGD on large-scale optimization problems, its theoretical analysis is still incom-
plete. To fully realize the potential of this approach, further research is required to investigate

its limitations and improve its performance on various types of optimization problems.
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A Appendix

Definition A.1 (Strong Convexity) Let f : R — R be a differentiable function. If there

exists a value A > 0 such that

A
F(y) 2 f(@) + V@) (y =) + Sy — =]’
for all x,y € R, we say that f is \-strongly convezx.

Definition A.2 (Lipschitz Continuity) Let f be a function from R? to R. If there exists a
value L > 0 such that

[f (@) = fu)l < Lz =y

for all z,y € R, we say that f is L-Lipschitz.

Definition A.3 (Smoothness) Let f : R? — R be a differentiable function. We say that f

1s L-smooth if f has L-Lipschitz gradient, i.e.,

IVf(z) =Vl < Lz -y

for all z,y € R,
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